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Abstract

The goal of this study is to produce a methodology for evaluating the claims and arguments
employed in, and the evidence produced by formal verification activities. To illustrate the
process, we conduct a full assessment of a representative case study for the Enabling Tech-
nology Development and Demonstration (ETDD) program. We assess the model checking
and satisfiabilty solving techniques as applied to a suite of abstract models of fault tolerant
algorithms which were selected to be deployed in Orion, namely the TTEthernet startup
services specified and verified in the Symbolic Analysis Laboratory (SAL) by TTTech. To
this end, we introduce the Modeling and Verification Evaluation Score (MVES), a metric
that is intended to estimate the amount of trust that can be placed on the evidence that
is obtained. The results of the evaluation process and the MVES can then be used by
non-experts and evaluators in assessing the credibility of the verification results.

1 Introduction

Formal methods have gradually stepped out of the shadows of research obscurity and are on
the verge of claiming a permanent spot in the process of developing safety-critical systems.
However, their widespread use in industry and increased exposure has created a dichotomy:
formal methods practitioners would like to see their work getting the proper credit for
contributions to the overall technology development, especially in the certification process,
while certification standards are, naturally, lagging behind the pace of advances in formal
methods.

Hence, even though formal verification has earned a de facto recognition in the research
world and is strongly advocated even by outsiders of the trade, when formal verification
is actually performed in practice, there are no guidelines on how to present a product of
formal verification to non-experts and evaluators. In fact, well established methodologies
for both delivering and evaluating formal verification products do not currently exist.

The goal of this study is to produce an incipient, prototypical methodology for evaluating
the evidence obtained by applying formal verification techniques, such as Model Checking
and Satisfiability Modulo Theories (SMT) solving. We illustrate the process by applying it
to a hand-picked set of formal models of fault tolerant algorithms. In particular, we have
used as primary focus the suite of abstract models of Time-Triggered Ethernet (TTE) [2]
startup services developed in the Symbolic Analysis Laboratory (SAL) by TTTech and SRI
International [6].

We consider that an evaluation process should comprise a sequence of typical steps,
starting with correctly identifying and understanding, and then cataloging and evaluating
the three main aspects of such verification products:

(i) the verification claims,

(ii) the modeling assumptions: in particular, the semantics of the abstractions that are
employed and the impact they have on the verification claims.

(iii) the evidence to support the verification claims.

The above categories are also the foundation of the Modeling and Verification Evaluation
Score (MVES), a metric proposed in this study that is intended to estimate the amount of
trust that can be placed on the evidence that is presented. The metric is inspired by the
Credibility Assessment Score (CAS), part of NASA’s standard for models and simulation
STD-7009 [1].
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The proposed methodology can be extended to similar verification tasks, by abiding
to recommended principles of evaluating models, claims, assumptions, evidence, and by
following the suggested verification activities and tools for analysis and test.

A high-level representation of the evaluation process is depicted in Figure 1.

Formal Verification 
& Analysis 
Techniques

Extract 
Verification 
Products

Assess 
Formal Verification 

Results

Weakneses in models or 
verification process
Recommendations
Confidence Metrics

Artifacts

Formal Verification Process

Properties Formal models of
life cycle artifacts

◆ Claims
◆ Assumptions
◆ Evidence

Metrics & Guidelines

Figure 1. Evaluation methodology used on a set of abstract models of the Time-Triggered
Ethernet communication protocol.

We consider that this type of evaluation and analysis is of indisputable value, but it
comes with its own caveats. We cannot, and do not intend to make any claims regarding
the thoroughness of our approach. While efforts should be made to be as thorough as
possible in collecting and documenting the elements that are subject to evaluation, achieving
comprehensiveness in this regard is rarely, if ever, possible. We are very aware of the fact
that claims, assumptions, and evidence may have been missed in our analysis.

Regarding the choice of an example to illustrate our proposed process, we have selected
a representative application for the Enabling Technology Development and Demonstration
(ETDD) program. TTEthernet is one of the advanced technologies that was selected for
deployment in NASA’s Orion crew exploration vehicle. This is in line with our goal of
defining a specification of the verification process for a portion of the fault-tolerant avionics
on a flagship mission, suitable for the Preliminary Design Review (PDR).

By picking the existing TTE models we have also made a conscious decision to select
a product that is viewed as above par compared to the current state of affairs in industry,
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and thereby present a positive example of adherence to good practices. At the same time,
we recognize the fact that our evaluation was performed in a manner that the developers of
the models did not anticipate, and, therefore did not plan for. From that perspective, our
evaluation should not be interpreted as imposing criticism on the TTE models but, rather,
as strengthening the case for establishing an evaluation methodology via a good example,
that inevitably has its share of shortcomings.

The Models

The Time-Triggered Ethernet (TTEthernet) protocol is a communication infrastructure
that facilitates the use of a single physical communication infrastructure for distributed
applications with mixed-criticality requirements. This is achieved via a fault-tolerant, self-
stabilizing synchronization strategy, which establishes a temporal partitioning and ensures
isolation of the critical dataflows from the non-critical dataflows. TTEthernet is supported
by a vast array of documentation [5], including a proposed SAE aerospace standard [2].

The executable specification of the TTEthernet startup protocols that we set forth to
evaluate includes three separate SAL [3] models:

• A parameterized SAL model of the TTE startup/restart protocol; The bounded model
checker sal-bmc is used to establish several properties related to the eventual stabiliza-
tion (synchronization) of the system in the presence of one or two omission-inconsistent
faults.

• A SAL model of the permanence function, which is the TTE mechanism for exchanging
clock values between components by taking into account transmission delays. The
model checker sal-inf-bmc, based on the calendar automata formalism [4] is used
to study the behavior of the transparent clock mechanism when static and dynamic
delays are imposed on the protocol (i.e., a desired maximum transmission delay is
established).

• A SAL model of the compression function, which computes the maximum deviation
between two correct local clocks in the system (also refered to as precision) during an
observation window, by using a fault tolerant average as correction value. The infinite
bounded model checker is used to establish the correctness of a membership vector
and the bound on the observation window size.

We note that there is currently no formal linkage between the models.

2 Claims

In this section, we catalog statements, provided by the developer in [6], that can be viewed
as claims about the verification process and its outcomes. They are classified from the
perspective of the incremental nature of the work. Presently, it is rarely the case that
models and techniques are built from scratch. They are routinely developed based on
previous experiences and artifacts. Therefore, we established the main classification of the
claims as: general, legacy, or incremental.

A. General

[GC1 ] The work is incremental: it builds on previous results.

Page 2: “this work advances previous results by tolerating multiple failures. In partic-
ular, here our failure model allows an inconsistent faulty end-to-end communication
flow which was not addressed in our previous work.”
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[GC2 ] The system’s ability to tolerate two faults is verified.

Page 3: “Our focus in formal methods was to facilitate a formal exploration of the
algorithmic properties and to validate that the integrated system behavior was able
to tolerate two faults under all system modes.”

[GC3 ] There are potential caveats when using non-assured tools.

[GC4 ] The soundness of the abstraction is not assumed.

Page 3: “During the development we have also been very cautious in relying on the
results of formal method tools, not only because of the potential incorrectness of non-
assured tools, but also because of the need of limited reliance on results due to the
abstraction required for application of formal methods.”

[GC5 ] The SMT solver allows the completion of the analysis.

Page 4: “We initially used sal-smc, but, unfortunately, the formal analysis of stabiliza-
tion from an arbitrary system state exceeded its capabilities. On the other hand, the
bounded model checker sal-bmc now incorporates the powerful YICES SMT solver.
Switching to sal-bmc allowed us to to finalize the TTEthernet startup/restart strategy
(see Section 2.2).”

B. Legacy: from previous work

[LC1 ] TTP startup has been “verified”.

Page 3: “Simplified versions of the TTP startup protocol have also been formally
verified using the SAL infinite bounded model checker [DS04].”

[LC2 ] Exhaustive “fault simulation” for one-fault scenarios has been performed.

Page 3: “In [SRSP04] we present exhaustive fault simulation as SAL-based verification
method using sal-smc. [...] we are able to show successful synchronization after
network power-on, within a given power-on interval, in presence of either a faulty
TTP controller or faulty central guardian.”

C. Incremental: specific to the current work

[IC1 ] Synchronization: the worst startup time is bounded.

Page 27: “the derived worst case startup/restart times have their safe upper bounds
at about 60 verification steps.”

[IC2 ] The permanence function computes a correct interval for the permanence point in
time.

Page 43: “We are interested in the relation of the dispatch point in time to the
permanence point in time. [...] We expect that this property holds in case when the
system is free of cumulative error [...]. Otherwise [...], we need to weaken the property
as follows. [...] The test property is verified when worst case cumulative error is set
to zero. Otherwise, it is falsified with a counterexample at depth seven.”

[IC3 ] The compression function computes a correct fault tolerant average.

Pages 60–65: “Although, the approach is not scalable for high k it is sufficient for the
verification of dual fault-tolerance.”1

1Note: It is difficult to infer what the main verification claim for the compression function is. There are
three properties, one abstraction, and five invariants listed as part of the verification task, but no indication
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Recommendations for eliciting and evaluating claims

We can establish a core set of guidelines both for eliciting and evaluating claims. Beside the
obvious recommendation of demonstrating the validity and relevance of claims, additional
tasks are warranted whenever the work is deemed incremental. The correspondence between
all the elements of the previous framework and the current framework has to be established,
by answering the following questions:

[ICR1 ] Are the models representing the same, modified, or an augmented version of the
protocol?

[ICR2 ] If abstraction is used, is the abstraction the same, similar, modified, extended?

[ICR3 ] What are the properties of interest and what properties are addressed?

[ICR4 ] Does the abstraction preserve the properties of interest?

[ICR5 ] In what ways are the tools and techniques the same, different, or more advanced?

3 Assumptions

TTEthernet specifies a fault-tolerant Multi-Master synchronization strategy, in which each
component is configured either as a Synchronization Master (SM), Synchronization Client,
or Compression Master (CM). The Synchronization Masters are the nodes (end systems)
that initiate the clock synchronization service by sending an integration frame (message)
to the Compression Masters. The Compression Masters, which are typically configured as
network switches, collect the frames, calculate a fault-tolerant median from their timing and
send a new frame back to the Synchronization Masters. All other components in the network
are configured as Synchronization Clients and only react passively to the synchronization
strategy. The synchronization information is exchanged in Protocol Control Frames.

The SAL model of TTEthernet startup is a synchronous composition of k Synchroniza-
tion Master modules (SM), m Compression Master modules (CM), two sets of communica-
tion media modules (k ×m bidirectional channels), and a diagnosis module.

We begin by identifying the assumptions used throughout the verification process. We
classify these observations depending on the three distinct stages of this process: design,
modeling, and verification. While not all observations fall in a perfectly delimited cat-
egory (some may be relevant to more than one phase, or might not fit any) and not all
assumptions have the same degree of impact, we see it a reasonable initial approach.

For each (explicit or implicit) assumption that is identified, we attempt to provide two
evaluation criteria:

• Relevance: which captures how likely the assumption is to affect the verification re-
sults;

• Impact: which estimates how many important behaviors in the real system may be
affected;

A complete set of assumptions identified in the TTE models is listed in Tables 1, 2, and 3,
where we include the location (as page number reference in the report [6]), the assumption,
and the two metrics: relevance and impact. For the two elements of the metric we use a
coarse domain (high, medium, low, none), given that estimating precise values is usually a
subjective assessment.

on what the goal (main result/theorem) is. Tables 4.1 and 4.2 in [6] “show the verification results” but only
in terms of runtime, no mention on whether some/all properties/lemmas are true or false. The statements,
collectively, seem to be part of a larger argument, but no larger argument is explicitly presented.
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3.1 Design assumptions

We include in this category the “operational” assumptions about the system and environ-
ment.

Table 1: Design assumptions

Id Loc Assumption Relev. Impact
Faults

DA1 11 Number of faults: two parallel High High

DA2 11 Number of fault scenarios: three (two faulty SMs, two faulty
CMs, one faulty SM and one faulty CM) High High

DA3 12 Nature of faults: inconsistent-omissive for both input and
output High High

DA4 12 Fault transience: no “short time stability” is assumed Med Low

DA5 12 “we decided to restrict the failure mode for SMs for two-
fault tolerant configurations” Med High

Open Systems Interconnection (OSI) model

DA6 6
Interference of TT services with OSI level services is ignored
(they run in parallel in the same system). Low Low

High integrity

DA7 11 High integrity design of switches High High

Permanence function

DA8 7

“The transparent clock mechanism and the permanence
function are used to mitigate network imposed jitter almost
entirely”.
The transparent clock field’s value “is almost exact”.
The meaning of “almost” needs to be clarified (qualitatively,
if not quantitatively)

Low Low

DA9 7 “the permanence function artificially increases the network
delay from a dynamic actual to the constant maximum” Low Low

DA10 27

“for this approach the ideal state of the system has to re-
strict the faulty SM from staying in a critical state in the
state machine which would potentially cause the synchro-
nized Synchronization Master to abort synchronization.”

Med Low

Compression function

DA11 31

“The Protocol Control Frames are transmitted on the same
physical wire as the dataflow messages and, consequently,
the temporal characteristics of frames belonging to dataflow
and protocol control flow are not independent anymore and
temporal interferences are unavoidable.”

Med Low

DA12 31 “Sources of interferences can be the end systems as well as
the switches in the communication infrastructure.”

Med Med

DA13 32
“The end systems and switches in this network may impose
dynamic transmission delays on frames, and in particular
Protocol Control Frames”

Low Low

Continued on next page
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Table 1 – continued from previous page
Id Loc Assumption Relev. Impact

DA14 35
“However, in real world measurement errors occur, such that
the permanence point in time will occur within an interval
around the nominal permanence point in time.”

High Med

DA15 45
“Due to drifts of the oscillators the actual dispatch points
in the SMs and consequently the permanence points in time
in the CMs will deviate.”

Med Low

DA16 45 “the CMs realize a so called compression function that runs
unsynchronized to the synchronized global time.” Low Low

DA17 47 The definition of the correction value is a fault tolerant mid-
point. Med Low

DA18 50

“k defines the number of faulty SMs that have to be toler-
ated and N , the number of overall SMs required to tolerate
the defined number of failures is then given by N = 3∗k+1.”

High High

3.2 Modeling assumptions

These are restrictions imposed by the abstraction process: the modeling decisions about
what parts of the real system/algorithm to represent in the model (as model variables), how
to represent them (continuous, discrete, finite – including bounds, variable ranges, etc.),
and their interactions (the transition relation).

A special case is the representation of time. The abstraction process will reduce/simplify
the system and its behavior. It has to be argued in a defensible way that the abstraction
preserves enough detail in order to make the verification meaningful.

The second key element of the model is the fault injection mechanism. The faulty
(inconsistent-omissive) behavior is modeled by interposing two boolean matrices between
the output of CMs and the channels, and the channels and input to SMs, respectively. The
boolean values are independently set to true or false to represent whether a transmitted
value is sent/received or dropped. Setting all values to true corresponds to correct behavior
(absence of faults).

Table 2: Modeling assumptions

Id Loc Assumption Relev. Impact
Time: real vs. discrete

MA1
Time unit representation: real time or discrete time (integer
counter). Example: the RT Clock Module for the perma-
nence function.

High High

MA2 The modeled device is clearly separated from modeling
tricks.

High Med

MA3 The impact of floating point representation on manipulating
real time variables.

Med Med

MA4
The synchronous module composition means certain aspects
of a real system cannot be captured, such as jitter (drifts,
delays, small ε’s etc.)

High High

Infrastructure
Continued on next page
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Table 2 – continued from previous page
Id Loc Assumption Relev. Impact
MA5 11 CRC functions not represented Low Low

MA6

Connections: no intuition is given on what is the communi-
cation delay represented in the model, i.e. how long (ticks,
steps, seconds) does it take for a message to travel to its
destination(s).

Med Med

Synchronization

MA7 21 “In our studies we modeled systems with four and five SM
which are sufficient to show two-fault tolerance”.

Low Low

MA8 22
“In the model, due to the granularity of the simulation step,
we simulate the sequentialized transmission as a parallel
transmission.”

Med Med

MA9 23

“Concurrent frames lead to an indeterminism in the recep-
tion order [...] Those SMs that receive the CS and the CA
at the same point in time will select the CS frame and also
transit to SM FLOOD state. In the model it is, therefore,
sufficient to react to the CS frames”.

Med Low

MA10 24 “The TRANSITION part is used to delay the output until
the next simulation step.” Med Low

MA11 30
“In terms of failure injection: if the faulty CM decides not
to relay a frame to a given SM all parallel messages will be
lost for this simulation step to this SM.”

Med Low

Permanence function

MA12 37
The meaning of the randomized parameters:
measured transmission delay and cumulative error. Low Low

MA13 42

“The first two transitions of the permanence function are
functional transitions of the permanence function, the third
transition is a modeling necessity to avoid the overall system
from deadlocking.”

Low Low

MA14 42
“In the formal model of the permanence function there are
no implicit synchronized events and all synchronization is
done via the event calendar.”

Med Low

Compression function

MA15 45
“This executable formal specification adds to this method
a parameterizable fault-tolerance capability that leaves the
number of faulty SMs to be tolerated configurable.”

Low Low

MA16 48 “The dispatch process maintains a local timer variable”,
which is discrete.

Low Low

MA17 43
The analysis of one sender, one channel, and one receiver
for the permanence function is enough to capture the con-
current nature of the protocol.

High Med

MA18 50 “the observation window is the only other parameter that
has to be assigned by hand” Low Med

Continued on next page
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Table 2 – continued from previous page
Id Loc Assumption Relev. Impact

MA19 50

“In this example setup we set observation window = 5. [...]
it does not matter to which value it is set... [...] The defini-
tion of this interval contributes to the hypothetically worst-
case [...]”

Low Med

MA20 53

“The correct dispatch functions are initialized by set-
ting their dispatch timeout to an arbitrary point within
the interval defined by earliest correct dispatch and
latest correct dispatch. Also, the correct dispatch func-
tions will start execution in the wait state. The faulty dis-
patch processes are free to dispatch at any time.”

Low Med

MA21 54 Meaning of “pointer” and “clock synchronization stack” are
not explained. Low Low

MA22 55

“Note that we abstract from the transmission delays that
would naturally occur in the TTEthernet network. [...] As
all PCF transmissions are affected in the same way, we con-
clude that the particular value of the transmission delay
will not have an impact on the properties we are interested
verification.”

Med Low

MA23 57
“Hereafter, the local variables will be re-initialized and the
compression function is restarted. This transition will not
be done in the real hardware.”

Med Low

MA24 59

“Here, the check reading index > k + 1 and the follow-
ing transition to cm wait state are done in the model only,
again, to avoid the modeling of multiple concurrent com-
pression functions.”

Low Low

Code

MA25 72

A large number of parameters are not ex-
plained, such as the 12 threshold parameters (e.g.
sm integrate to sync threshold) which are key to
understanding the transitions in Figure 2.1 on page 16.

Med Med

MA26 73

Comments in the code suggest that some of the thresh-
olds were adjusted, either increased or decreased, without
a statement of what motivated the change and what the
change implies.

Med Low

MA27 75 The code should match the diagram in Figure 2.1, page 17. High Med

3.2.1 Model restrictions.

Due to scalability issues, the variable ranges used are often drastically reduced. This heavy
abstraction can have direct implications in terms of interpreting the verification output.

• Very small cycle duration: 5.

• One SM state (SM WAIT 4 CYCLE START 1020) and two CM states (CM RELAY, CM STABLE 2080)
are commented out.
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3.3 Verification assumptions

The verification assumptions are concerned with three issues:

• what properties are verified

• the confidence in the tool/method itself, and

• the interpretation of the output produced by the tool(s).

Table 3: Verification assumptions

Id Loc Assumption Relev. Impact
Tool integrity

VA1 There are no known errors in the SAL model checkers. High None
Method

VA2

The iterative method is presumed sound.
When a counterexample of length k if found and a coun-
terexample of length k + 1 is not, it is implied that k + 1 is
the worst-case scenario for reaching startup stabilization.

High None

VA3 27

The proof depends on the meaning of an ideal state. Per-
fect synchronization of ideal states may be a stronger or
weaker property than what is actually needed. More pre-
cisely, small jitter may lead to clock values differing by (say)
one, while the ideal state requires identical clock values,
which would mean that the property is too strong. On the
other hand, counterexamples at increased depth are not ex-
cluded, which means the property (given the iterative ap-
proach using BMC) is too weak.

Med None

VA4
Composition of the three main verification results (from the
three separate models) is not pursued to determine how do
they connect and influence each other.

High None

VA5 30 “The reasoning on the convergence in case of a higher num-
ber of components has to be done informal.” High High

Interpretation of results

VA6 29
Translate the abstract counterexample to the real system
(e.g. RTD + CAO + RES + RTD + 3 ∗RES + . . .)
into µseconds

Low Low

VA7 67 “[...] we conclude that this was an issue of improper use
rather than a tooling issue [...]” Med None

VA8 67 “[...] the completeness and quality metrics for this valida-
tion process are subject to further research [...]” Med Med

VA9 68

“SAL provides guidance in the development of the proof by
producing counterexamples. This is a practical and power-
ful feature that allows systematically strengthening of the
invariant.”

Med Med

Synchronization

VA10 27 The correlation between the parameter depth and the pa-
rameter worst case counter is not very well explained. Low Low

Continued on next page
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Table 3 – continued from previous page
Id Loc Assumption Relev. Impact

Permanence function

VA11 43 The two lemmas for the permanence function are rather
trivial

Med None

VA12 43 Lemma test is a special case of lemma test cumulative
for worst case cumulative error = 0

Low None

VA13 43
“The test property is verified when worst case cumulative
error is set to zero. Otherwise, it is falsified with a coun-
terexample at depth seven.”

High High

Compression function

VA14 45
“It has to be guaranteed that faulty SMs that may send
early or late will not cause the compression function to use
only a subset of PCFs from correct SMs.”

Med Low

VA15 48
Notation k is used inconsistently in the three definitions on
p.47-48 It first denotes the total number of SMs, then it
denotes the number of faulty SMs.

Low Low

VA16 54 The expression time + end of time is an upper bound for
all clock values.

Low Low

VA17 57 “Here the restart of the one compression function is equal to
the execution of a second compression function in parallel.” Low Low

VA18 59 “Hence, we assume the calculation phase to take zero time.” Low Low

VA19 60
The case when the clock correction value is not a multiple
of the atomic unit of measurable time (one oscillation) is
not treated.

Low Low

VA20 61

“Note that the window and correction properties do
not account for the message transmission overhead from
the SMs to the CM. Hence in the real world the nomi-
nal cm compressed pit will occur max transmission delay
later than reflected in the properties above.”

Low Low

VA21 61 “We then proof the correctness of the abstraction.” High High

Code

VA22 72

The use of certain parameters is not fully explained:

par proof implicit, par proof explicit,
par testcase, par is proof, par is testcase,
par SMSM failures, par SMCM failures,
par high integrity, par standard integrity,
par cm full cbg.

Med Med

3.4 Modeling recommendations.

In conjunction with the above observations, we can set forth a number of basic principles
that should be followed in the modeling stage. Recommendations can be organized in a
hierarchy that starts at the most general level, applicable to any model based approach, and
branches down into particular activities (e.g. interactive theorem proving, model checking,
SAT solving), and finally into specific tools and techniques (e.g. PVS, SAL, SMV, SPIN,
etc.)
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The list below refers solely to the specifics of our case study: state-machine models of
clock synchronization algorithms.

[MR1 ] Real-time (continuous) vs digital time (discrete).

Digital components keep digital time (integers), but the specification often needs to
reason about continuous time (reals). There has to be a clear separation of the two
frameworks: while real time aspects may be safely used for reasoning, computations
involving reals performed by digital components have to be avoided. Mixing artifacts
from the two realms, especially in computation, may introduce in the model entities
that are not strictly part of the model, such as elements of the test bench becoming
part of the system under test. Additionally, there are concerns about the floating
point arithmetic issues (approximations, error accumulation, etc.). Finally, the guiding
principle should be that digital clocks cannot measure any unit of time less than one
tick. “Small epsilons” do not belong in the digital framework.

[MR2 ] The correspondence between the specification (if it exists) and the implementation
needs to be rigorously established. For example, if any high-level description of a
system is given, such as charts and diagrams (in this case the diagram in Figure
2.1), the correspondence between state transition diagrams and the code needs to be
rigorously established.

In this case, there are transitions in the code that do not appear in the diagram in
Figure 2.1 (page 17):

From state To state
SM UNSYNC → SM TENTATIVE SYNC
SM FLOOD → SM WAIT 4 CYCLE START
SM TENTATIVE SYNC → SM FLOOD
SM SYNC → SM FLOOD
SM SYNC → SM UNSYNC
SM SYNC → SM INTEGRATE
selfloops

[MR3 ] For SAL models and similar formalisms derived from state-transition systems (e.g.
Petri nets, SMV, SPIN), the transition relation has to be complete, i.e. for each state,
the disjunction of guards on outgoing arcs has to be equivalent to true (no gaps,
nothing “falling through the cracks”).

[MR4 ] Similarly, for SAL models and other formalisms employing the guarded commands
paradigm (e.g. Petri nets), any non-determinism introduced by overlapping guards
has to be justified.

An example of branch completeness: the four transitions out of state SM INTEGRATE
have the following guards:

g1 ≡ ¬P1 ∧ ¬P2 ∧ P3

g2 ≡ ¬P1 ∧ ¬P2 ∧ ¬P3

g3 ≡ ¬P1 ∧ P2

g4 ≡ P1

Where,

P1 ≡ ∃ ch : message[ch] = coldstart ack
P2 ≡ mem2nat(best message) ≥ sm integrate to sync threshold
P3 ≡ SM local timer > 0

12



The disjunction of all guards is g1 ∨ g2 ∨ g3 ∨ g4

≡ (¬P1 ∧ ¬P2 ∧ P3) ∨ (¬P1 ∧ ¬P2 ∧ ¬P3) ∨ (¬P1 ∧ P2) ∨ P1

≡ (¬P1 ∧ ¬P2 ∧ (P3 ∨ ¬P3)) ∨ (¬P1 ∧ P2) ∨ P1

≡ (¬P1 ∧ ¬P2) ∨ (¬P1 ∧ P2) ∨ P1

≡ (¬P1 ∧ (¬P2 ∨ P2)) ∨ P1

≡ ¬P1 ∨ P1

≡ true.

[MR5 ] Sink states should not be artificially masked out.

4 The Evidence

Evidence can be provided by the developer or, when feasible, generated by the evaluator.
In our case study, we had the luxury of having access to an automated script to instanti-
ate, execute, and collect output from the parameterized models. Instantiating the models
through the original scripts is less likely to assign inconsistent values to parameters. On top
of the provided script, we have used our own shell script, that sets the arguments for the
model checker (further details in section 5.2) and then runs all the instances in batch mode,
instead of one by one.

Model checking output, execution traces

In model checking, the evidence generally consists of answers to temporal logic queries. The
output can be as concise as a minimal “yes/no” answer to whether a property holds or not,
but it is commonly accompanied by an execution trace (in the model) that explicitly proves
or disproves the statement under consideration, called witness or, respectively, counter-
example.

Central to clock synchronization algorithms is the representation of time and the man-
agement of clocks. An inspection of how the variables such as local clocks and timers are
manipulated can give an indication on how to interpret the output traces. For the TTE
models, we make the following observations.

• The variable SM local clock is updated by the transitions in the SM module, to:

– value 0, a number of 32 times;

– inctime(SM local clock), a number of 9 times;

– inctime(smc scheduled receive pit), which is a constant (equal to 2), a num-
ber of 3 times.

It is expected that for the vast majority of cases, the “nominal” behavior should be
to increment the value of the clock by 1; However, most transitions set the local clock
to either 0 or 2. Moreover, the clock “tick” (incrementing the value) is done for only
3 out of 8 SM states: SM TENTATIVE SYNC 1060, SM SYNC 1070, and SM STABLE 1080.

• Similarly, CM local clock is mostly reset to 0.

• The variable SM local timer is updated in 45 instances, only twice through the “nom-
inal” operation, decrement timer(SM local timer), and four times through an “un-
safe” decrement SM local timer’ = SM local timer - 1.

13



Table 4: Execution trace of length 30 for the TTE clock synchro-
nization protocol with 5 Synchronization Masters.

step SM1 SM2 SM3 SM4 SM5

state clk state clk state clk state clk state clk
0 power-up 0 power-up 0 power-up 0 power-up 0 power-up 0
1 tentative 4 tentative 1 tentative 2 tentative 4 tentative 2
2 tentative 0 unsync 2 tentative 3 tentative 0 tentative 3
3 tentative 1 unsync 0 tentative 4 tentative 1 tentative 4
4 unsync 2 sync 2 tentative 0 unsync 2 tentative 0
5 unsync 0 sync 3 tentative 1 unsync 0 tentative 1
6 unsync 0 sync 4 unsync 2 unsync 0 unsync 2
7 unsync 0 sync 0 unsync 0 unsync 0 unsync 0
8 unsync 0 sync 1 unsync 0 unsync 0 unsync 0
9 unsync 0 integrate 0 unsync 0 unsync 0 unsync 0

10 unsync 0 integrate 0 unsync 0 unsync 0 unsync 0
11 unsync 0 integrate 0 unsync 0 unsync 0 unsync 0
12 unsync 0 integrate 0 unsync 0 unsync 0 unsync 0
13 unsync 0 integrate 0 unsync 0 unsync 0 unsync 0
14 unsync 0 integrate 0 unsync 0 unsync 0 unsync 0
15 unsync 0 integrate 0 unsync 0 unsync 0 unsync 0
16 unsync 0 integrate 0 unsync 0 unsync 0 unsync 0
17 flood 0 integrate 0 flood 0 unsync 0 flood 0
18 flood 0 integrate 0 flood 0 unsync 0 flood 0
19 flood 0 integrate 0 flood 0 unsync 0 flood 0
20 unsync 0 wait2 0 wait2 0 wait2 0 wait2 0
21 unsync 0 wait2 0 tentative 0 wait2 0 tentative 0
22 unsync 0 wait2 0 tentative 1 wait2 0 tentative 1
23 unsync 0 wait2 0 unsync 2 wait2 0 unsync 2
24 unsync 0 tentative 0 unsync 0 tentative 0 unsync 0
25 unsync 0 tentative 1 unsync 0 tentative 1 unsync 0
26 unsync 0 unsync 2 unsync 0 unsync 2 unsync 0
27 unsync 0 unsync 0 unsync 0 unsync 0 unsync 0
28 unsync 0 unsync 0 unsync 0 unsync 0 unsync 0
29 unsync 0 unsync 0 unsync 0 unsync 0 unsync 0
30 unsync 0 unsync 0 unsync 0 unsync 0 unsync 0

An example of an execution trace produced by the model checker is synthesized in
Table 4.2 In the trace of length 30, the SM local clock variable SM local clock[0] is
“stuck” at 0 for 27 out of 30 steps and it only “ticks” 3 times.

The risks of automation. We have generated traces of increasing length, from 5 to 70,
using our own script to expedite the process. However, in one instance, the ouput did not
correspond to the expected shape, which raised the issue of relying too much on automation,
especially for evaluation purposes. Whenever there is a chain (or hierarchy) of automated
tools or scripts, it is difficult to gauge and assign the proper degree of confidence in each
component.

2N.B.: this is not the actual output of sal-bmc: we have written a C program to extract the information
of interest from the large (up to and in excess of one hundred thousand lines) unstructured output file and
print it in a LATEX table.
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5 Evaluation of the TTE SAL Model

5.1 Modeling

We have collected a brief list of possible violations of the modeling recommendations (MR)
set forth in Section 3.4:

1. None of the SM states, except SM INTEGRATE, satisfy the branch completeness prop-
erty [MR3].

Example: The four transitions out of SM WAIT 4 CYCLE START CS have the following
guards:

g1 ≡ P1

g2 ≡ P2

g3 ≡ ¬P1 ∧ P3 ∧ P4

g4 ≡ ¬P1 ∧ P3 ∧ ¬P4

Where,

P1 ≡ best message = coldstart
P2 ≡ best message = coldstart ack
P3 ≡ ¬∃ coldstart ack message
P4 ≡ SM local timer > 0

The disjunction of all guards does not cover ¬P1 ∧ ¬P3, unless it is proven that
¬P3 ⇒ ¬(P1 ∨ P2).

2. There are cases of branch overlap [MR4].

Example: the guards for transitioning from SM TENTATIVE SYNC to SM FLOOD and

SM WAIT 4 CYCLE START CS.

3. There is a stuttering step transition for both the SM and CM module, which looks like
it is there to cover all the cases that are otherwise not covered. This will guarantee
the absence of sink states, but it is not clear whether this safety net thrown at the
end is the intended semantics or not. It is actually better to remove the safety net in
order to expose sink states [MR5].

5.2 Scalability

The SAL model is a synchronous composition of k Synchronization Master modules, m Com-
pression Master modules, two sets of communication media modules (k ×m unidirectional
channels), and a diagnosis module.

5.2.1 Parameters

The minimal instance of the model that can be used to study dual fault scenarios (f = 2)
has 7 nodes. The number 7 can be viewed as (2f + 1) + f , where 2f + 1 end systems (SMs)
are needed to tolerate two faulty SMs, and f switches are needed to tolerate f − 1 CMs.

The case of f = 2 faulty CMs can be dismissed, but the meta-argument to support it is
missing.

The components of the model are organized as follows:

Components
Number of Synchronization Masters (SM) 5
Number of Compression Masters (CM) 2
Number of input channels to SMs 5 ∗ 2 = 10
Number of input channels to CMs 2 ∗ 5 = 10
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Other relevant parameters
Number of Integration Cycles 4
Cycle duration 5 ticks
Channel “buffer” size 4 + 2 = 6 entries
Message size 9 bits
SM/CM states 8

5.2.2 Model Size

The Yices input file (the satisfiability problem in conjunctive normal form) generated for
the BMC problem of depth 67 is ∼ 280 MB long. The number of boolean variables involved
corresponds to the number of bits needed to encode a system state, multiplied by two
(“from” and “to” states in the transition relation) and then by the number of unfoldings of
the transition relation which gives the BMC depth.

This total number of bits is computed from the following definitions and declarations.

Type definition range #bits

TYPE SM ids [1..max SM] [1..5] 3
TYPE SM number [0..max SM] [0..5] 3
TYPE SM states enum(8) [0..7] 3
TYPE channels [1..max channels] [1..2] 1
TYPE CM ids [1..max channels] [1..2] 1
TYPE CM states enum(8) [0..7] 3
TYPE worst case counter [0..200] [0..200] 8
TYPE integration cycles [0..max integration cycle-1] [0..3] 2
TYPE time [0..(integration cycle duration-1)] [0..4] 3
TYPE timer [0..25*integration cycle duration] [0..125] 7
TYPE membership ARRAY TYPE SM ids OF BOOLEAN [1..5]×[0..1] 5

TYPE transparent messages [0..max transparent messages-1] [0..5] 3
TYPE message type enum(4) [0..3] 2
TYPE message record(#TYPE message type [0..3] +

TYPE integration cycles [0..3] +
TYPE membership#) [1..5]×[0..1] 9

TYPE transition index [1..max number transitions] [1..50] 6
TYPE transition marker ARRAY TYPE transition index OF BOOLEAN [1..50]×[0..1] 50

Variables:

Synchronization Master

Variable range # bits

SM state TYPE SM states 3
SM local clock TYPE time 3
SM local integration cycle TYPE integration cycles 2
SM local async membership TYPE membership 5
message out ARRAY TYPE channels OF TYPE message 18
SM local timer TYPE timer 7
SM local sync membership TYPE membership 5
SM num stable cycles [0..6] 3
flood receive BOOLEAN 1
best message TYPE message 9
best in message TYPE message 9
current async TYPE membership 5

Total size 70

16



Compression Master

Variable range # bits

message out ARRAY TYPE SM ids OF

ARRAY TYPE transparent messages OF

TYPE message 270
CM state TYPE CM states 3
CM local clock TYPE time 3
CM local integration cycle TYPE integration cycles 2
CM local timer TYPE timer 7
CM local sync membership TYPE membership 5
CM local async membership TYPE membership 5
CM num stable cycles [0..6] 3
cm current async TYPE membership 5
compressed membership ARRAY TYPE transparent messages OF

TYPE membership 30
next message out ARRAY TYPE SM ids OF

ARRAY TYPE transparent messages OF

TYPE message 270
next message out block cs ARRAY TYPE SM ids OF

ARRAY TYPE transparent messages OF

TYPE message 270
cm best in message TYPE message 20

Total size 893

Connections

Variable range # bits

SM messages in ARRAY TYPE SM ids OF

ARRAY TYPE channels OF

ARRAY TYPE transparent messages OF

TYPE message 540
CM messages in ARRAY TYPE channels OF

ARRAY TYPE SM ids OF TYPE message 90
connectivity CM in ARRAY TYPE channels OF

ARRAY TYPE SM ids OF BOOLEAN 10
connectivity CM out ARRAY TYPE channels OF

ARRAY TYPE SM ids OF BOOLEAN 10
connectivity SM in ARRAY TYPE SM ids OF

ARRAY TYPE channels OF BOOLEAN 10
connectivity SM out ARRAY TYPE SM ids OF

ARRAY TYPE channels OF BOOLEAN 10

Total size 670

Diagnosis

Variable range # bits

worst case counter TYPE worst case counter 8

Total size 8

The total number of bits for representing a single system state is: 5∗70+2∗893+670+8 =
2, 814 boolean variables (bits). Hence, the unfolding of the transition relation for depth 67
requires: 2 ∗ 67 ∗ 2814 = 377, 076 boolean variables.
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5.2.3 Runtimes

The runtime for the largest reported instance of the model is 272, 306 seconds (which is > 75
hours > 3 days). However, when running the script in an attempt to replicate the results,
even though it does take more than 3 days indeed, SAL/Yices reports a total execution time
of just 37 seconds. The actual runtime had to be collected by other means, e.g. with the
time command.

We have set up an additional script to collect data for a number of instances with varying
depth of the BMC problem, in order to assess the scalability of the technique. To this end,
we have slightly modified the SRI script to correlate the depth and worst case counter
parameters. The runtime (rt), in hours:minutes format, for various instances of the worst
case counter (wcc) is listed in the table below.

Table 11. Scalability results for the synchronization model: model checking runtime
(hh:mm) for various worst case counter values.

wcc rt wcc rt
5 00:03 40 08:59

10 00:03 45 17:11
15 00:04 50 39:58
20 00:04 55 62:25
25 00:12 60 72:52
30 01:45 65 124:22
35 05:01 70 185:26

The numbers indicate that the bounded model checking technique scales reasonably well,
given the size and complexity of the model.

6 Assessing the Value of the Verification Results

The evaluation methodology proposed in this report is general in nature and can be sys-
tematically applied to evaluate evidence from formal verification tasks commonly used in
practice. In this section, we assess the results of the formal verification of the SAL models
and TTEthernet Startup algorithms and suggest a metric, the Modeling and Verification
Evaluation Score, to quantify the results of our assessment.

The results of an assessment are usually a combination of objective (measurable) qualities
and subjective value-judgment evaluations (typically done by a group of experts or critics).
For complex processes, it is rarely the case that there is a consensus on what exactly is
objectively measurable and verifiable, what is relevant for an evaluation and what is not.
In our case, for example, we would have to measure the degree of “correctness” of the
verification process and the of amount trust that can be placed in its outcome.

The subjective part of an evaluation is most commonly referred to as a “rating.” Rating
systems may come with an algorithm to compute a (numeric or non-numeric) score/value,
either monolithic or composite, i.e. from a number of sub-scores, on a predefined scale.
Some ratings are the result of a review process, which may be purely a matter of judgment.
A review scale may establish a set of criteria to be met for each level, which can be more
easily observed by an indepedent evaluator.

For our purposes, we consider a composite numeric score with minimum level criteria
on each component as a way to describe a verification product. We acknowledge that this
approach of assigning numeric weights to subjective assessments may be unsuitable in certain
situations, however, it does enable us to illustrate our methodology with a straightforward
approach for summarizing and assessing the credibility of the formal verification results.
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6.1 Other Evaluation Metrics

An assessment scale that is closely related to our work was proposed in the NASA standard
STD-7009. The standard was developed in response to Action 4 from the 2004 report “A
Renewed Commitment to Excellence” [7] that solicited a standard for the development, doc-
umentation, and operation of models and simulations (M&S). The Credibility Assessment
Scale establishes a more rigorous framework for evaluating models for simulation.

CAS consists of eight factors grouped into three categories:

• M&S Development

– Verification: Were the models implemented correctly? What was the numerical
error uncertainty?

– Validation: Did the M&S results compare favorably to the referent data, and
how close is the referent to the real-world system?

• M&S Operations

– Input Pedigree: What is the confidence in the input data?

– Results Uncertainty: What is the uncertainty in the M&S results?

– Results Robustness: How thoroughly are the sensitivities of the current M&S
results known?

• Supporting Evidence

– Use History: Have the current M&S been used successfully before?

– M&S Management: How well managed were the M&S processes?

– People Qualifications: How qualified were the personnel?

As the modeling phase is common to CAS and our framework, we can adapt the CAS
metric by shifting the scope from simulation to verification. Our adaptation promotes
elements from factors to categories and de-emphasizes or eliminates others.

6.2 The Modeling and Verification Evaluation Score (MVES)

We propose a composite score scheme, where a numeric score R is the result of composing
(
⊕

) n subscores: R =
⊕n

i=1 si. In turn, each score si may be a composition of ni subscores
within the same range, by a composition rule ⊗i, si = ⊗ni

j=1xi,j .
The range of scores is usually arbitrarily pre-determined (e.g., 1 to 4 for CAS). For

uniformity, we prefer a universal range for all scores, such as the compact interval [0, 1], to
which any discrete set or dense interval can be mapped via uniform scaling. For example,
the CAS discrete values 0, 1, 2, 3, 4 may be mapped to 0, 0.25, 0.5, 0.75, 1. The com-
position operators (

⊕
,⊗) may take various forms (additive, multiplicative, weighted sum,

lower/upper bounds, etc.) depending on the circumstances.

• Additive score: si =
∑ni

j=1 xi,j .

• Multiplicative score: si =
∏ni

j=1 xi,j .

• Weighted Sum, a generalization of the additive score: si =
∑ni

j=1 (wi,jxi,j), where the
weights are in [0, 1] and add up to 1:

∑ni

j=1 wi,j = 1.

• Average, a special case of weighted sum, where all the weights are equal to 1
ni

: si =∑ni

j=1
xi,j

ni
.
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1. Design (0.20)

• Specification: are all the requirements correctly captured in the design? (0.10)

• Claims: are the claims clearly stated, relevant, and valid? (0.10)

2. Modeling (0.40)

• Assumptions: are the assumptions valid, consistent, and fully documented? (0.15)

• Verification: is the system modeled correctly? are the abstractions (if any) sound?
(0.15)

• Validation: is the correct (intended) system modeled? (0.10)

3. Evidence (0.30)

• Scalability : can the verification be performed on increasingly larger models? (0.10)

• Provability : is the output sufficient to support the claims? (0.10)

• Credibility : what is the level of confidence in the output? can it be reproduced
independently? (0.10)

4. Qualifications (0.10)

• Use History : have the tools/approaches been used successfully before? (0.05)

• Personnel : how qualified were the personnel? (0.05)

Table 12. The categories of the Modeling and Verification Evaluation Score (MVES)

• Bounds: minimum or maximum of the values {xi,j}.

For our purposes, the weighted sum is a good fit, due to its generality and flexibility.
Moreover, there is a natural correspondence between the notions of relevance and impact in
Section 3, and weights and subscores.

The MVES score consists of ten factors grouped into four categories (n = 4), as shown
in Table 12, where the weight of each category and element is given in paranthesis. The
weights reflect only our initial assessment, but they may be subject to further adjustments.
They are nearly uniformly distributed across the ten factors, with slightly more emphasis
on modeling than on personnel qualifications.

Full details on the elements and levels of MVES are listed in Table 13.
The score obtained by applying the MVES metric to the TTE models is listed in Table 14.

7 Future Work

The preliminary work presented here can be extended in many ways. The framework can
be used in several other contexts where formal verification is performed. The spectrum
of verification techniques has diversified tremendously in recent years, therefore a boiler-
plate approach can no longer be applied. We intend to investigate the specific differences
when applying other archetypal approaches, including theorem proving, SMT solving, SAT
solving, for timed, embedded and hybrid system verification.
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Level Specification Claims Assumptions Verification Validation

1.00
Complete
formal
specification

Complete and
unambiguously
formulated
claims

Fully
documented, no
limiting
assumptions

Full models
exhaustively
verified

No
discrepancies vs
specification
and
requirements

0.75
Semi-formal
specification

Indirectly
formulated
claims

Few limiting
assumptions

Reduced or
abstract
instances fully
verified

Indirect
validation, via
transformations

0.50
Incomplete or
partial
specification

Semi-formal
description,
traceable to
models

Partial
implementation

Partial
verification,
simulation, or
testing

Partial
validation

0.25
Informal
description

Can be inferred
from informal
statements

Incomplete
implementation

Qualitative
estimates

Discrepancies
with
specification

0.00 Insufficient Insufficient Insufficient Insufficient Insufficient

Level Scalability Provability Credibility Tools Personnel

1.00
Sufficiently
large instance
verified

Fully general
approach +
automation

Code, proofs,
scripts
available, fully
reproducible

Advanced,
robust,
validated
techniques

Extensive
experience

0.75
Large instances
+
meta-arguments

General
sub-class of
models can be
verified in
practice

Pseudo-code or
equivalent

Experimental
techniques or
standard
recommended
practices

Advanced
degree or good
experience

0.50
Small instances,
base cases can
be verified

Partial or
incomplete
proof

Partial evidence
Non-standard
or obsolete
technique

Formal training
experience and
recommended
practice
training

0.25 Qualitative
estimates

Informal proof Conceptual
proof of concept

Some
qualitative
evidence or
expert opinion

Engineering or
science degree

0.00 Insufficient Insufficient Insufficient Insufficient Insufficient

Table 13. Elements and levels of MVES
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Table 14. MVES score for the TTEthernet models

Category Weight Subsc. Explanation Score
Specification 0.10 1.00 Executable formal specification 0.10
Claims 0.10 0.80 Indirectly stated 0.08
Assumptions 0.15 0.70 Limiting abstractions employed 0.10
Verification 0.15 0.80 Small number of violations 0.12
Validation 0.10 1.00 Correct system modeled 0.10
Scalability 0.10 0.50 Runtimes: hours to days 0.05
Provability 0.10 0.80 Additional meta-arguments needed 0.08
Credibility 0.10 1.00 Results fully reproducible 0.10
Use History 0.05 1.00 Good track record, state-of-the-art 0.05
Personnel 0.05 1.00 Extensive expertise 0.05
Total 0.83
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Table 15. List of Acronyms

BMC Bounded Model Checking

CAS Credibility Assessment Score

CM Compression Master

DA Design Assumption

GC General Claim

IC Incremental work Claim

ICR Incremental Claim Recommendation

LC Legacy work Claim

MA Modeling Assumption

MR Modeling Recommendation

MVES Modeling and Verification Evaluation Score

SAL Symbolic Analysis Laboratory

SAT Satisfiability Checking

SM Synchronization Master

SMT Satisfiability Modulo Theories

TTE Time-Triggered Ethernet

TTP Time-Triggered Protocol

VA Verification Assumption
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