National Aeronautics and Space Administration

DIAGNOSTIC ALGORITHM BENCHMARKING Scott Poll (NASA Ames Research Center)

Objectives

- Benchmark diagnostic algorithms (DAs) using standardized platform
- Compare performance empirically
- Facilitate research in and maturation of diagnostic technologies

Challenges

- Various diagnostic approaches (expert systems, model-based, data-driven, stochastic)
- Diagnostic algorithms support different operational contexts difficult to define evaluation criteria

Approach

- Acquire nominal and faulty experimental data with known ground truth
- Use standard formats for system description, data, and diagnosis results
- Create software framework to execute diagnostic algorithms and evaluate performance

Implementation

DXC'10 Diagnostic Problems

Aspect		DP-I	DP-II		
system		ADAPT-Lite	ADAPT		
operationa	l scenario	single-string	redundant		
		UAS mission	systems UAS mission		
diagnostic	use case	abort rec.	fault		
			recovery rec.		
#comps		25	96		
#modes		102	306		
initial relay state		closed	open		
initial circuit breaker state		closed	closed		
nominal m	nominal mode changes		yes		
multiple fa	multiple faults		yes		
	offset	yes	yes		
foult	drift	yes	no		
Iduit	(incipient)				
types	intermittent offset	yes	no		

- High-level representation of physical system description, sensor data, diagnosis output
- Run-time architecture for executing DAs with experimental scenarios
- Evaluation component that evaluates DAs using pre-defined metrics
- Two system descriptions created from the **ADAPT Electrical Power System testbed**
- Archived ~4 minute nominal and faulty scenarios with known ground truth for **ADAPT-Lite and ADAPT systems**
- DXF and ADAPT EPS scenarios used in two diagnostic competitions (DXC'09, DXC'10), hosted by the International Workshop on **Principles of Diagnosis**
- DXC'10 introduced new challenges: new fault types, reduced sensor set, multiple sample rates

Results (only DXC'10 DP-I shown, see links for more information)

A that always abonts = 2225,	N A
A that never aborts = 8125	IVI _{err}
$\frac{1}{10000000000000000000000000000000000$	M _{cpu}
$\frac{1}{1} \frac{1}{1} \frac{1}$	М

M _{err}	classification errors	isolation
M _{cpu}	CPU load	computatio
M _{mem}	memory load	computation

county entris resulted in Dr
false positives and
classification errors

Publications and Data Sets

- ADAPT Electrical Power System information, softwar framework, sample data, test data, results, publicatio
- and presentations are available on DASHlink:
- DXC'09: https://c3.ndc.nasa.gov/dashlink/projects/3
- DXC'10: https://c3.ndc.nasa.gov/dashlink/projects/33/

· ·	DA	IVI _{fd} (S)	IVI _{fn}	IVI _{fp}	IVI _{da}	IVI _{fi} (S)	IVI _{err}	IVI _{cou} (ms)	IVI _{mem} (KD)
e	AdaptedFACT	21.462	0.069	0.040	0.901	151.746	98.000	37189	9656
ns	HyDE-A	27.717	0.873	0.000	0.240	29.355	136.030	1550	6463
	ProADAPT	15.990	0.179	0.019	0.825	64.711	171.000	6356	4373
	QED	7.307	0.015	0.105	0.882	115.499	71.752	239	5364
86/	SystemicsC	9.390	0.134	0.026	0.856	13.860	73.000	229057	3151
	TARDEC	162.638	0.090	0.000	0.922	162.638	58.000	8979	3211

Team: Scott Poll (NASA Ames), Sriram Narasimhan (UARC @ NASA Ames), Tolga Kurtoglu (PARC), David Garcia (PARC), Johan de Kleer (PARC), Alexander Feldman (Delft University of Technology & PARC), Arjan van Gemund (Delft University of Technology)

NASA Aviation Safety Annual Technical Meeting, St. Louis, MO May 10 – 12, 2011