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ABSTRACT

One of the key motivating factors for using particle
filters for prognostics is the ability to include model
parameters as part of the state vector to be estimated.
This performs model adaptation in conjunction with
state tracking, and thus, produces a tuned model that
can used for long term predictions. This feature of
particle filters works in most part due to the fact that

i.e. the exponential growth of computational complexity
with state dimension. However, in practice, this

-
as dimensionality increases. This paper explores the
notion of wellness of design in the context of predicting
remaining useful life for individual discharge cycles of
Li-ion batteries. Prognostic metrics are used to analyze
the tradeoff between different model designs and
prediction performance. Results demonstrate how
sensitivity analysis may be used to arrive at a well-
designed prognostic model that can take advantage of
the model adaptation properties of a particle filter.*

1. INTRODUCTION

The field of system health management (SHM) is
undergoing a paradigm shift from the reliability driven
maintenance strategies that relied on metrics like mean-
time-to-failure (MTTF), to more proactive condition-
based maintenance (CBM) strategies that estimate the
remaining useful life (RUL) specific to the system
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under consideration. This results in more efficient
performance, longer system life, as well as reduction in
costs from unscheduled maintenance due to unforeseen
failures. The applicability of this methodology that was
once pioneered by the aerospace and the defense
industry now ranges far and wide from green buildings
to electric cars to consumer electronics.

The trigger for this evolution has been the concept of
prognostics and the need to integrate it into the
operations and maintenance decisioning process. The
definition of what constitutes prognostics is still an
open discussion in the SHM community, but for the
purposes of this paper, we will define it to be the
process by which the evolution of a system variable or
vector indicating its health is tracked over time under
current and proposed future usage, until its value no
longer falls within the limits set forth by the system
specifications. This somewhat broadens the definition
set forth by Saxena et al. (2008), where prognostics is
triggered by a diagnostic routine, and the detected
failure precursor is tracked through time until a
predefined end-of-life (EOL) threshold is reached.
Other applications may include predicting nominal
wear or intermediate cycle-life as discussed in the case
of rechargeable batteries by Saha & Goebel (2009).

Prognostic approaches can be broadly classified into
two categories: data-driven and model-based. Data-
driven techniques mainly exploit evolution trends of the
tracked variable observed from training or archived
data under similar operational conditions. Although,
they circumvent the need for domain expertise and
model development both of which cost time and
money, they lead to the problem of data availability and
integrity. In most cases, little data is collected from
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engineered systems in use. This may not be true for
aerospace applications, but even when there is data,
very little of it is actually collected under faulty
conditions. Accelerated aging tests are even more rare
since most systems are either too costly to run to
failure, or take too long to do so. Additionally, there are
problems with sensor bias and drift, and in some cases,
outright failure.

This motivates the development of model-based
techniques where domain expertise may be brought to
bear. However, most high fidelity models are too
computationally intractable to be run in an online
environment that can be integrated with the decisioning
process. Consequently, there is a need for a model-
based prognostic framework that can track the
nonlinear dynamics of system health while using a
lower-order system representation. The Particle Filter
(PF) introduced by Gordon et al. (1993) is an elegant
solution to this need. PFs are a novel class of nonlinear
filtering methods that combine Bayesian learning
techniques with importance sampling to provide good
state tracking performance. Additionally, model
parameters can be included as a part of the state vector
to be tracked, thus performing model adaptation in
conjunction with state estimation. The model, thus
tuned during the tracking phase, can then be propagated
subject to expected future use to give long-term
prognosis.

2. BACKGROUND

Nonlinear filtering has been an active topic of research
for the last several decades in the statistical and
engineering community (Jazwinski, 1970). The core
problem is to sequentially estimate the state of a
dynamic system xk Rnx, where R is  the  set  of  real
numbers and nx is the dimension of the state vector,
using a time-sequence of noisy measurements zk Rnz,
where nz is the dimension of the measurement vector
(Ristic et al., 2004). The time index k N, where N is
the set of natural numbers, is assigned to the
continuous-time instant tk. Thus the state evolution
model and the measurement equation may be expressed
as:

),( 111 kkkk xfx (1)
),( kkkk xhz (2)

where, f and h are known nonlinear functions, and
and  represent process and measurement noise
sequences, possibly non-Gaussian, whose statistics are
known. It is desired to obtain the filtered estimates of xk
from all available measurements Zk  {zi, i k}

up to tk, which, from a Bayesian perspective, amounts
to constructing the posterior pdf (probability density
function) p(xk|Zk).  Once  the initial density p(x0)
p(x0|Z0) is determined, the pdf may be obtained
recursively using the prediction and update steps shown
in Eqs. (1) and (2).

Let us say that at time tk-1 we have the pdf p(xk-1|Zk-1).
In the prediction step the system model in Eq. (1) is
used to obtain the prior pdf at time tk via the Chapman-
Kolmogorov equation:

111-1-1-1 , kkkkkkkk dppp xZxZxxZx . (3)

Assuming a first-order Markov process, p(xk|xk-1,Zk-1) =
p(xk|xk-1), which may be determined from Eq. (1) and
the known statistics of k-1. Equation (3) thus reduces
to:

111-1-1 kkkkkkk dppp xZxxxZx . (4)

At time tk when the measurement zk is received, the
 as follows:
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The last step of Eq. (5) assumes that the measurements
are independent of each other such that zk only depends
upon xk. The normalizing constant in the denominator
can be represented in terms of the likelihood function
p(zk|xk), defined by Eq. (2) and the known statistics of

as follows:

kkkkkkk dppp xZxxzZz 1-1- . (6)

Substituting Eq. (6) into Eq. (5), we can express the
posterior pdf obtained after the update step as:
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The recurrence relations in Eqs. (4) and (7) form the
basis for computing the optimal Bayesian estimate.
However, these integrals are rarely ever analytical in
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nature, thus leading to the need for sub-optimal filters
like particle filters. PFs evaluate these integrals by
performing Monte Carlo (MC) integration, which is the
basis for all sequential Monte Carlo (SMC) estimation
methods. Noting the fact that p(xk-1|Zk-1)dxk-1 =
p(xk|Zk-1)dxk  = 1, both the integrals in Eqs. (4) and (7)

can expressed in the form of:

I dx x x (8)

where, (x) is of the form p(xk-l|Zk-1), l =  0  or  1,
satisfying the pdf properties (x)  0 and (x)dx = 1.

(x) may be derived from Eqs. (1) and (2) for Eqs. (4)
and (7) respectively. The MC estimate of this integral
can expressed as the mean of N >> 1 samples {xi; i =
1, N}:

N

i

i
N

N 1

1
xI . (9)

Assuming independent samples, IN is an unbiased
estimate and, according to the law of large numbers,
will converge to I. Given the fact that in our case (x)
is a pdf constrained within the values of 0 and 1, its
variance 2 = ( (x)-I)2 (x)dx is also finite. This
means that applying the central limit theorem the
estimation error can be said to converge as:

20,~lim NIIN
N

N (10)

where N(0, 2) denotes a normal distribution with zero
mean and variance 2. The MC estimate error, e = IN
I, is of the order of O(N1/2),  which means that  the rate
of convergence is dependent on the number of particles
N, but not the dimension of the state, nx (Ristic et al.,
2004). This leads to the notion that PFs are not subject
to the curse of dimensionality like other nonlinear
filters.

Richard Bellman (1957) more than half a century ago
to denote the exponential increase in computational
complexity in nonlinear filters as a function of the state
dimension nx. Daum (2005) in his tutorial on nonlinear
filters discusses this aspect of particle filters. He states

avoid the curse of
dimensionality, but this is generally incorrect. Well
designed PFs with good proposal densities sometimes
avoid the curse of dimensionality, but not otherwise.
Figure 1 and Figure 2, reprinted from (Daum, 2005),
show the comparison between the median

dimensionless error for good and poor proposal
densities respectively evaluated over a chosen

conditional densities (Daum & Huang, 2003).

Figure 1. Dimension free error vs. number of particles
for PF with good proposal density (Daum, 2005).

Figure 2. Dimension free error vs. number of particles
for PF with poor proposal density (Daum, 2005).

It can be seen from the figures that for a state vector of
dimension 8 i.e., nx = 8, the PF with the poor proposal
density achieves the same error level with about 106

particles that a PF with good proposal density achieves
with 10 particles. This discrepancy gets exponentially
higher as the dimensionality of the state vector
increases linearly, clearly showing that the PF
performance does not always escape the curse of
dimensionality. Further discussion on this topic can be
found in (Daum & Huang, 2003).

The theoretical basis behind the particle filter escaping
the curse of dimensionality is that the proposal density
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considered, given by the samples {xi; i =  1, N},
come from the regions of the state space that are
important for the pdf integration results in Eqs. (4) and
(7). However, it is usually not possible to sample
effectively from the posterior distribution (x) being
multivariate, non-parametric and, in most cases,
unknown beyond a proportionality constant (Ristic et
al., 2004). In the case of the prognostic problem, even
though the system health vector to be tracked may not
be high dimensional, the incorporation of model
parameters into the state vector, in order to track the
non-stationarity of the system model, adds extra
dimensions (Saha & Goebel, 2009). Thus, model
adaptation that facilitates good prognosis necessitates a
good choice of proposal density.

3. THE PROGNOSTICS FRAMEWORK

Before we investigate the issues with model adaptation,
let us take a step back and look at how prognostics is
performed in the PF framework. The framework has
been described before (Saha et al., 2009), however,
some basic elements are reproduced below in order to
set the context. Particle methods assume that the state
equations can be modeled as a first order Markov
process with additive noise and conditionally
independent outputs. Under these assumptions Eqs. (1)
and (2) become:

111 kkkk xfx (11)

kkkk xhz . (12)

As mentioned in (Daum, 2005) there are several flavors
of PFs. Analyzing all is not within the scope of this
paper. Here we shall focus on Sampling Importance
Resampling (SIR), which is a very commonly used
particle filtering algorithm that approximates the
posterior filtering distribution denoted as p(xk|Zk)  by  a
set of N weighted particles { x

i
p,w

i
p ; i = N}

sampled from a distribution q(x
(x), i.e., (x)  >  0 q(x)  >  0  for  all x Rnx. The

importance weights i
kw  are normalized in the

following way:

N

j

j
k

j
k

i
k

i
ki

k

q

q
w

1

xx

xx

(13)

such that i
kiw  = 1, and the posterior distribution can

be approximated as:
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Using the model in Eq. (11) the prediction step from
Eq. (4) becomes:
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The weights are updated according to the relation:
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Resampling is used to avoid the problem of degeneracy
of the PF algorithm, i.e.,  avoiding the situation that  all
but a few of the importance weights are close to zero. If
the weights degenerate, we not only have a very poor
representation of the system state, but we also spend
valuable computing resources on unimportant
calculations. More details on this are provided in (Saha
et al., 2009). The basic logical flowchart is shown in
Figure 3.

Initialize PF Parameters

Propose Initial Population , x0,w0

Propagate Particles using State
Model , xk-1 xk

Update Weights,wk-1 wk
Measurement

zk

Weights
degenerated?

Resample

Yes

No

Figure 3. Particle filtering flowchart.

During prognosis this tracking routine is run until a
long-term prediction is required, say at time tp, at which
point Eq. (11) will be used to propagate the posterior
pdf given by { x

i
p,w

i
p ; i = N} until xi fails to meet

the system specifications at time t
i
EOL.  The  RUL  pdf,

i.e., the distribution p(tiEOL tp), is given by the
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distribution of wi
p. Figure 4 shows the flow diagram of

the prediction process.

Start Prediction at tp

Estimate Initial Population , xp,wp

Propagate Particles using State
Model , xp+k-1 xp+k

EOL threshold
exceeded?

Generate RUL pdf from {wp}

Yes

No

Figure 4. Prediction flowchart.

4. MODEL ADAPTATION

Now that the PF prognostic framework has been set up,
let  us  investigate  how  we  can  take  advantage  of  it  to
perform model adaptation online. For most engineered
systems models for nominal operation are available, but

law are comparatively rare. As mentioned before,
developing these models require extensive destructive
testing which may not be possible in many cases. In
some cases, testing may be done on subscale systems,
but there may be difficulty in generalizing the models
learned. Additionally, the parameter values of these
models are often system specific, and thus need to be
re-learned for every new application. The PF
framework described above can help in these cases by
adapting the prognostic/aging model in an online
fashion.

For the purposes of this paper we shall assume that the
system health state is 1-dimensional, given by xk, and
the state evolution model f and the measurement model
h are stationary in nature with known noise
distributions  and  respectively. Additionally, we
also assume that the parameter values of h are known.
This assumption can be relaxed in a more generic
approach. Indeed, considering a non-stationary
measurement model can be used to account for
progressive degradation in sensors caused by corrosion,
fatigue, wear, etc. The parameters of f, denoted by k =
{ j,k; j nf}, nf N, are combined with xk to
give the state vector xk =  [xk k]T, where T represents
the transpose of a vector or matrix. Equations (11) and
(12) can then be rewritten as:

111, kkkk xx f (18)

kkk xz h . (19)

The issue now is to formulate the state equations for k.
One easy solution is to pick a Gaussian random walk
such that:

1,1, kjkjkj , (20)

where j,k-1 is drawn from a normal distribution,
N(0, 2

j), with zero mean and variance 2
j. Given a

suitable starting point j,0, and variance 2
j,  the  PF

estimate will converge to the actual parameter value j,
according to the law of large numbers. In this way, we
appear to have introduced model adaptation into the PF
framework, adding nf extra dimensions, yet achieving
convergence without incurring the curse of
dimensionality.

The notion of a good proposal density, though, comes
into play in the choice of the values of j,0 and 2

j. If the
initial estimate j,0 is  far  from the actual  value and the
variance 2

j is  small,  then  the  filter  may  take  a  large
number of steps to converge, if at all. The variance
value may be chosen to be higher in order to cover
more state-space, but that can also delay convergence.
One  way  to  counter  this  is  to  make  the  noise  variance
itself a state variable that increases if the associated
weight is lower than a preset threshold, i.e., the
estimated parameter value is far from the true value,
and vice-versa.  Equation (20) then may be rewritten
as:

2
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The multiplier cj,k, is a positive valued real number,
while the threshold wth is some value in the interval (0,
1). The intent is to increase the search space when the
error is high and tightening the search when we are
close to the target. Note that although this produces a
better proposal density, it introduces a further nf
dimensions to the state vector.

5. SENSITIVITY ANALYSIS

It  is  quickly  evident  that  it  is  not  feasible  to  take  this
approach for all the parameters of a sufficiently high-
order model. This motivates the use of sensitivity
analysis techniques (SA) to determine the more
sensitive parameters that need to be estimated online.
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SA is essentially a methodology for systematically
changing parameters in a model to determine the
effects on the model output. There are several methods
to perform SA like local derivatives (Cacuci, 2003),
sampling (Helton et al., 2006), Monte Carlo sampling
(Saltelli et al., 2004), etc. Depending upon the form of
the system model any of these methods may be used
assess which parameters to target.

In this paper, we assume that the model function f in
Eq. (18) is differentiable, i.e., we can compute f/ j,
time index k dropped for the sake of generality, at any
point in the state space defined by xk = [xk k]T.  If  the
partial derivative is positive, then the value of the
function increases with an increase in the parameter
value and vice-versa. The magnitude of the derivative
indicates the degree to which the parameter affects the
output of f. This allows us to choose the parameters to
estimate online. For example consider the function:

xx 21.expf (23)

where 1 and 2 are the function parameters. Then the
partial derivatives are given by:

x2
1

expf
, (24)

xx 21
2

.expf
. (25)

Figure 5 shows the sensitivity analysis of f(x)  due  to
10% variation in parameters 1 and 2 around the value
10, with x = 1.

9 9.5 10 10.5 11
0

1

2

3

4

5

6 x 105

1, 2

1

2

Figure 5. Effect on f(x) due to 10% variation in
parameters 1 and 2.

As expected in this simple example, the output of the
function is more sensitive to similar variations in the
exponential coefficient 2 than the multiplier 1, almost
by an order of magnitude. Depending on the desired
estimation accuracy, 2 makes a better candidate for
online identification than 1.

Another possibility to note is to replace the random
walk model for parameter identification by one that
takes into account how a change in the parameter value
affects the model output. A similar concept has been
applied by Orchard et al., (2009), where they
incorporate information from the short term prediction
error back into the estimation routine to improve PF
performance for both state estimation and prediction. In
the  case  of  our  example  we  can  construct  a  similar
framework by considering the posterior state error:

N
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k xwxe
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. (26)

If eik is positive then the parameters that have a positive
local partial derivative need to be reduced and those
with a negative one need to be increased. The opposite
holds true if eik is negative. The amount by which the
parameters need to be reduced or increased also
depends on the magnitude of the local partial
derivative. The higher the magnitude, the smaller steps
we take in order to prevent instability while
approaching the true value. We can formalize this
notion in the following way (the particle index i has
been dropped for the sake of generality):

2
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Note that in this model adaptation scenario we are not
adding the noise variance parameter to the state vector
since the search process is directed and not random as
discussed in the precious section.

6. PREDICTING BATTERY DISCHARGE

The application example chosen to investigate the
notions described above is the discharge of Lithium-ion
rechargeable batteries. The electro-chemistry behind
the process as well as the model derivation has been
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discussed in detail in (Saha & Goebel, 2009). Some
information is repeated here to maintain readability.
For the empirical charge depletion model considered
here, we express the output voltage E(tk) of the cell in
terms  of  the  effects  of  the  changes  in  the  internal
parameters, as shown below:

kkkk tEtEtEEtE mtrdsd (29)

where E Esd is
the drop due to self- Erd is the drop due to

Emt denotes the voltage
drop due to internal resistance to mass transfer
(diffusion of ions). These individual effects are
modeled as:

kkkk ttE /.exp ,2,1sd , (30)

kkkk ttE ,4,3rd .exp , (31)

kkk tEtE ,5initmt . (32)

where Einit is the initial voltage drop when current
flows  through  the  internal  resistance  of  the  cell  at  the

k = { j,k; j }
represents the set of model parameters to be estimated.
Figure 6 shows how the different voltage drop
components defined in Eqns. (30) (32) combine to give
the typical constant current Li-ion discharge profile.

time

Eo

Eo- Esd

Eo- Erd

Eo- Emt

E=Eo- Esd- Erd- Emt

Figure 6. Decomposition of the Li-ion discharge profile
in to different components (Saha & Goebel, 2009).

The problem is to predict the end-of-discharge (EOD),
i.e., the time instant tEOD when the state x denoting the
cell voltage E reaches the threshold level of 2.7 V. The
PF representation of this problem is given by:

1

1151141413

2
111212111

exp
exp

k

kkkkkkk

kkkkkkk

ttt

ttxx

,,,,

,,,

(33)

kkk xz . (34)

This is a 6 dimensional state vector with 1 dimension
being the system health indicator (cell voltage) and the
other dimensions coming from the model parameters.

This is a sufficiently complex problem to investigate
the PF-based model adaptation techniques described in
the paper, since the critical health variable, battery
voltage, is dependent on multiple simultaneous internal
processes that are not independently observable.
Additionally, the voltage undergoes a very steep and
nonlinear transformation near the EOD threshold, as
shown in Figure 6, which is difficult to predict early on.
For simple voltage tracking purposes, a random walk
model over the cell  voltage,  i.e. E(tk+1)  = E(tk)  + k-1,
is enough, but when the voltage trajectory needs to be
predicted on the basis of present estimates, then
accurate estimates of the underlying model parameters
are indispensible. This point is illustrated in Figure 7,
which  shows  that  a  10% error  in  estimating  the  model
parameters { j; j  can lead to a 15 minute
error in determining the remaining battery life.

Figure 7. Li-ion discharge trajectories with changes in
model parameter estimates.

7. RESULTS

The suitability of using the proposed model adaptation
routines, described in Sections 4 and 5, for EOD
prediction is measured using the  metric defined in
(Saxena et al., 2008). Multiple predictions are made as
the battery progressively discharges at a constant
current of 2 A. The data have been collected from a
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custom built battery prognostics testbed at the NASA
Ames Prognostics Center of Excellence (PCoE). An
example of the PF prediction output based on 50
particles is shown in Figure 8. The prediction points are
denoted by stars in blue. The EOD pdfs overlap as
shown on the bottom right with the earlier predictions
more faded than the newer ones.

0 500 1000 1500 2000 2500 3000 3500

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

time (secs)

EEOD

E (measured)

E (from PF)

Prediction points

tEOD

EOD pdfs

Figure 8. EOD prediction (Saha & Goebel, 2009).

Three different model adaptation routines have been
tried:

Type A  the parameters are adapted according
to the Gaussian random walk model described
in Eq. (20).

Type B  the parameters are adapted based on
the noise variance variation strategy described
in Eqs. (21) and (22). The threshold wth is
chosen to be 0.5.

Type C  the parameters are adapted according
to the sensitivity analysis based strategy
described in Eqs. (27) and (28). The
proportionality factor K is chosen to be 105.

For each type of model adaptation 10 EOD prediction
runs are conducted each including 13 predictions
performed at predetermined time instants. The number
of particles is 50 in all cases. The initial population
x
i
0,w

i
0  is  also  the  same  for  all  runs,  with wi0 = 1/50.

The initial values of the parameters have been learned
from  discharge  runs  at  4  A  in  order  to  test  the  model
adaptation performance. Figure 9 shows an example of
the variation in parameter values at different discharge
levels.

0 1000 2000 3000 4000
2.5

3

3.5

4

4.5

secs

2A4A

2 = 10002 = 550

4 = 0.00584 = 0.007

measured
model

Figure 9. Difference in parameter values for different
load currents.
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0
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1500
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2500

3000
(  = 0.1,  = 0.5)

time (secs)

Figure 10. Prognostic performance of model adaptation
type A.
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Figure 11. Prognostic performance of model adaptation
type B.
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3000
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Figure 12. Prognostic performance of model adaptation
type C.

Figures 10  12 show the prognostic performance of the
10 prediction runs of each model adaptation type. As
can be seen from Figure 10 the noise variance selected
for the model in insufficient to overcome the error
between the initial parameter population and the true
value.

Figure 11 shows that the noise variance adaptation
routine is capable of achieving convergence although it
takes up almost half of RUL from the point of
prediction to EOD. The SA based adaptation routine
performs the best with convergence within 10% (  =
0.1) throughout the prediction horizon as shown in
Figure 12, i.e., the model adaptation takes place within
the first 500 secs of the discharge. The multiple runs
allow us to have some statistical confidence in these
results.

Overall, if prognostic performance is evaluated at the
50% mark of the full prediction horizon (  = 0.5) then
only type C meets the 10% error performance criterion.
In the context of decision making, this prediction can
be used to take corrective actions with more than 20
mins remaining. For battery applications, such
corrective actions could include altering the load to
match the desired battery life.

8. CONCLUSION

In summary, this paper investigates the possibility of
performing model adaptation in a PF framework
without incurring the curse of dimensionality. It has
been shown how various strategies may be used to
adapt model parameters online in order to tune the state
model for RUL predictions. The feasibility of doing
this without incurring the curse of dimensionality has

been demonstrated by the application of sensitivity
analysis techniques.

However, the analysis performed in this paper is still
preliminary in nature since the effects of the initial
populations and the priors chosen for the noise
variances have not been investigated. Additionally,
theoretical analysis of PF convergence bounds while
using model adaptation techniques is necessary for the
adoption of these methods into Prognostic Health
Management (PHM) practice, and will be tackled in
future papers.
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