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Abstract – This study presents development of prototype products for 

terrestrial ecosystems in preparation for the future imaging spectrometer planned 

for the Hyperspectral Infrared Imager (HyspIRI) mission. We present a successful 

demonstration example in a coniferous forest of two product prototypes: fraction of 

photosynthetic active radiation (PAR) absorbed by chlorophyll of a canopy 

(fAPARchl) and leaf water content (LWC), for future HyspIRI implementation at 60 

m spatial resolution.  For this, we used existing 30 m resolution imaging 

spectrometer data available from the Earth Observing One (EO-1) Hyperion 

satellite to simulate and prototype the level one radiometrically corrected radiance 

(L1R) images expected from the HyspIRI visible through shortwave infrared 

spectrometer. The HyspIRI-like images were atmospherically corrected to obtain 

surface reflectance, and spectrally resampled to produce 60 m reflectance images 

for wavelength regions that were comparable to all seven of the MODerate 

resolution Imaging Spectroradiometer (MODIS) land bands.  Thus, we developed 

MODIS-like surface reflectance in seven spectral bands at the HyspIRI-like spatial 

scale, which was utilized to derive fAPARchl and LWC with a coupled canopy-leaf 

radiative transfer model (PROSAIL2) for the coniferous forest[1].  With this study, 

we provide additional evidence that the fAPARchl product is more realistic for 

describing the physiologically active canopy than the traditional fAPAR parameter 

for the whole canopy (fAPARcanopy), and thus should replace it in ecosystem process 

models to reduce uncertainties in terrestrial carbon cycle studies and ecosystem 

studies.  

Index Terms – fAPARchl, fAPARcanopy, leaf water content (LWC), terrestrial 

carbon cycle, foliar moisture content, EO-1 Hyperion, HyspIRI 

 

1. INTRODUCTION 

A Hyperspectral Infrared Imager (HyspIRI) mission was described by the 

National Research Council in its Decadal Survey Report (http://www.nap.edu/catalog.ph 

p?record_id=11820) to address terrestrial ecosystem science, as one of the next 

http://www.nap.edu/catalog
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generation NASA satellite missions. The HyspIRI mission is envisioned to carry two 

spectral instruments, both with ground spatial resolutions of 60 m -- a visible to 

shortwave infrared (VSWIR) continuous spectrum hyperspectral imager (10 nm spectral 

sampling) and a multi-channel thermal infrared (TIR) imager. The Earth Observing One 

(EO-1) Hyperion (launched in November 2000) is still operating and serves as the 

heritage satellite instrument for HyspIRI’s VSWIR spectrometer, but it only captures 7.5 

km wide ground strips, and its 30 m resolution images are acquired through user/system 

requests.  In contrast, HyspIRI will be a global survey mission and its VSWIR instrument 

will have 60 m pixels across a 150 km wide ground swath, collected on an equatorial 19 

day repeat cycle. Consequently, existing Hyperion data provide an excellent tool for 

product development in anticipation of the HyspIRI and other spaceborne imaging 

spectrometer missions. 

The absorbed photosynthetically active radiation (APAR) fraction for a whole 

vegetation canopy (fAPARcanopy, also denoted as FAPAR or FPAR[2-4]) (see Appendix 

A for equations) is an essential climate variable ([5-8]) needed to estimate and monitor 

vegetation productivity on a global basis. However, fAPARcanopy includes both 

photosynthetic and non-photosynthetic components, and has not provided consistent 

relationships to photosynthetic processes at the ecosystem scale [1, 9-11].  This is 

because the APAR available to support vegetation photosynthesis (APARPSN) is typically 

overestimated by fAPARcanopy. However, the APAR fraction associated with the 

chlorophyll-containing component (fAPARchl, equation A.3 in Appendix A) consistently 

and correctly represents the physiologically active photosynthetic sector of the canopy 

under optimal (e.g., fully green) and less optimal (e.g., mixtures of green and senescent 
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vegetation) conditions affecting physiological responses.  In other words, fAPARPSN  = 

fAPARchl [1]. 

We  recently demonstrated that fAPARchl is superior to the use of fAPARcanopy in 

model simulations with gross primary production (GPP) or gross ecosystem production 

(GEP) to estimate light use efficiency (LUE), defined as GPP/APARPSN  [1].  The 

fAPARchl retrievals were estimated from space for a deciduous aspen forest using five of 

the seven MODerate Resolution Imaging Spectroradiometer (MODIS) spectral land 

bands from Collection 4 daily products, for which product quality was insufficient for our 

model retrievals in two land bands (B3, blue; B7, SWIR2).  Those earlier results were 

indirectly validated by comparing LUE measured in situ at the tower (LUEtower) to the 

LUE determined from our remote sensing/modeling approach for the forest’s chlorophyll 

component (LUEchl= GPP/APARchl, where APARchl=fAPARchl *PAR). LUEchl matched 

well with LUEtower while the widely used LUE describing the whole canopy 

(LUEcanopy=GPP/APARcanopy, where APARcanopy= fAPARcanopy*PAR) did not. Therefore, 

we recommended that fAPARchl should replace fAPARcanopy to estimate canopy 

parameters related to photosynthesis for climate models and land-atmosphere interaction 

models [5, 7].  But further evidence should be pursued. 

The spectral range for both the EO-1 Hyperion and the future HyspIRI VSWIR 

imaging spectrometers is between 0.4 − 2.5 µm, which spans the spectral range of the 

MODIS 1 – 7 land bands. In the present study, the fAPARchl algorithm that was 

previously developed to ingest five MODIS bands was modified to utilize all seven 

MODIS land bands from the more radiometrically rigorous Collection 5 products. We 

wish to know how inclusion of these additional bands and higher spatial resolution 
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satellite observations (60 m vs. 500 m) affected and improved retrievals of fAPARchl 

from HyspIRI-like VSWIR radiance images simulated from EO-1 Hyperion images. We 

also simultaneously retrieved leaf water content (LWC, equation A.4). The Normalized 

Difference Vegetation Index (NDVI, equation A.5) and Enhanced Vegetation Index (EVI, 

equation A.6) were used to estimate fAPARcanopy and fAPARchl, respectively [12-15], and 

the Land Surface Water Index (LSWI, equation A.7) was used to estimate foliar moisture 

content [14]. Note that fAPARcanopy is a linear function of NDVI[12]. 

The goal of this project was to apply the modified fAPARchl and LWC algorithm 

to a coniferous forest in a heterogeneous landscape, to demonstrate the advantages of the 

revised algorithm to observations with spectral bands spanning the full optical spectrum 

at much high spatial resolution than is possible with MODIS. Our specific objectives 

were to test the hypotheses that: (1) fAPARchl and LWC provide unique information, as 

compared to existing indices such as EVI, fAPARcanopy (linear function of NDVI), and 

LSWI, and (2) fAPARchl and LWC retrievals benefit from higher spatial resolution and 

additional spectral band inputs. We begin by describing the approach to obtaining 

prototype HyspIRI VSWIR radiance images and then describe the modification of the 

fAPARchl-LWC algorithm from 5-band to 7-band versions.  Next, we present the 

HyspIRI outputs of the 7-band algorithm and comparisons of our model retrievals for 500 

m vs. 60 m pixels, and comparison of 500m retrievals using 5 vs. 7 spectral bands, 

followed by the summary conclusions. 

 

2. METHODS 

2.1 Satellite Image Pre-Processing 
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2.1.1 Spatially scaling up the EO-1 Hyperion radiance images to 60 m 

The EO-1 Hyperion images have a spatial resolution of 30 m. We spatially scaled 

up the Hyperion Level One radiometrically corrected Radiance (L1R) data to 60 m by 

averaging Hyperion 30 m pixels in four pixel blocks [16, 17] to obtain a spatially relevant 

prototype of 60 m HyspIRI L1R data, and also achieving an average signal to noise 

response comparable to that expected for HyspIRI (≥400:1). These measured radiances 

were divided by solar irradiances above the atmosphere to obtain the apparent Top-of-

Atmosphere (TOA) reflectances.  

2.1.2. Atmospheric Correction with the ATmosphere REMoval Routine 

(ATREM) 

In order to use spectral imaging data for quantitative remote sensing of land 

surfaces, the absorption and scattering effects of atmospheric gases and aerosols must be 

removed [18]. The HyspIRI-like L1R images (at 60 m) were atmospherically corrected 

using an updated version of the ATmosphere REMoval Algorithm (ATREM) with which 

a line-by-line model was used to calculate atmospheric gaseous transmittances [19, 20]. 

The surface reflectances were derived from the apparent TOA reflectances using the 

simulated atmospheric gaseous transmittances and the simulated molecular and aerosol 

scattering data. During retrievals, the integrated water vapor amount on a pixel by pixel 

basis can be directly derived from the 0.94 µm and the 1.14 µm atmospheric water vapor 

absorption features, a special advantage conveyed by continuous spectrometer data. The 

transmission spectrum of water vapor (H2O), carbon dioxide (CO2), ozone (O3), nitrous 

oxide (N2O), carbon monoxide (CO), methane (CH4), and oxygen (O2) in the 0.4−2.5 µm 

region was simulated based on the derived water vapor value, the solar and the 
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observational geometry, and through use of narrow band spectral models. However, the 

scattering effect due to atmospheric molecules and aerosols was determined with the 6S 

computer code [21]. 

2.1.3. Spectrally combining HyspIRI-like surface reflectance bands to 

simulate the MODIS bands 1 – 7  

After obtaining atmospherically corrected HyspIRI-like 60 m surface reflectance 

images, the spectral values were averaged across 3-6 contiguous 10 nm Hyperion bands 

within the defined MODIS band ranges (Table 1) using spectral response functions to 

obtain reflectances spectrally comparable to those from MODIS ([22]).  This yielded an 

image that was spatially-HyspIRI-like but spectrally-MODIS-like.  To summarize, 

spatially scaling-up from 30 m to 60 m was performed on the Hyperion L1R radiance 

image, after which the ATREM atmospheric correction was performed on the 60 m 

HyspIRI-like L1R radiance image (60 x 60 HyspIRI pixel block) to obtain a 60 m 

HyspIRI-like surface reflectance image, followed by spectral averaging to obtain surface 

reflectance in each of the seven MODIS-like bands (Tab 1).   

 The vegetation canopy parameters derived from the fAPARchl algorithm [1] 

included:  leaf internal structure (N), leaf dry matter (Cm), leaf water thickness (Cw), and 

leaf pigment content (Cab).  In preliminary model runs, all seven (of 36) MODIS land 

bands (1-7) were found to be sensitive to N and Cm, whereas bands 1, 3 and 4 were 

sensitive to Cab, and bands 5, 6 and 7 were sensitive to Cw [23].  

 

Table 1. The spectral ranges covered by the MODIS and Hyperion/HyspIRI bands. 

Spectral range/ Band Width MODIS band # Hyperion/HyspIRI band # 
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459 – 479 nm/ 20 nm 3 (blue) 11 – 13 

545 – 565 nm/ 20 nm 4 (green) 20 – 22 

620 – 670 nm/ 50 nm 1 (red) 27 – 32 

841 – 875 nm/ 34 nm 2 (NIR1) 49 – 52 

1230 – 1250 nm/ 20 nm 5 (NIR2) 108 – 111 

1628 – 1652 nm/ 24 nm 6 (SWIR1) 148 – 150 

2105 – 2155 nm/ 50 nm 7 (SWIR2) 195 – 200 

 

2.2. Algorithm to derive fAPARchl and leaf water content (LWC) using PROSAIL2 

and the Metropolis approach 

A complete description of the PROSAIL2 model and Metropolis approach, as 

applied to five spectral MODIS land bands, is given in a recent publication [1]. The 

coupled canopy-leaf radiative transfer model utilized in this PROSAIL2 algorithm is 

based on the SAIL2 canopy radiative transfer model and the PROSPECT leaf radiative 

transfer model. Here, we provide an overview and highlight the changes introduced in the 

revised approach.  Additional details and information are provided in Appendix A. 

In brief, a vegetation canopy can be partitioned into leaf and non-leaf (referred to 

as stem) components. A leaf can be further partitioned into chlorophyll, non-

photosynthetic pigments (referred to as brown pigment, Cbrown), water and dry matter. 

The PROSAIL2 model has fourteen biophysical and biochemical variables (See 

Appendix A), five leaf variables that simulate leaf optical properties (N, Cab, Cm, Cw, 

Cbrown), a soil/litter variable that simulates soil/litter optical properties (SOILA), and a 

variable that simulates stem optical properties (STEMA). 

We modified the previous MODIS fAPARchl algorithm [1] by replacing the 5-

band likelihood function with that for 7-band surface reflectances obtained from section 
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2.1.3 (Eqns. 1 & 2). The Markov Chain Monte Carlo (MCMC) method (Metropolis) is 

employed for inversion. This method assumes that the observed spectral reflectances 
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The new 7-band fAPARchl algorithm provides simultaneous solutions for Cw and Cm, 

enabling the solution of LWC (see equation A.4). The full solution of the fourteen 

parameters is a statistical posterior distribution based on the radiative transfer model and 

the remote sensing observation (see section 2.1.3).  

The fourteen parameters and the derived fAPARchl and LWC may be grouped into 

three classes based on their posterior statistical distributions: well-constrained, edge-

hitting and poorly-constrained. The posterior statistical distributions can provide the 

mode(s) of the fourteen variables, fAPARchl and LWC (if they exist) (please see Zhang et 

al. [24] for details). A mode for a variable is one “traditional” (best) point solution, i.e., 

the most likely value of the variable to fit both the PROSAIL2 model and the remote 

sensing observation. From the case study of this paper (see section 2.3 for site 

description), we discovered that there was one and only one mode for fAPARchl and for 
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LWC per satellite observation. The reason is that chlorophyll, leaf water and dry matter 

have unique spectral characteristics, respectively. These components can be distinguished 

using spectral information of the seven bands, and will not mess up with each other or 

other components of a canopy. 

The EVI [25], NDVI [26], fAPARcanopy, and LSWI [14] were also calculated (see 

Appendix A for equations), and compared with results for fAPARchl or LWC, as 

appropriate, at both MODIS (500 m) and HyspIRI (60 m) spatial resolutions. We also 

calculated fAPARcanopy for the whole canopy, based on a widely-used formula which 

relates fAPARcanopy and NDVI (e.g., [12, 13, 15]): 

168.024.1 −×= NDVIfAPARcanopy                                                                      (3) 

We also utilized the same 7-band approach (Eqns. 1 & 2) to retrieve fAPARchl and 

LWC from MOD09A1 (the 8-day composite reflectance MODIS product (M)) acquired 

on day 185 (July 3), 2008, which was close to the acquisition date of the original 

Hyperion image (June 28, 2008). This enabled us to compare the 60 m HyspIRI-like 

product (H) with MODIS 500 m product. 

 

2.3. Study Site 

The study site (Figure 1) was a Douglas fir forest surrounding an instrumented 

tower (hereafter DF49: 49o52’ N, 125o 20’W, 300 m elevation) in the Canadian Carbon 

Program (CCP) network. The DF49 is located on the eastern side of Vancouver Island, 

British Columbia, Canada, and the forest stand around the tower (indicated by a circle in 

Fig. 1) is mainly comprised of Douglas fir with some western red cedar, and western 

hemlock [27]. The study area was a 120 x 120 grid formed by Hyperion pixels at the 



 11 

original 30 m spatial resolution around the DF49 site.  A true color RGB image at the 60 

m HyspIRI pixel spatial resolution (Fig. 1) can be compared with the land cover map 

produced using the ISODATA method of ENVI (Figure 2), which utilized the surface 

reflectances of the original HyspIRI bands (Tab. 1) for land cover classification. “Un-

vegetated” areas are associated with roads or sparse vegetation. Harvested areas show 

various stages of forest regeneration. Wetter forested areas are dominated by hemlock, 

alder and maple (personal communication, Nicholas Coops, Univ. BC). 

 

3. RESULTS 

3.1. HyspIRI-Like Results 

Here, we present the results of the revised 7-band fAPARchl-LWC algorithm 

(described in Section 2.2) applied to the mid-summer HyspIRI-like L1R radiance image 

in the vicinity of the DF49 Douglas fir tower site (described in section 2.3) for the 

purpose of developing and evaluating prototype products.  

Fig. 3 has three sub-figures for our study site showing the spatial distributions for 

three of the variables of interest: (a) fAPARchl; (b) fAPARcanopy (based on NDVI using 

Eqn. 3); and (c) EVI, all presented on the same relative scale between 0.0 and 1.0. 

Clearly, the values in the fAPARchl map are substantially and statistically lower than 

those exhibited by the fAPARcanopy map. Table 2 lists the mode, mean and median values 

computed for the study area shown in Figs. 1b, 2, and 3a-c for fAPARchl, EVI, 

fAPARcanopy, and NDVI. These statistical values reveal that fAPARchl and EVI provide 

substantially lower values than NDVI and fAPARcanopy.  
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The vegetation photosynthesis model (VPM[14]) assumes fAPARchl = EVI, but 

we find that this assumption is not always correct. And, overestimates of APARPSN result 

if we assume fAPARchl = fAPARcanopy.  

 

Table 2. The values of mode(s), mean and median of the fAPARchl, EVI, fAPARcanopy , and 

NDVI values for area shown in Figure 3. Number of HyspIRI-like Pixels = 3600 

 mode(s) mean median 

fAPARchl 0.559, 0.714 0.520 0.544 

EVI 0.437 0.460 0.452 

fAPARcanopy 0.893 0.824 0.870 

NDVI **  0.855 0.800 0.837 

** map not shown. 

The LWC and LSWI maps are shown in Figure 4. LWC values of wetter forest 

areas (0.600 – 0.909) differ substantially from LSWI values (0.202 – 0.483).  Although 

the LSWI has been shown to represent water status of vegetation in some studies [14, 28],  

this index cannot distinguish canopy water from background water (e.g., soil water). The 

LWC of different plant species among land cover types might vary, as shown in Fig. 4(a) 

for the LWC dynamics per class. The broad-leaf deciduous leaves in the wetter forest 

areas had higher average LWC than the Douglas fir leaves (Fig. 4a).   

The histograms for fAPARchl, fAPARcanopy, and EVI and the histograms for LWC 

and LSWI are shown in Figures 5 and 6, respectively. Peak frequencies occurred at very 

different values:  fAPARchl (0.559), EVI (0.437), and fAPARcanopy (0.893); but peak 

frequencies for LWC and LSWI occurred at similar value (~0.49). The fAPARchl 
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parameter displayed minor mode at 0.714. For forests, the magnitude is higher and the 

range is wider for fAPARchl as compared to EVI (Fig. 3a,c).The frequency of the mode 

derived from the HyspIRI-like LWC map is about three times that of the comparable 

mode for the LSWI (Fig. 6). Scatter plot comparisons are also shown for these pairs: 

fAPARchl vs. fAPARcanopy; fAPARchl vs. EVI; and LWC vs. LSWI (Figure 7). The first 

pair exhibits that fAPARcanopy is greater than fAPARchl,.  While values are closer between 

EVI and fAPARchl , the slope relating these two variables clearly deviates from the 1:1 

line.  No apparent correlation is seen for the third pair (LWC and LSWI). LSWI cannot 

be used to replace or predict LWC well, as demonstrated in Fig. 7c. 

The pixels classified as “unvegetated” were recently harvested (personal 

communication, Nicholas Coops, Univ. BC). The fAPARchl values for those pixels are 

close to zero, as should be expected for areas without green vegetation. That is to say, 

fAPARchl has a physical and physiological meaning. However the NDVI and EVI values 

of those pixels, which are greater than 0.4 and 0.2, respectively, indicate the presence of 

some green vegetation. NDVI (and the derived parameter, fAPARcanopy) saturate for 

pixels with leaf area index (LAI) greater than 3 [25] while fAPARchl does not. 

 

3.2.  Comparing HyspIRI-Like and MODIS Parameter Estimates 

From the processed MODIS image (July 3, 2008, DOY 185), we selected the 

pixel that covers the DF49 site. The HyspIRI-like maps have considerably more spatial 

details than those based on the MODIS image. To compare our retrievals from HyspIRI-

like images with those based on the MODIS image, using the same 7-band approach 
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(Eqns. 1 & 2), we chose only the HyspIRI pixels that fall within 240 m of the DF49 tower 

site.  Forty-nine HyspIRI pixels were selected (Tab. 3). 

 

Table 3. Comparison at the DF49 tower site of the fAPARchl, fAPARcanopy ,NDVI, EVI, 

LSWI, and LWC values from the simulated HyspIRI-like (60 m) image, with the MODIS 

image (500 m), and published field measurements (H: HyspIRI-like data, M: 7-band 

MODIS based data).   

 Parameters Value (± STDEV) Sample size, Comments 

fAPAR 

related 

parameters 

fAPARchl 

 

H 0.583 ± 0.038 n =  49 pixels 

M 0.533 single pixel value 

fAPARcanopy 

 

H 0.907 ± 0.006 n = 49 pixels 

M 0.949 single pixel value 

Tower based 0.94 Hember et al. (2010) 

day 180-185 of 2008 

NDVI 

 

H 0.867 ± 0.005 n =  49 pixels 

M 0.901 single pixel value 

EVI H 0.449 ±0.017 n = 49 pixels 

M 0.445 single pixel value 

fAPARgreen-leaf Tower based 0.79  Hilker et al. (2010) 

day 180-185 of 2008 

Leaf 

 water related 

parameters 

LWC H 0.494 ± 0.008 n = 49 pixels 

M 0.493 single pixel value 

Field 0.44 – 0.67 Agee et al. (2002),  
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measurements Keyes (2006) 

growing season of multi years 

LSWI H 0.506 ± 0.013 n =  49 pixels 

M 0.510 single pixel value 

 

In the comparison of the 7-band HyspIRI-like (H) and true MODIS (M) products 

(Tab. 3), the mean fAPARchl values (H) and the single MODIS fAPARchl value (M) were 

fairly similar . The mean H and M satellite values for fAPARcanopy were comparable to 

the tower based canopy-level fAPAR (0.94 [29]) determined from the DF49 tower 

radiation measurements for the same period. The green leaf fAPAR (0.79 [30]) estimated 

using the approach developed by Chen et al. (1996 and 2006)  [31, 32] represented the 

combined effects of chlorophyll fAPAR, and the fAPAR of leaf dry matter and brown 

pigments of the canopy for the same period. Thus, the green leaf fAPAR was 

intermediate between estimates for fAPARchl and fAPARcanopy. 

LWC provides quantitative information on foliar moisture content. It is not only a 

critical indicator of vegetation growth status, but also an important factor in the canopy 

susceptibility to the fire ignition process. Our retrievals for H and M (Tab. 3) both fall 

within the published Douglas fir LWC range (between 0.67 and 0.44), which includes 

both young and old leaves [33, 34]. The mean LWC value for the forty-nine HyspIRI-like 

pixels (Fig. 4a) is the same as that for the MODIS single pixel LWC (~0.49, Tab. 3).  

 In addition to application of the 7-band algorithm to the MODIS pixel that covers 

the DF49 site, we also calculated fAPARchl and LWC using the original 5-band algorithm 

[1].  The 7-band vs. 5-band fAPARchl histograms of the pixel have the same mode value 

(0.533), with only slightly different standard deviations (0.071 vs. 0.072).However, while 
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the 7-band vs. 5-band LWC histograms at the tower site have the same mode value, their 

standard deviations differ (0.169 vs. 0.174), such that less uncertainty is incurred using 

the 7-band version.   

 

4. DISCUSSION 

This study describes how to estimate two products (fAPARchl & LWC) for 

HyspIRI L1R radiance and presents some initial prototype results. In addition to our 

primary products (fAPARchl and LWC), we also determined values and map products for 

the EVI, fAPARcanopy, and LSWI. Although fAPARchl and EVI were the most similar, the 

range of values and the modes for fAPARchl were larger than those obtained for the EVI 

(Fig. 5a, c; Tab. 2). Likewise, the dynamic range for fAPARcanopy, was smaller than the 

range for fAPARchl values (Fig. 5a,b). When comparing fAPARchl and EVI, we found 

that when fAPARchl = 0.5, the EVI range is 0.384 – 0.533; but when EVI = 0.5, the 

fAPARchl range is 0.410 – 0.686 (Fig. 7b). 

In addition to better spatial detail, one advantage of the 7-band fAPARchl & LWC 

algorithm is that it does not need land cover type information as an input to run the model 

inversion, whereas the MODIS standard fAPARcanopy (i.e., FPAR) product does. The 7-

band algorithm can provide fAPARchl and LWC products with less uncertainty (e.g., 

smaller standard deviations), as compared to results obtained with the previous 5-band 

algorithm, even for a relatively homogeneous forest area (circle in Fig. 1 (b)). The 

outputs of the algorithm (fAPARchl and LWC) can be used for seasonal analysis, 

interannual analysis, phenological study, and land use and land cover change research -- 

including disturbance studies and disaster monitoring (e.g., fire, drought and flooding).   
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Our study also demonstrates the flexibility that an imaging spectrometer allows for inter-

instrument comparisons. 

 The remote sensing community uses three groups of inversion strategies: MCMC 

approaches, look-up-tables, and gradient-based approaches.  With the Metropolis 

approach (a MCMC method), we can globally search for the optimal solution, a posterior 

distribution. However, look-up-table methods provide fixed step lengths for all 

parameters before inversion, whereas gradient-based methods can only search local 

optima and rely on initial guesses. We anticipate that application of our algorithm to 

satellite images will be useful for the current and future national and international 

research projects that rely on remotely sensed data, including the North American Carbon 

Program (NACP). 

 

5. CONCLUSION 

We successfully demonstrated here that the two products (fAPARchl and LWC) 

provide unique information. The most important finding in this study is that fAPARchl 

values differ from those for EVI, NDVI and fAPARcanopy in most cases. EVI does not 

always equal to fAPARchl.  We also find that:  fAPARchl ≠ fAPARcanopy (or NDVI); and 

LWC ≠ LSWI.  In other words, we reject the null hypotheses that equate the EVI and 

fAPARcanopy  with fAPARchl, or LSWI with LWC. HyspIRI also has the potential to 

provide the spatial variance of the two products that can’t be extracted from MODIS. We 

realize that real HyspIRI images, or those of another future imaging spectrometer, will 

differ in some ways from Hyperion, which can be taken into account with the at-launch 

version of the algorithm. 
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Appendix A 

 

In brief, a vegetation canopy can be partitioned into leaf and non-leaf (hereafter 

referred to as stem) components. A leaf can be further partitioned into chlorophyll, non-

photosynthetic pigments (hereafter referred to as brown pigment, Cbrown), water and dry 

matter (or Cab, Cbrown, Cw, Cm). The PROSAIL2 model has fourteen biophysical and 

biochemical variables: plant area index (PAI), stem fraction (SFRAC), cover fraction 

(CF), stem inclination angle (STINC), stem BRDF effect variable (STHOT), leaf 

inclination angle (LFINC), leaf BRDF effect variable (LFHOT), five leaf variables that 

simulate leaf optical properties (N, Cab, Cm, Cw, Cbrown), one soil/litter variable that 

simulates soil/litter optical properties (SOILA), and one variable that simulates stem 

optical properties (STEMA). The Markov Chain Monte Carlo (MCMC) method 

(Methopolis) is employed for inversion. 

One can calculate fAPARcanopy [12] and fAPARchl [1] with equations: 

                 stempigmentbrownmatterdrychlcanopy APARAPARAPARAPARAPAR +++=     (A.1) 
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0PAR

APAR
fAPAR canopy

canopy =                                                                      (A.2) 

                 
0PAR

APARfAPAR chl
chl =                                                                              (A.3) 

where PAR0 is the incoming PAR at the top of the canopy, and APARcanopy, APARchl, 

APARdry matter, APARbrown pigment , and APARstem are absorbed PAR by canopy, 

chlorophyll in leaf, dry matter in leaf, brown pigment in leaf, and stem, respectively. One 

has to know the value of PAR0 and the values of the fourteen parameters to calculate 

APARchl and APARcanopy in equation A.1. One may assume PAR0 be any positive value 

to calculate fAPARchl and fAPARcanopy because they are ratios (equations A.2 and A.3). 

We present NDVI based fAPARcanopy for this study because of the linear relationship 

between fAPARcanopy and NDVI (Eqn. 3), which is based on the simulation study using 

the SAIL[12].  

The leaf water thickness (Cw, g/cm2 or cm) and leaf dry matter (Cm, g/cm2) are 

two of the fourteen parameters of PROSAIL2, and the inversion algorithm provides their 

posterior distributions as outputs. Leaf water content (LWC) is defined as the fraction of 

leaf water weight to fresh leaf weight[35]. That is to say, 

mW

W

CC
CLWC
+

=                                                                                             (A.4) 

EVI [25], NDVI [26], and LSWI [14] are also calculated: 

0.15.70.6
5.2

1

1

+×−×+

−
×=

blueredNIR

redNIREVI
ρρρ

ρρ
                                               (A.5) 

redNIR

redNIRNDVI
ρρ
ρρ

+

−
=

1

1                                                                                         (A.6) 
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11

11

SWIRNIR

SWIRNIRLSWI
ρρ
ρρ

+

−
=                                                                                      (A.7) 

where ρ is reflectance. 
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Fig. 1.  (a) The location of the Douglas-fir site (DF49) on Vancouver Island, British 

Columbia, Canada; and (b) a true color red/green/blue (RGB) image for the DF49 
area using simulated HyspIRI data on DOY 180, 2008 (June 28, 2008), where the 
circle designates the fetch of the DF49 flux tower. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Land cover map for the DF49 area using simulated HyspIRI data based on the 

EO-1 Hyperion image collected on DOY 180, 2008 (June 28, 2008). 
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Fig. 3.  HyspIRI-like maps for the DF49 area:  (a) fAPARchl; (b) fAPARcanopy computed 

from NDVI (Eqn. 3); and (c) EVI. Data were simulated from the mid-summer 
Hyperion image acquired on DOY 180, 2008 (June 28, 2008).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  HyspIRI-like maps for the DF49 area:  (a) leaf water content (LWC); and (b) 

LSWI.  Data were simulated from the mid-summer Hyperion image acquired on 
DOY 180, 2008 (June 28, 2008). 
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Fig. 5.  Histograms for (a) fAPARchl; (b) fAPARcanopy; and (c) EVI for the DF49 area 

shown in the Fig. 3 maps. 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
Fig. 6.  Histograms for (a) LWC and (b) LSWI for the DF49 area shown in the Fig. 4 

maps. 
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Fig. 7.  Comparisons for (a) fAPARchl vs. fAPARcanopy; (b) fAPARchl vs. EVI; and (c) 

LWC vs. LSWI.  Data are derived from the simulated HyspIRI image acquired on 
DOY 180, 2008 (June 28, 2008). 
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