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Summary

The HSCT Flight Controls Group is developing a longitudinal control law, known
as Gamma-dot / V, for the NASA HSR program. Currently, this control law is
based on a quasi-steady aeroelastic (QSAE) model of the vehicle. This control
law was implemented into the p-k flutter analysis process for closed loop
aeroservoelastic analysis. The available flexible models, developed for the TCA
aeroelastic analysis, were used to assess the effect of control laws on flutter at
several different Mach numbers and mass conditions.

Significant structures and flight control system interaction was observed during
the initial assessment. Figures 1 and 2 present a summary of the effect of total
closed loop gain and phase on flutter mechanisms, based on ideal sensors and
real sensors, for Mach 0.95 and mass M02 condition. Control laws based on
ideal sensors gave rise to increased coupling between the rigid body short period
mode and the first symmetric elastic mode. This reduced the stability margins
for the first elastic mode and does not meet the required 6 dB gain margin
requirement. The effect of “real” sensors significantly increased the structures
and control system interactions. This caused the elastic. modes to be highly
unstable throughout most of the flight envelope.

State-space models were developed for several conditions and then MATLAB
program was used for the aeroservoelastic stability analysis. These results
provided an independent verification of the p-k flutter analysis findings. Good
overall agreement was observed between the p-k flutter analysis and state-
space model results for both damping and frequency comparisons. These results
are also included in this document.

The following conclusions were made during this study:

1) The traditional QSAE control design strategies are not applicable; control
laws need to be developed based on elastic models.

2) The location of sensors impacts various elastic modes differently.

3) A MIMO design strategy may be required. This would add complexity to the
design architecture and raises the challenge for robust design.

4) The aeroservoelastic analysis using p-k and state-space formulations
provided almost identical results.

5) The p-k based flutter analysis and state-space formulation analysis methods
should be used concurrently for design and verification.
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Introduction

This report presents work performed by The Boeing Company to satisfy the
deliverable “Evaluation of aeroservoelastic Effects on Symmetric Flutter” for
Subtask 7 of Reference 1. The objective of this report is to incorporate the
improved methods for studying the effects of a closed loop control system on the
aeroservoelastic behavior of the airplane planned under NASA HSR technical
Integration Task 20 work. Also, a preliminary evaluation of the existing pitch
control laws on symmetric flutter of the TCA configuration was addressed. “The
goal is to develop an improved modeling methodology and perform design
studies that account for the aero-structures-systems interaction effects.

Approach
Aeroelastic Models

Aeroelastic models developed for the TCA aeroelastic analysis, discussed in
Reference 2, were considered for this study. Appendix A summarizes the
analytical approach used for the control law assessment study. It presents the
analysis process, Elfini FEM based dynamics models and aerodynamic mesh for
the subsonic and supersonic linear aerodynamics. The dynamic math model
utilized 60 flexible modes, 3 symmetric rigid body modes, and two assumed
degrees of freedom for the stabilizer and elevator rotation modes required for
control system closed loop representation. The mass cases considered for the
study and the required flutter clearance speed envelope (Vd/Md and 1.15 Vd /
Md) are also provided in the Appendix A. The elastic models and the linear
unsteady aerodynamic theories used for the aeroelastic analysis are discussed
in Reference 2. The strength and flutter sized stiffness designed model
(identified as TCAY) was used to assess the effect of control laws on flutter at
several Mach numbers and mass conditions.

Control Laws

The HSCT Flight Controls Group is developing a longitudinal control law, known
as Gamma-dot / V, for the NASA HSR program. Currently, this control law is
based on a quasi-steady aeroelastic (QSAE) model of the vehicle. The
Controller has an inner loop (SAS system), an outer loop (control path) and a
feed forward direct control path. The command inputs to the stabilizer and
elevator actuators are functions of flight path angle, angle of attack, pitch
attitude, and pitch rate measured at the IMU location (BS1211). The various
gains in the control law are schedule to be functions of dynamic pressure. The
control law was transformed into inertial reference axis before implementation
into the p-k flutter analysis. Also, the analysis utilized a simplified third order
actuator model at the present time. The Apex based p-k flutter equations of
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motion from Reference 3, simplified control law, sensor equations, and the
actuator model used for the closed loop flutter analysis are summarized in
Appendix A. The details of the longitudinal control law are presented in
Appendix B.

Results

Flutter Analysis based‘on Apex p-k Solution Process:

Matched point flutter analyses were performed, for Mach numbers .95 and 2.6
and mass conditions M02, MT1, and MT4, to get a better assessment of the
effect of longitudinal control law on flutter stability. Significant interaction
between the structural modes and control system was observed in the low
frequency range of up to 5 Hz. Initial assessment was focused on this frequency
range and the results are summarized below.

Mach 0.95, Mass case M02:

Open loop analysis: Figure 3 shows that all the aeroelastic modes are stable in
the speed range of interest.

Closed loop analysis based on ideal sensors (Mean axis feedback): This
assumes that the sensors at the IMU location respond to rigid body motion of the
airplane and do not respond to the elastic motion of the structure during the
oscillations. Figure 4 shows the flutter solution that includes the effect of the
control system for the nominal gain of the control law. The results show that
there is increased coupling between the rigid body short period mode and the
first elastic structural mode (1.45 Hz). This increased coupling contributed to the
marginally unstable behavior of the first elastic mode. This does not meet the Vd
flutter clearance requirement for zero structural damping. Figure 5 shows the
flutter mode shape for this flutter mechanism. This exhibits significant elastic
motion of the outboard nacelle and the wing combined with aft body vertical
bending motion. Figure 6 shows the control system gain and phase variation
effects on flutter speed, with a structural damping value of 0.03, and the gain and
phase margins for the critical modes. These results show that the
aeroservoelastic system does not meet the required 6 dB gain margin for the
1.45 Hz elastic flutter mode.

Closed loop analysis based on real sensors (Full structural feed back analysis):
This analysis accounts for the real structural deformation feed back during the
oscillations. Figure 7 shows the flutter solution for this situation and the control
laws caused the 1.7 Hz flutter mode to become highly unstable in the speed
range of interest. Figure 8 shows the flutter mode shape for this flutter
mechanism and again exhibits significant elastic motion of the outboard nacelle
and the wing combined with the whole body flexing of the airplane. Figure 9
shows the effect of system gain and phase variation effect on flutter speed. The




flutter mechanism is highly unstable and a significant level of gain attenuation is
required to stabilize the flutter mode at this frequency either by reducing the
system gain or by using a deep notch filter. This would result in a significant
penalty on airplane performance. The IMU pitch rate feed back of the stability
augmentation system was identified as the main cause for the increased
structural / system interaction. An effort was made to study the effect of sensor
location on the aeroservoelastic stability. Figures 10 - 13 show the effect on
flutter speed based on sensors located near C.G. of the airplane. The results
based on ideal sensors still exhibit low unstable damping for the 1.45 Hz mode.
Also, the results based on real sensors (full structural feed back) show a different
flutter mechanism (3.6 Hz) that is again highly unstable and does not meet 6 dB
gain and 60 degree phase margin flutter requirements.

Mach 2.60, Mass case M02:

Open loop analysis: Figure 14 shows that all the aeroelastic modes are stable in
the speed range of interest.

Closed loop analysis based on ideal sensors: Figure 15 shows a marginally
unstable 1.6 Hz mode. This does not meet the Vd flutter clearance requirement
for zero structural damping. However, Figure 16 show that the flutter mechanism
exhibits adequate gain and phase margin with structural damping of 0.03.

Closed loop analysis based on real sensors: Figures 17 and 18 show fiutter
characteristics similar to Mach 0.95 solution discussed above and the results do
not meet flutter clearance requirements. Again, the effect of sensor location
(near C.G.) on flutter characteristics was examined and the results shown in
Figures 19 through 22 demonstrate flutter characteristics very similar to the
Mach 0.95 solution.

Mach 0.95,2.60 for Mass cases MT1 and MT4:

Figures 23 to 42 show the flutter analysis results for Mach numbers 0.95 and
2.60 and Mass cases MT1 and MT4. These results include the open loop
solution, closed loop results including gain and phase variations based on mean
axis analysis (ideal sensors), and full structural feed backs (real sensors). The
results show the flutter characteristics to be very similar to the cases discussed
above.

Stability Analysis based on State-Space Formulation Process:

The above aero-structures-systems interaction effects were independently
validated by developing state-space models for several Mach / Mass conditions.
The methodology used for this process is described in Appendix C. The analysis
utilized 60 flexible modes, two rigid body modes, and two assumed stabilizer
rotation and elevator rotation modes. Also, a sensitivity analysis, for number of
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aerodynamic lagterms varying from 4 to 8, was performed. For comparison of
results with p-k flutter analysis results it was decided to use 8 lag terms in the
state-space formulation process. The stability analyses were performed for each
of the models at various flight speed conditions using MATLAB program.

Figures 43 through 46 present the open loop root locus match point stability
solution results for M02 and MT1 mass cases at Mach numbers 0.95 and 2.60.
These results show that the aeroelastic modes are stable at all speeds
considered in the 1.15 Vd envelop thereby validating the p-k open loop fiutter
solutions discussed eatrlier.

Figures 47 and 48 present the mean axis root locus match point stability solution
results (ideal sensors) for M02 and MT1 mass cases at Mach numbers 0.95.
The results show that the low frequency elastic mode is marginally unstable for
nominal system gain predicting characteristics similar to the p-k flutter analysis
results.

Figures 49 through 52 presents the root locus match point stability solution
results based on full structural feed backs (real sensors) for the above mass
case / Mach number combinations. The low frequency flutter mechanism exhibit
high instability as predicted by the p-k flutter analysis process. In addition, there
are additional high frequency mechanisms (8.0 to 9.5 Hz) that are highly
unstable. Further work is needed to understand these high frequency flutter
mechanisms.

Comparison of P-K Flutter and State-Space Model Analyses Results:

Mach 0.95 and 2.60 with mass case M02 conditions were considered for
quantitative comparison of the stability analyses results of the two processes
considered above. This was done by transforming the state-space model results
into the frequency / damping format for comparison with p-k frequency / damping
results. Figures 53 and 54 present the match point open loop comparison
between the two sets for Mach numbers 0.95 and 2.60 respectively for M02
mass case. The results show good comparison of frequency between the two
processes and acceptable level of damping comparison.

Figure 55 show similar results for the mean axis closed loop analysis for the
mass / Mach combination case M02 / 0.95. Both the processes predicted similar
level of low damping instability for the 1.45 Hz elastic mode. However, there is a
significant difference in the short period mode frequency at higher speeds
between the two methods. Further investigation would be done to understand
this difference.

Figures 56 and 57 show results of comparison based on real sensors (full
structural feed backs) analysis. The results show good comparison of
frequencies between the two processes and acceptable level of comparison for
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stable modal damping values. Also, the highly unstable damping value

comparison between the two methods, for the low frequency mode 1.45 Hz, is
considered to be good.

Conclusions

This aeroservoelastic investigation has demonstrated the following:

The QSAE based longitudinal gamma-dot/V control law drastically violates
the flutter stability requirements through most of the flight envelope.

Traditional QSAE control design strategies are not applicable.
Control laws need to be developed based on flexible dynamic models.
The location of sensors impact various elastic modes differently.

The aeroservoelastic analysis using p-k and state-space formulations
provided almost identical results.

The p-k based flutter analysis method and state-space formulation analysis
method should be used concurrently for design.

Early aeroservoelastic analysis for ASE wind tunnel model is required for
defining control laws, and may impact wind tunnel model design.

Recommendations

1)

2)

Assess the effect of flexibility on other control laws such as flare, ride
qualities and lateral/directional control.

Incorporate Long Beach P-transform state-space modeling approach into the
Flight Controls / Structures tool suite.
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This page will be updated at a later time to include p-k flutter solution for

M=2.60, Mass Condition: MT1, Open Loop Solution

Figure 28
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This page will be updated at a later time to include p-k flutter solution for
M=2.60, Mass Condition: MT1, Mean Axis Solution
Figure 29
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This page will be updated at a later time to include p-k flutter solution for
M=2.60, Mass Condition: MT1, Gain & Phase Variation for Mean Axis Solution
Figure 30

Page 36



lacct/Iri0076/projects/fim/mt1/gvmach95.esb

facct/1rt0076/projects/tfm/mt1/mt1.esb

[B]:

[A]:

HSCT MODEL TCAY, SYMMETRIC FLUTTER ANALYSIS, M=2.60

GAMMA-DOT V CONTROLLER , MASS:MT1

1.0 A SEu— T
UNSTABLE REGION"E” i el TR UNACCEPTABLE WA | © modeo02
B 137 / oI
——————— %4 REGION N ¢ mode003
R ? w7 = ® mode004
/7‘;{’( Wr/////}/y/; A mode005
0.5 : VAX/f, ‘/%y’é?'% - VA/A’/Ai =t 0 mode00s
37 ,////A;’/;}//%j;d = ;,;;/%é;g w [ 7 mode007
= e
$ %?%Q%?ﬁ%ﬁf//ﬁ?ﬁ i @ mode010
10.0- AL At < mods011
- i . Vv mode013
E%’ CLOSED LOOP @ mode014
I NOMINAL GAIN
FULL FEEDBACK ANALYSIS
-1.0
STABLE REGION I
_1'5_ RSO
0 100 200 300 400 500 . 600 700
5
4
g 3
>
(&)
=
(S8}
>
o
w
2
1
0 f — ....:’LZI:Z.Z"..ZZI:::Z:::::::':I:::IZ PO S I I __&=ﬂ__
0 100 200 300 400 500 600 700
HSCT EQUIVALENT AIRSPEED - KEAS
CALC LRF 27Mar98 REVISED DATE CONTROL SYSTEM EFFECTS HSCT
cHECK STRENGTH+FLUTTER SIZED AIRPLANE —
APP0. DITS MODEL TCAY Fraoe
APPD., PAGE
Tor EOEINEG 317




This page will be updated at a later time to include p-k flutter solution for

M=2.60, Mass Condition: MT1, Gain & Phase Variation for Full Feed Back
' Solution

Figure 32
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This page will be updated at a later time to include p-k flutter solution for
M=2.60, Mass Condition: MT4, Open Loop Solution

Figure 38
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This page will be updated at a later time to include p-k flutter solution for
M=2.60, Mass Condition: MT4, Mean Axis Solution

Figure 39

Page 45




This page will be updated at a later time to include p-k flutter solution for
M=2.60, Mass Condition: MT4, Gain & Phase Variation (Mean Axis) Solution

Figure 40
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This page will be updated at a later time to include p-k flutter solution for
M=2.60, Mass Condition: MT4, Gain & Phase Variation Solution

Figure 42
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Figureac: Open Loop Root Locus for: 60 Flex, 2 RB, 2 Assumed, 8 lags

MT1 Eigenvalues, Mach 2.6

70

a]

oO+0

+
o

Ve=22 kts

Intermediate |:

Ve=705 kts

H
o
T

Imaginary Axis

0 e ................ ‘ .......... o

RO SR NS B O -

$

5O e TR e RS S B i

-2
Real Axis

@_EHEINE .




25°]

MO02 Eigenvalues, Mach 0.95

70 T T T T 2]

0O Ve=8.32kts : :
+  Intermediate | : gyt T
ol O Ves6OOKs || R R S ]

oO+0D

50 - N e [ .............................. .

H
(=]
T

8
T
+-_;f+
o
+
L

Imaginary Axis

DO v ................ P ‘ ....... .FF‘ ...... P ]

Real Axis

Figure £1: Mean Axis Closed Loop Root Locus for: 60 Flex, 2 RB, 2 Assumed, 8 lags

@aaflﬂa .




MT1 Eigenvalues, Mach 0.95

0 ' ! ? ', o
D D Ve=8.32kts | Z § v
+ +  Intermediate {: : : :
(o] O = . X . r
60... Ve GOOHS [ R I % .............. -—
o : : : + +H+ + +8
: : : ottt + +8
: : : : o
5O e e T P O_HH—H .............. -
+ + + + + + 'HJ
*o + 49
» L+ .
= b B e S R Y7, ST SRS IS PSPPI T \; IR .
240 + 4 MOy 18
§ z
c R+ + +8
2 0 o
§30._. ..................................................... ++ ..................... .’m .............. -
o+ _#.-H-o+-*3
+ +£
: : . : ++1
20_. ........... G ................ S O++++_E .............. -
: : . : + 4
+ o oy
10 I E +4§:
I T S S S G N
+ g ;
0 I M 1 L 1 O% ﬂ
-10 -8 -6 -4 -2 0 2
Real Axis

Figure ae: Mean Axis Closed Loop Root Locus for: 60 Flex, 2 RB, 2 Assumed, 8 lags

o @_ﬂﬂfﬂva




HSCT Tech Review Presentation 16 March 1998

Closed Loop Eigenvalues

W\:O'Clg

Mo2, 60 Flex, 4,6,8 lags, Full FB
70 T Y T T

n
[=3
T
.!6\,\.
)
X
L

Imaginary

(]

o

T
N E R
[*3 :
[(e]

[

1

! o2
20k e ............... “.“‘. RO S .................. -

ok RN < SRS 3 TS e i

10 15
Real

Figureas: Another View of Closed Laop Root Locus for: M02, 60 Flex, 2 RB, 2 Assumed,
4, 6, & 8 lags, Full Structural IMU Feedback

 EFPESRIE”
o gl
W

N TG Emissinde it e il 16




MO02 Eigenvalues, Mach 2.6

Ve=22 kts
Intermediate

co- Ve=705Kts | G e, i

- ag

o+o
O+ 0 |4

BOb - G - e TR N

I
o
T
+H

Imaginary Axis
-+

w
(=]
T

L

ook STTP. q e T TR

Real Axis

Figure so: Full Feedback Closed Loop Root Locus for: 60 Flex, 2 RB, 2 Assumed, 8 lags

o @_ﬂﬂf]ﬂa ’




MT1 Eigenvalues, Mach 0.95

70 T T T T i) T 7 T T

0 Ve=8.32kts : S S +
+  Intermediate : :
O  Ve=600kts

R S U N S DN U SO S

Imaginary Axis
F-
o
T
st
+
i

(9
(=]
T
o
@
L

20 ........ .......... .......... O*.; .......... .......... .......... .......... ........ =

1wk ......... ......... .......... ..... 0%4_ .......... .......... ........ .

-10 8 -6 4 2 0 2 4 ) 8 10
Real Axis

Figure s1: Full Feedback Closed Loop Root Locus for: 60 Flex, 2 RB, 2 Assumed, 8 lags

@EDEIA’G -




Figure s2: Full Feedback Closed Loop Root Locus for: 60 Flex, 2 RB, 2 Assumed, 8 lags
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Analytical Approach for Closed Loop

Flutter Analysis



Task 20: Sub Task 7 - Aeroservoelastic Design Studies

High Speed Civil Transport '

ANALYSIS PROCESS

® STRUCTURAL DYNAMIC MODEL : DITS TCAY MODEL WITH STIFFENED
ACTUATOR SPRINGS FOR STABILIZER AND ELEVATORS -

® PITCH CONTROL LAWS (GAMMA DOT - V CONTROLLER) DEFINED BY
GFC BASED ON QSAE MODELS

® |INCORPORATED THE CONTROLLER IN DYNAMIC EQUATIONS OF
MOTION IN TO THE BOEING (SEATTLE) P-K FLUTTER ANALYSIS
PROCESS

® ESTABLISHED OPEN LOOP AND CLOSED LOOP FLUTTER SOLUTIONS
FOR THE PITCH CONTROLLER '

® ESTABLISHED WITH FLIGHT CONTROLS TO VERIFY CONCURRENCE
BETWEEN P-K FLUTTER SOLUTION RESULTS & STATE-SPACE MODEL
RESULTS .

@aaflﬂa° Frauee A1 ! Awalvsic Peocecc March 16, 1998



Task 20: Sub Task 7 - Aeroservoelastic Design Studies

High Speed Civil Transport

DYNAMICS MODEL

® DITS TCAY MODEL OPTIMIZED FOR STRENGTH AND FLUTTER

¢ MASS CONDITIONS CONSIDERED - M1, M02, ML2, MCF, MCI, MT1, MT4

® UNSTEADY AERODYNAMICS
DOUBLET LATTICE TYPE METHOD FOR M = .24, .40, .65, .80, .90, .95
A502 AERO FOR M = 1.20, 2.0, 2.6
REDUCED FREQUENCIES ‘k’ FROM 0.0 TO .0127 (21 VALUES)

¢ COMMON MODEL FOR ALL OF THE FOLLOWING
DESIGN INTEGRATION TRADE STUDIES
AEROELASTIC DESIGN STUDIES
AEROSERVOELASTIC DESIGN STUDIES

@EHEINE. SlGugre A2} DynNAMIC MoDEL March 16’ 199§



Boeing, Seattle

Task 20 - Sub Task 7 - Aeroservoelastic Design Studies
TCA Finite Element Model (FEM)
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N soeve: Task 26 - Aeroelasticity - Boeing Seattle

High Speed Civil Transport

TCA Elfini Flutter Aerodynamic Meshes

Elfini Singularity
Subsonic Mach numbers
0.65, 0.80, 0.90, 0.95
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7 socve: Task 26 - Aeroelasticity - Boeing Seattle

High Speed Civil Transport .

TCA Elfini Flutter Computational Grid

Shaded regions denote zones within which the Elfini basis deformation
shapes are defined |

Coincident zones are defined on each aerodynamic mesh

An unsteady aero Cp distribution is solved for each basis shape |
and projected to the grid

Generalized airforces are computed in terms of basis shapes

FEM modal displacements are approximated
in terms of basis shapes by least squares fit

Modal gaf's are computed

e o8 e . - n n=m :
ht-.ava}':, A 7CH ELFINI FLUTTERG COMLUIT R T oM AL GRID




Task 20: Sub Task 7 - Aeroservoelastic Design Studies

High Speed Civil Transport

TCA Gross Weight vs CG Diagram
All Mass Cases

WEIGHT/C.G.
DIAGRAM

(OVW%) 92

250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000 700,000 750,000 800,000
Weight (Ib) L4
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Task 20: Sub Task 7 - Aeroservoelastic Design Studies
High Speed Civil Transport ' | .

FLUTTER EQUATIONS OF MOTION (APEX P-K PROGRAM):
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Task 20: Sub Task 7 - Aeroservoelastic Design Studies

High Speed Civil Transport

TCA CONFIGURATION
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Task 20: Sub Task 7 - Aeroservoelastic Design Studies

High Speed Civil Transport

FLIGHT ENVELOPE

MACH .65 AND .95
FOR INITIAL ASSEMENT

REQUIREMENTS FOR FLUTTER:

ALTITUDE (ft)

To Vd and 1.15 Vd CLEARANCES
FOR NOMINAL GAIN &
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Longitudinal Control Law Overview




HSCT Flight Controls and the ASE Working Group

Longitudinal Control Law Overview: 4V

e Present Control Laws

— The throttle controls speed.
— The elevator controls flight path.

e 7/V Control Law

— The throttle controls the total energy.
— The elevator controls how the energy is split between flight path and speed.

FlGgorRE B4 .
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HSCT Flight Controls and the ASE Working Group

Longitudinal Control Law Overview: 4V (Cont.)

e Basic concept of 4/ V is to control total energy

e Total energy is sum of potential and kinetic
L o
e: = mgh + EmV (1)

e Specific energy rate (normalized by weight and velocity):

. T-—D 174
b= =y — 2)
mg g
Flauee g2 lomveivtudinal, Covrnor Law Queavie (CaM"Z')
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HSCT Flight Controls and the ASE Working Group

Longitudinal Control Law Overview: 4V (Cont.)

e Along flight path, required trim thrust is:

Treq = mgE, + D . (3)

e Assuming drag variation is slow, Ti.q is proportional to specific energy rate (i.e.
throttles control rate of energy addition)

e Use throttle feedback law:

5T KTI . KTI VE
OT » (KTP + ) E,, = (KTP +—= (e +— (4)
mg S S g

Filauee B3 . Lons GITuDINAaL, ConTRo Lm«/ Oveaview (Com‘.>
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HSCT Flight Controls and the ASE Working Group

Longitudinal Control Law Overview: 4V (Cont.)

e Forces resulting from elevator movement are essentially conservative — no net change
in total energy.

e Elevators do not significantly change aircraft’s total energy state.

e Elevators serve mainly to redistribute energy between potential and kinetic.

Ege o v

e Use elevator to control energy distribution error <% = rimt
e Elevator feedback law:
KEI . KEI VE
5Eé<KSP+_' Ege={Ksp+— ) | — —7E (5)
S s g
Fileuere g4 : lomwar TusimwaL CovraorL Law Oveavicw Cch-r.)
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HSCT Flight Controls and the ASE Working Group

@, LFEPESAE

we
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trach

oY B S
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Fig 48 GOV Th wna Tai) Omaa

4V Control Law Core

frtmx l MN }
(b3) SELECT,
fixthrst_ato_enb

(boolean)
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vedemd_pie
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thetabl_ir
alpra2ct
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pirch_rate_f

nose_on_gmd
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(deg/vec)
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(b3}
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Note: The gains Kalta, kel, kg, ksp, kspd, kb, ktheta, ki, kip, and kv are defned in Figure 4.3.
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HSCT Flight Controls and the ASE Working Group

Simplified 4V Control Law Block Diagram

To Workspaces

0}
gamma
({rad)

To Workspacel1
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HSCT Flight Controls and the ASE Working

Group

Simplified ¥V Control Law Equations

k:ei
5stabc = ? ('7m — 'Yc) — kcorkei kgdep +
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HSCT Flight Controls and the ASE Working Group

gj, EBPEIRE"

Total Closed Loop System
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State-Space Modeling Methodology




HSCT Flight Controls and the ASE Working Group

FC DASE Modeling Methodology

Flutter Equation

[M32 +Cs+ K — una(g)] X(s) = ®TGU(s) + q [Yy(s)Agy (8) + Zy(5) Ay, (3)]

(10)
where
A, () £ D Ay, (3 (11)
=1
ng '
Ag.(8) £ 3 A (3)e7T (12)
i=1
@_;@@El&ﬁ’ s




HSCT Flight Controls and the ASE Working Group

FC DASE Modeling Methodology

e Flight Controls derives state space models from Structures model (File 41)
— Automated routine to convert Elfini File 41 to Matlab format.
— Collection of Matlab m-files used to:

Fit unsteady aero using Roger RFA

Introduce structural viscous damping

Define control inputs

Produce sensor outputs

5. Return state space A, B, C, D matrices

e Matlab routines also developed to perform:

> W

1. Frequency domain response analysis
2. Flutter analysis (V' — g diagrams)

@, (FDES G
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HSCT Flight Controls and the ASE Working Group

@, EOEINEG

Ayl

Agy(

Agz (

~

S

FC DASE Modeling Methodology

)

)

)

Q

Q

X

Unsteady Aero Approximations

A2 ~
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HSCT Flight Controls and the ASE Working Group

FC DASE Modeling Methodology

State Space Equations of Motion

Tgs = Assmss + Bgsu + BSSgw | (16)
ggi: [ r | TL T2 ... Tng I Tgy; Tgyp - - - Tgynﬂ I Tgzy Tgzg -+ Tgzp
(17)
T . : . .
w' =g Yy Z % ] (18)
@_@’@5@@#@’
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HSCT Flight Controls and the ASE Working Group

FC DASE Modeling Methodology

Torque Inputs vs Prescribed Motion

e Equation (16) uses generalized internal/external forces as driving inputs.
— Actuator force model required to drive system.
— Accounts for full two-way coupling of surface-into-vehicle and vehicle-into-surface
dynamic coupling.
— Surface motion is an output.
e Prescribed surface motion commonly used when actuator models not well defined.
— Actuator displacement model required to drive system.
— Accounts only for surface-into-vehicle dynamic coupling.

— Equation (16) may be transformed to prescribed motion, making required hinge
moment an output.

@ B BELAIEE
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Flight Controls

State-Space Model Generation Process
Flight Controls

1. Convert Elfini File 41 data to Matlab format
2. Define State-space Model Build Specification

e Model file name
Added viscous structural damping
Flight condition (Mach and altitude)

Retained modes

Unsteady aero fitting parameters

— Number of lag states

— Force fit at zero frequency

— Use inverse frequency weighting
— Omit apparent mass term

e Define sensor and actuator support node numbers
3. Determine true airspeed and density
4. Form basic A, B, C, D representation

e Calculate viscous damping matrix

o Determine indices of retained modes

Strip-out unretained modes

Calculate dynamic pressure

Determine frequencies of lag filters

— Frequencies are evenly spaced between minimum and maximum k-values

Form state-space A matrix

— Fit unsteady aero using linear weighted least squares

— Combine aero fitting coefficients with mass, stiffness, and damping matrices to form
state-space A matrix

— Correct A matrix for accelerations due to plunge position (should be zero).

— Correct A matrix such that accelerations due to rigid body plunge velocity agree
with accelerations due to rigid body pitch position, the latter being the truth model.

Form state-space B matrix
— Collect mode shapes for assumed modes, or actuator degress of freedom (Identity
matrix)
— Collect mode shapes for actuator support structure
— Use finite differencing, if necessary, to obtain modal slopes

— Calculate difference between mode shapes for the actuator DOFS and the actuator
support structure

— Form state-space B matrix using the mass matrix, apparent aerodynamic mass, and
the mode shape differences.

@_BHEI/VE .
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Flight Controls

e Form C matrix ‘

— Include rigid-body mean-axis states
— Include nodal displacements

— Include assumed mode deflections
— Strip out unretained modes

— Calculate C matrix for g

— Calculate C matrix for §

— Form total C matrix for y, y, and g

e Form D matrix
— Include direct feed-through elements from

o Convert A, B, C, D representation to sparse arrays
5. Add additional sensors to C and D matrices

e Pitch and pitch rate sensors at various body stations
e Load factor sensors at various body stations
¢ Velocity sensors at various body stations

e Assemble new combined C and D matrices
6. Transform coordinates and convert units

e Define coordinate transformations

¢ Define unit conversions

¢ Form transformations matrices for state vector, measurement vector, and control vector.

o Perform transformation
7. If desired, convert from torque inputs to prescribed motion inputs

8. Done

ZLaafﬂva .
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PART II - Boeing Long Beach Report

Introduction

A closed-loop ASE flutter analysis of the TCA configuration with symmetric boundary
condition has been performed using MSC/NASTRAN. While the primary goal of this
study was to validate the MSC/NASTRAN ASE analysis process and not to generate ASE
stability results for the TCA configuration, several interesting results were nonetheless
generated.

MSC/NASTRAN ASE Analysis Process

MSC/NASTRAN is an attractive package for ASE analysis since the control laws can be
directly included with the structural and aerodynamic models in a single ASE model,
without requiring the intermediate steps of generating vibration modes, generalized AIC’s,
and the like. In a DITS-type sizing process, the transfer functions could conceivably be
included directly in the flutter screening analyses as well as in the flutter constraint
calculation in the strength/loads/flutter sizing process.

While MSC/NASTRAN allows the inclusion of control laws directly in the flutter analysis,
there are several things that must be kept in mind, and issues that must be overcome.

1. The structural FEM must have rigid-body (ie. zero frequency)
vibration modes for each of the control surfaces to be used in the
analysis. For this study, the elevator was the only surface used, so the
model had four rigid body modes (pitch, plunge, fore-aft, and elevator
pitch).

2. The FEM must have degrees of freedom that directly correspond to the
sensors of the ASE model. For example, if an acceleration at the pilot
station is a desired input, then a structural node must exist at the pilot
station.

3. A structural node must also be created for each actuator, and MPC’s
defined relating the actuator node deflection to the physical deflection
of the associated control surface

4. MSC/NASTRAN has no built-in gain scheduling capability. If gain
scheduling is required, then a scparate transfer function must be defined
for each speed point, and each speed point must be analyzed in a
separate subcase.

Addressing these issues required several minor modifications to the finite element model
as well as writing a simple preprocessor code to automate the gain scheduling task.




Closed Loop Flutter Analysis Results

In validating the closed loop MSC/NASTRAN flutter analysis two mass conditions, MO-2
and MT-1, were investigated. The open loop flutter results for some of the critical modes
of these two mass conditions are presented in Figures 1 and 2. It can be seen that the
open-loop aircraft is aeroelastically stable within the flight envelope.

The Gamma dot V control was included in the ASE model for this validation process.
That control law, including actuator dynamics, takes the form:

Osrap = &+k )k +ky +k 0, +k ( 20 )( 6400 )
stap = || T Kep JRo¥m T Ko RO ¥ Kol | o0 | S 113128 + 6400

6 ELEV — 26STAB

and

The Gamma dot V control law drives both the elevator and the horizontal stabilizer. In the
analysis presented in this memo the stabilizer deflection was not included, and the control
law only drives the elevator. Since the elevator gain is twice that of the horizontal
stabilizer, it is believed this modification would not affect the conclusions of this analysis.
The sensor configuration used in these analyses were located near the center of mass of
the aircraft.

The closed loop flutter analysis results for mass conditions MO-2 and MT-1 are presented
in figures 3 and 4 respectively. It can be seen that both conditions exhibit damping in the
unacceptable range.

Raj Nagaraja presented closed loop flutter results for the MO-2 condition at the HSR
Airframe Technical Review in February 1998. The results presented in this memo
correlate well with those results. This correlation validates the MSC/NASTRAN closed-
loop flutter analysis.

Possible Modifications to the “Gamma dot V” Control Law

A further investigation was performed to try and devise a filtering scheme that would
reduce the effects of the control law on the flexible aircraft. It was determined that the
main cause of the instabilities was the pitch rate feedback (q), and therefore, only this loop
was filtered. The control employed in the analysis then became:

Sour = 2|4k, kot ko + ko, + (NTF)[ 2 )( oun )
ELEV — S sp OYm 2} aam 'qCIm S+2O S+113.12S+6400



Where NTF represents the filter transfer function. Initially a single notch filter was
employed at the instability frequency. It was found that such a filter would reduce the
initial instability, but would cause sufficient phase shift to drive another mode unstable.
Subsequently a double notch configuration was devised that addressed all aeroelastic
instabilities. These filters consist of 14db notch filters at 1.8Hz and 3.6Hz and combined
to form the transfer function:

§%+3.1645 +127.69 Y S +6.3285 +510.76
S2 415828 +127.69 | $? +31.645 +510.76

NTF=[

A bode plot of this filtering scheme is presented in figure 5. Aeroservoelastic analysis
results incorporating this filtering scheme are presented in figures 6 and 7 for mass
conditions MO-2 and MT-1. It can be seen in Figure 7 that at the low speed end of the
flight envelope a humped mode crosses over into the region of unacceptable damping.
Further refinements of the notch filters would probably eliminate this instability.

This filtering scheme and the accompanying analyses are presented as a possible solution
to the aeroservoelastic instability problem. It is not meant to be the final or only solution.
Some further filter refinement and analysis is still required to:

1. Completely eliminate all acroelastic instabilities within the flight envelope, for
all mass and flight conditions

2. Determine the filters’ effects on the aircraft’s flying qualities.
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Figure 1: Open Loop Flutter analysis Results, Mass Case MO-2 at Mach 0.95.
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Figure 2: Open Loop Flutter analysis Results, Mass Case MT-1 at Mach 0.95.
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Figure 3: Closed Loop Flutter (Baseline Gamma-dot-V) Analysis Results, Mass

Case MO-2 at Mach 0.95.




5.00

Frequency vs Velocity
.95M Mass Condition MT1
Baseline Gamma-dot V Control Law

4.50 +

4.00 +

3.50 +

3.00 +

2.50

Frequency (Hz)

2.00 +

1.50 +

1.00 +

0.50 —+

0.00

100 200 300 400 500 600
Velacity (keas)

700

0.30

Damping vs Velocity
.95M Mass Condition MT1
Baseline Gamma-dot V Control Law

0.20

0.10 +

Damping (g)

-0.10 +

-0.20

-0.30

UNACCEPTABLE
REGION

100 200 300 400 500 600
Velocity (keas)

700

800

900

Figure 4: Closed Loop Flutter (Baseline Gamma-dot-V) Analysis Results, Mass

Case MT-1 at Mach 0.95.
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Figure 5: Bode Plot of Double-Notch Filter Used to Eliminate Aeroservoelastic

Instabilities.
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Figure 6: Closed Loop Flutter (Gamma-dot-V with Notch Filter) Analysis Results,

Mass Case MO-2 at Mach 0.95.
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Figure 7: Closed Loop Flutter (Gamma-dot-V with Notch Filter) Analysis Results,
Mass Case MT-1 at Mach 0.95.
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