ttps://ntrs.nasa.gov/search.jsp?R=20110023064 2019-08-30T18:02:55+00:00Z

Gerald J. LeBeau Chief – Applied Aeroscience and CFD Branch NASA Johnson Space Center Houston, Texas USA

The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA's Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-astmospheric, and entry.

The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support.

From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA's efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

National Aeronautics and Space Administration

NASA Aerosciences Activities to Support Human Space Flight

Gerald "Jay" LeBeau Chief – Applied Aeroscience and CFD Branch NASA Johnson Space Center Houston, Texas USA

Presented at JAXA Tsukuba Space Center November 21, 2011

NASA Centers and Mission Directorates

2

Johnson Space Center

NASA/JSC Aerosciences

Aerodynamic Characterization Rarefied Gas Dynamics

Aerothermodynamic Heating Decelerator Systems

Ground Testing

Modeling and Simulation

Flight Testing

NASA/JSC Aerosciences

Aerodynamic Characterization Rarefied Gas Dynamics

Aerothermodynamic Heating Decelerator Systems

Ground Testing

Modeling and Simulation

Flight Testing

NASA/JSC Aerosciences

Aerodynamic Characterization Rarefied Gas Dynamics

Aerothermodynamic Heating Decelerator Systems

Ground Testing

Modeling and Simulation

Flight Testing

Ground Testing

7

Primary CFD Codes Used at JSC

Overflow

Overset grid Navier-Stokes NASA Langley Research Center

Cart3D

Cartesian inviscid compressible NASA Ames Research Center

DPLR (Data Parallel Line Relaxation) Multi-block hypersonic non-equilibrium NASA Ames Research Center

DAC (DSMC Analysis Code) Rarefied gas dynamics solver NASA Johnson Space Center

Space Shuttle Overset CFD Development

Return to Flight Geometric Enhancements

605 Overlapping Grids 96.4M Volume Cells

Validation and Ground to Flight Traceability

Experimental Validation and Traceability

Flight Data Validation

STS-50 Orbiter Wing Running Loads Mach 1.25, Alpha -3.3, Beta 0.0, $\delta_{ei/o} = 10.5/6.25$, Qbar = 640.7 psf

13

Pre-Columbia Debris Transport Analysis

Post Flight Damage Assessment

Liberation Source Identification

STS-107 DTA Event

Post Columbia Accident DTA

Bipod Redesign Environment Updates

Old Configuration Bipod Ramps

New Configuration Bare Spindle

Shock Boundary Layer Interaction

Ascent Aeroheating

Mission Support / Damage Assessment

Boundary Layer Transition Flight Experimen

Space Launch System / Orion

Orion Project Elements

Crew Module

Crew and Cargo Transport

Launch Abort System

Emergency Escape During Launch

Service Module

Propulsion, Electrical Power, and Fluids Storage

Orion Aerosciences Trajectory Space

LAS Freestream – Jet Interaction

CFD "Schlieren" of Plume Interaction

Integrated Abort Vehicle Wind Tunnel Test

CFD vs. Pressure Sensitive Paint

CFD vs. PSP vs. Pressure Tap

Entry Physics

Crew Module Backshell

Orion Heating Environments

Rarefied Gas Dynamics

Characterized by Knudsen number: $\text{Kn} \equiv \frac{\lambda}{L_{Ref}}$

Computed Using NASA's Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) Software

Near Continuum

Transitional

Free Molecular

Undisturbed freestream molecules

Molecules that have been indirectly influenced by the surface

Rendezvous and Docking Plume Impingemen

Additional DSMC Applications

Orion Parachute System Development

Capsule Wake Modeling

Reynolds Averaged Navier Stokes

Detached Eddy Simulation

Fluid Structure Interaction (FSI)

Professor Tayfun Tezduyar

Professor Kenji Takizawa

Aerodynamic Predictions

- Aero-plume interactions
- Massively separated flow behind bluff bodies
- Strong shockwave boundary layer interactions
- Aeroacoustic and buffet environments
- Fluid-structure interactions

Aerothermodynamic Predictions

- Boundary layer transition
- Protuberance and cavity heating
- Ablative thermal protection system performance
- Shock layer radiative heating

Uncertainty quantification and validation remain generic foundational challenges!

Forcing Function

- Transition from steady to unsteady simulations
- Increased parametric analysis
- More complex geometries
- Increase computational capacity

Anticipated Response

- Time accurate, low dissipation, higher order methods
- Higher order turbulence modeling
- Automated surface and volume grid generation
- Adjoint methods for parameter sensitivity and solution adaptation
- Coupled multi-physics simulations

Shift in Modeling Maturation

Develop → **Validate** → **Apply**

Pros:

- Logical
- Systematic
- Ensures end-users have a product that is ready for release

Cons:

- Developers can be separated from users
- Always a struggle to advocate for resources to proceed in this mode

Develop → **Apply** → **Validate**

- NASA has seen explosive growth in the application of CFD
- Extremely difficult to be fully validated for every application
- Insufficient validation leads to large data uncertainties and design margins
- Acquiring test data to validate analysis becomes a project priority
- Roadmaps for future modeling and simulation development become more clear

Innovation and Inclusion

TRL – Technology Readiness Level

We Must Not Ever Forget...

Space Shuttle Challenger Crew

Lost January 28, 1986

Space Shuttle Columbia Crew Lost February 1, 2003

Thank you.