
,4'. - :i

..
NASA USRP - Internship Final Report

I

Launch Control Systems: Moving Towards

a, Scalable, Universal Platform for Future Space Endeavors

Jonathan Sun

Kennedy Space Center

Major: Computer Science

USRP Summer 2011

Date: 08/05/11

- 0 -
Kennedy Space Center

L..-- _

August 5, 2011

https://ntrs.nasa.gov/search.jsp?R=20110015853 2019-08-30T17:30:31+00:00Z

NASA USRP - Internship Final Report

Launch Control Systems: Moving Towards
a Scalable, Universal Platform for Future Space Endeavors

Jonathan Sun l

University o/Southern California, Los Angeles, CA 90007

The redirection of NASA away from the Constellation program calls for heavy reliance on
commercial launch vehicles for the near future in order to reduce costs and shift focus to

research and long term space exploration. To support them, NASA will renovate Kennedy
Space Center's launch facilities and make them available for commercial use. However,

NASA's current launch software is deeply connected with the now-retired Space Shuttle and
is otherwise not massively compatible. Therefore, a new Launch Control System must be

designed that is adaptable to a variety of different launch protocols and vehicles. This paper
exposits some of the features and advantages of the new system both from the perspective of

the software developers and the launch engineers.

Nomenclature

ANTLR
API
ASF
CMS
Compiler
COTS
CUI
DDS
DSF
GOAL
GUI
Hashmap
IA
IDE
ILOA
JViews
KSC
LCC
LCS
Lexer
LPS
Matisse
MPLV
Plugin
SCL
Script
SDK
Swing
TCID
Widget
XML

ANother Tool for Language Recognition
Application Programming Interface
Application Services & Framework team
Common Services team
A program that turns source code into executable machine code
Commercial Off The Shelf software
Compact Unique Identifier
Data Distribution Services
Display Services & Framework team
Ground Operations Aerospace Language
Graphical User Interface
A data structure mapping elements of one data type to another
Information Architecture team
Integrated Development Environment
Integrated Launch Operations Applications team
A graphical diagramming product made by ILOG, a subsidiary of IBM
Kennedy Space Center
Launch Control Center
Launch Control System
A program that reads and recognizes text expressions according to rules
Launch Processing System
NetBeans' built-in Swing display builder
Multi-Purpose Launch Vehicle
An external tool that gets integrated into an existing program
Spacecraft Command Language
A sequence of commands and behaviors for a program
Software Development Kit
Java's built in GUI framework
Test Configuration Identifier
A reusable dynamic graphical component that displays or receives data
Extensible Markup Language

I Intern, Launch Control Systems, Kennedy Space Center; University of Southern California

- 1 -
Kennedy Space Center August 5, 2011

-------------- -

NASA USRP - Internship Final Report'

I. Introduction

A. The Demand for a New Launch Control System
The culmination of NASA's Space Shuttle Program and cancellation of the Constellation Programi brings

major changes both to NASA's organization and engineering direction. Though many are saddened by the Shuttle
Program's end, the resulting transition period hopes to bring about a wider array of space exploration opportunities
as well as lower cost and overhead for the administration. While the Constellation Program called for NASA to
continue to launch manned space missions to the moon, a major component of the new space program will be heavy
reliance on private, commercially manufactured and operated launch vehiclesii to transport American astronauts to
the International Space Station (ISS) while NASA focuses on long term goals like missions to Mars and distant
asteroids. Although a successful result would bring about a lower overhead cost for the administration per launch,
NASA will still playa major role in supporting the development and operation of commercial launch vehicles. In
particular, Kennedy Space Center (KSC) in Florida, where all the Space Shuttle launches took place, will make its
existing launch pads open for commercial use.

Because of the specialiied nature of the existing launch structures and hardware, NASA will have to
renovate the pads to be compatible with future vehicles designated to launch at KSC. Similarly, the Shuttle's
launch/ground operations software, known internally as the Launch Processing System (LPS)iii, while robust, has
been developed over decades in narrow accordance with the Shuttle's specifications and will need to be altogether
redesigned in order to support future launches. The new infrastructure, simply called the Launch Control System
(LCS), has many updated requirements that take advantage of advances in software development to make it ready
for the future. Not only does it need to be safe and stable during operation, but needs to provide fail-safe and
recovery mechanisms in case any parts of the software malfunction, whether due to internal errors or external
obstacles. It needs to be modular so that individmil components can be added, modified, or removed with ease to
suit the needs of different launch protocols. Finally, it needs to be versatile and powerful enough to give launch
engineers full control and awareness over their relevant systems, without compromising usability. In this respect,
much of the software developmentfor LCS resembles application development in the commercial world.

B. COTS Products: A Paradigm Shift
Development of the new LCS began in 2005 along with the enactment of President George W. Bush's

NASA Authorization Adv, and, being a complete redesign of the old LPS, has the advantage of decades of
advancement in software architecture and new technologies like the internet. The most significant paradigm shift in
the design is the use of Commercial Off The Shelf (COTS) software for as many of the components as possible. In
the same way that NASA will purchase future launch vehicle use from private space companies, it will also purchase
commercial software packages to compose the new LCS. This methodology is very different from the development
of LPS, which was almost exclusively designed and implemented from scratch by NASA engineers. Using COTS
software has powerful consequences but also carries risks and tradeoffs. Many COTS packages already provide
major portions of the functionality NASA desires, and thus by purchasing these packages and developing on top of
them, NASA inherits much of the base functionality without having to reinvent the wheel. Furthermore, NASA no
longer has to spend money and developer time and resources maintaining most of the software, as maintenance is
handled by the company providing the COTS product.

While the use of COTS software reduces the time and resources required of NASA's software developers, it
does not diminish their importance or necessity. Most COTS products still have to be heavily modified or extended
before they are appropriate for launch use. Fortunately, most enterprise-level products provide Software
Development Kits (SDKs) that allow external users (NASA, in this case) to make modifications to their software as
needed. More importantly, since COTS products are not usually designed to communicate directly with each other,
NASA developers must write code to bridge the gaps by providing channels for transferring data between the
different products. The connections between different software packages, colloquially called "glue code", are the
key to unifying all the COTS products under a single Launch Control System. Finally, COTS products may have
errors of their own, or may change over time. Large software packages coded by hundreds of developers are rarely
perfect, and NASA developers are responsible for ensuring that COTS products continually meet the pedigree of
space exploration by designing ways to rigorously test and debug the software and by working closely with the
.software provider to identify potential fixes for issues. The remainder of this paper discusses several case studies of
LCS teams finding advantages through using COTS products and overcoming various obstacles posed by them.

- 2 -
Kennedy Space Center August 5, 2011

NASA USRP - Internship Final Report

II. LCS Front End Services and Framework Overview

A. LCS Front End Architecture
Consisting of a graphical user interface (GUI) framework as well as tools for creating user-defined

commands and automated scripts, the front end architecture of LCS is being developed concurrently by Application
Services & Framework (ASF) and Display Services & Framework (OS F) with collaboration from Integrated Launch
Operations Applications (lLOA). ILOA is the overarching term that refers to the team of launch engineers who
work directly on mission hardware and will be working in the Firing Room (where launches are controlled) on the
day of liftoff. LCS provides them with an interface with which they can monitor and manipulate their relevant
hardware, ranging from electrical systems, engines, weather monitors, etc. This interface is actually only a small
portion of LCS-data does not travel directly from the front end interface to the physical hardware itself. Rather, it
is added to a central database that manages and diverts all the data associated with the launch equipment, ensuring
that it reaches wherever it is needed using the Data Distribution Service (DDS) protocolV and logging its transfer.
Although the feedback that the user sees in the display seems instantaneous, in reality, data is moving rapidly
between different buffers behind the scenes in order to execute the user's command. The performance and
maintenance of this database is handled by another LCS team called Common Services (CMS) and is outside of the
scope of this paper.

Rather than waiting for the entire LCS front end to be finished and tested before deployment to (LOA,
NASA designed LCS with iterative releases in mind. That is, features are released every iteration period (8 weeks
in this case), and ILOA can begin development and testing of their end without waiting months or years for every
part of LCS to be completed. This release methodology saves a lot of time and allows testing of LCS components to
begin much earlier, but requires more care on the developer end in order to ensure that each iteration release is
compatible with earlier and future versions.

(

Primarily Analysis & Design

Evolution I Build

Primarily Implementation

)
Primarily Test &
Release Activities

Iteration 1 Iteration 2 [.._- J[_.][_.][_.]
t t

T
8weeks

Figure I. Iterative Development. The design, implementation, and
test phases are still observed in this model, but releases are made at the end
ofevery iteration period rather than at the very end ofdevelopment.

B. Overview of DSF and the Display Editor
The advent of modern computer graphics technology allows traditional, text-based launch control displays

to be replaced with dynamic graphical displays that use a wide variety of fonts, colors, images, and widgets
(graphical components that display dynamic information), are thusly rich in content and can closely model the
physical hardware that they represent. This is far more than an aesthetic advantage-by getting rid of vast
nondescript arrays of uniform switches or numerical outputs and making displays truly look like the physical
systems they manipulate and monitor, launch engineers gain instant familiarity with the controls and can identify
relevant data with ease. Launching a rocket requires utmost precision and timing on the part of the engineers, and
graphical controls that are familiar, intuitive, and clear result in safer, more efficient operation. Requiring users to
identify buttons and numbers by their names and labels only is prone to error, but by placing such buttons and
numbers next to images of the physical components they represent, users can now intuitively look for the controls
and output relevant to their hardware.

During the Space Shuttle Program, dedicated teams of software developers would program the graphical
displays and command scripts/buttons for the launch engineers, a process that was slow and difficult to maintain due
to the changing demands of launches. Because launch engineers specializing in hardware components were unlikely

- 3 -
Kennedy Space Center August 5, 2011

~---

NASA USRP - Internship Final Report

to be proficient programmers, every time the engineers desired a modification to the application, LPS had to be
updated by the software developers, rigorously tested, and redeployed in time for launch. The design of LCS shifts
responsibility of creating these displays from the software developers to the ILOA members without requiring them
to have heavy programming experience by including a visual, accessible software package that can create and
modify displays on the fly. The Display Services & Framework team (DSF) is thusly responsible for the creation
and maintenance of this program, internally called the Display Editor. Because ILOA members know their hardware
best, it is natural to allow them to build the displays that they will finally use. In tum, development and maintenance
of the Display Editor requires far less time and effort than the maintenance of hundreds of different displays, saving
costs and freeing up developer resources to be used elsewhere. Because these displays are self-contained, different
commercial launch companies can create entire graphical systems that can be swapped out.at launch time, making it
easy to adapt to different launch demands and protocols. Despite these advantages, development of the Display
Editor carries many extra considerations between the developers and users. DSF must implement enough features to
make the Display Editor powerful enough to satisfy all the needs of ILOA users, but must also be careful not to
make the program too complex to use intuitively.

Figure 2. LCS Software
Infrastructure. The Common
Services database provides a
shared repository ofall data from
internal and external sources.
This diagram shows the relation­
ship between ASF, DSF and the
various other LCS services that
rely on the database to send and
receive data.

C. Overview of ASF and Spacecraft Command Language
Launch displays provide the primary visual input/output method for ILOA users, who can view numerical

measurements on the screen as well as click buttons that send commands to hardware systems, but many launch
operations contain steps that must be timed with machine precision, or consist of many complex simultaneous
actions that a human operator could not possibly handle in real-time. Such operations must be done
programmatically, using code that executes the required logic at launch time. During the Shuttle Program, NASA
planned for the launch engineers to write their own scripts (sequences of commands that enact the desired behavior)
to defme these complex actions, but a lack of willingness from launch engineers coupled with a lack of deep
programming expertise forced NASA to move development of such scripts to a team of dedicated software
developers. The scripts were developed in Ground Operations Aerospace Language (GOAL), a programming
language created internally at KSC just to serve the Shuttle Program. As was the case with displays, the resulting
system, though successful for its purposes, was monolithic and difficult and costly to maintain.

READ <GMT $GREENWICH MEAN TIME$> AND SAVE AS (REG OUT
GMT NEW);

LET (REG DECAY LOW LIMIT) = (REG OUT PR NEW) - 1 PSIA;
LET (REG DECAY HIGH LIMIT) = (REG OUT PR NEW) + 1 PSIA;

HIGH LIMIT TO (REG DECAY HIGH LIMIT)
LOW LIMIT TO (REG DECAY LOW LIMIT) ;

Figure 3. Example GOAL code.
GOAL was developed internally for Shut­
tle-specific applications and has been
successful for decades. However, com­
pared to modern programming languages,
it is difficult to use and maintain, making
it undesirable for future use.

In order to make development of launch operation scripts more modular, NASA has moved coding of the
scripts back to the responsibility of ILOA members. However, GOAL has been replaced by Spacecraft Command
Language (SCL)vi, a commercial language developed by the SRA Corporation, as the language in which the scripts

-4-
Kennedy Space Center August 5, 2011

NASA USRP - Internship Final Report

will be written. This change is crucial, as SCL, which resembles English more naturally than GOAL, is designed to
be easy to use even for non-programmers and, being a language designed specifically for space operations, already
implements much of the functionality desired (GOAL developers had to implement most basic functionality from
scratch). Because it is well documented and already widely used elsewhere in the aerospace industry, NASA
software developers and ILOA members will have an easier time learning how to use SCL. As with displays, there
are obstacles to overcome before SCL can be fully embraced for launch, and these are handled by the Application
Services & Framework (ASF) team. Since SCL is a general space operations language, ASF still has to add some
specific functionality manually to fully support KSC-specific launch capabilities. On the other hand, some SCL
functions are either irrelevant or unfavorable to NASA's launch protocols and must be removed or disabled by ASF
before ILOA can safely use SCL. Finally, although SCL scripts will define the launch behaviors programmed by
their ILOA engineers, ASF must provide channels for communication between these scripts and the rest of LCS by
passing SCL commands on to the previously mentioned CMS database so that they can successfully reach their
hardware counterparts.

III. Case Study: Integrating SCL into NetBeans

end repeat

end Acce1erateRocket

script Acce1erateRocket toSpeed
global Haslgnited

-- Goal speed reached, cut off fuel
set Fue1F1ow to 0

-- Ensure that fuel is not added too quickly
wait 20 ticks

-- Add fuel until max output is reached
if FuelFlow < 1 then

FuelFlow = FuelFlow + 0.1
end if

-- If rocket is not ignited, do not add fuel
if HasIgnited = 0 then

return
end if

-- Continue increasing speed until goal is reached
repeat while Speed < toSpeed

Figure 4. Example SCL Script. SCL has features
common to most programming language and has a syntax that
resembles plain English. This example script increases fuel
flow to accelerate the rocket to a specified velocity.

A. ASF Modification of SCL
As a scripting language designed

with aerospace applications specifically in
mind, SCL is not as powerful for general
applications as languages like c++ or Java.
However, general purpose languages are
often much more complex than scripting
languages and require deep understanding of
programming and software architecture. The
fact that SCL includes some launch
functionality and contains a simple, English­
like syntax makes it an ideal platform for
ILOA because engineers without
programming experience can still design and
write SCL scripts to their specifications.
Before it is appropriate for use, however,
ASF must make heavy modifications to SCL
in accordance with LCS requirements. SCL
contains numerous keywords (reserved
words with predefined functionality) that
have undesirable behavior in the context of
LCS. For example, ASF bans ILOA
members from using the keyword exit
because its invocation immediately shuts
down the program that is currently
executing, a behavior that is rarely desired
and that could prove dangerous if used improperly in a launch script. However, because SCL is a packaged
commercial product, its internal functions cannot be directly edited by ASF. Thus, in order to deal with this issue,
ASF is developing a program called the Command Application Compiler Tool (CACT), a code analyzer written in
the Java language that analyzes SCL scripts and reports errors, such as use of banned keywords. Any SCL scripts
that do not pass CACT's evaluation must be edited until they do so. This way, ASF can control the functionality that
ILOA members are allowed to use, working around SCL's defaults. In total, there are dozens of illegal keywords
that are caught by CACT for a variety of reasons.

In addition to banning undesirable and potentially unsafe keywords, ASF is also responsible for filling in
the base functionality gaps between SCL's defaults arid the demands ofLCS. While ILOA is majorly responsible for
writing their scripts, there exists some shared, low-level functionality that ASF can provide as a base for higher level
programs. This makes script development easier for ILOA members, who can call upon ASF base functions rather
than write the functions from scratch. Because ASF can test and certify their own base functions separately, this
saves ILOA time both in development and testing. Specifically, adding functionality to SCL can involve creating
new built-in keywords as well as writing entire scripts to handle the most commonly demanded actions.

- 5 -
Kennedy Space Center August 5, 2011

NASA USRP - Internship Final Report

B. The Demand for an SCL Syntax HighIighter
Once all the modifications to SCL are completed and the communication channels between SCL scripts and

the CMS database are fmished, the language will be ready for deployment to ILOA. However, though SCL scripts
are inherently just text files, effective development requires more advanced tools than just a text editor. Most
software developers make full use of powerful Integrated Development Environments (IDEs) like NetBeansvii and
Eclipse to make writing code easier, safer, and much faster. IDEs are vastly extended text editors whose common
features include automatic compiling, project management, testing frameworks, version control and backup for
source code, auto-complete while typing, syntax highlighting, and extendibility in the form of plugins (external tools
that integrate into the program) that extend the base functionality of the IDE. Syntax highlighting is especially
important because it increases the readability of the code, allowing developers to quickly identify different data
fields, functions, and errors graphically in the text editor. The SCL software package includes a compiler that turns
SCL scripts into executable files, but does not include any syntax highlighting support in any IDE. Fortunately,
because NetBeans is a highly extendable IDE, ASF has developed an internal plugin that adds such functionality for
SCL in NetBeans.

~..
booln&

,
re_rU'IUlllrU.,flltll

I el_l

UlpFlll ... leteU:

,
It (I UC...ullHi 0 I C

bKlN.pru.... lu.CII

It Chl•.utlutll t
rl_rill(tlll,btoelnlprtl'l:

tOrAn1"
,foteUed '101" .~-*P...1l u .._ JObee,Uo. I

Strl............ fU••~l....nHr
rll, U9',le·..,."..__ 1'1
U9'll•.crH""','l ' ..te-Jc&1J'dJlII
faIIrUe.lIlI!leuo...lIt ' ..W-n
r.le bK:lnllflle· e..~..._lU
'llIhndl'nter Olll ,,,U,-Ul!

~:~ ~~~~~Il••,:; ttaJ~~I'
lOy I I c.-.w.t. II

Oll"tt.......0
1a1ott..t-01 1 ._..IUII

.tllie 1'1Ioe...,. 8~·'·lrtl.....-1
1ft I..O'tll !icr..tu.eU

ollt.II'UUlt l*1ehll
ofbon b Q-.J.et.-...:stll
..l'roll '~lctl'en«bJI

I ea:1.t..ll
I haally I UMdet....U.U

It lOll!. ' ••,11 t.e-SrUl'1UU

OItt.CI-lll-.._~ rr:==~=""

•"'­...
'01............

J
. ~

21.
21'

j
:.....
21.

§
.:J us

21.
•• U,

• 210

Figure 5. NetBeans IDE Interface. NetBeans makes software
development easier and more effective. Project management tools are on
the left, syntax highlighting can be seen in the middle, and the popup is a
code auto-completion dialog.

...
m......

,~~...- ==-:d:1:.'''~~'~=-==L-~I===I

1- ••e __

liIiJ~~

Ii.KI.........
elll_

~ !"I-~.ii-iii...
a:~

8i1~_

al~eoo.-wrdtcr~.-­sij~lI""""~

IiiiI __

iI
Iii-..
Iii __

C. Building the SCL NetBeans Plugin
While not technically a

COTS product within LCS,
NetBeans is a commercial IDE,
currently developed by Oracle
(also the current developer of
Java), that is widely used by LCS 1
software developers. It fully
supports development in many of
the most widely used
programming languages. Its
power and flexibility has made it
one of the most widely used IDEs
by professional developers and
its flexibility comes from the
existence of NetBeans plugins
(also called modules) that are
coded in Java and extend
virtually any element of the IDE
imaginable. As such, NetBeans
was chosen as the IDE of choice
for ILOA members to develop
SCL. However, because SCL is
not widely used outside of the
aerospace industry, official
NetBeans support for it is nonexistent, but the NetBeans API (Application Programming Interface) allows support
for any language to be added by defming a module and installing it into NetBeans. The resulting IDE is a slightly
modified NetBeans that now carries syntax highlighting support for SCL in addition to all the default languages.

In order to create a syntax highlighting plugin for NetBeans, one must provide a lexer, which is a program
that reads and recognizes text expressions based on predefined rules, and a mapping of text expressions to colors.
The SCL Lexer, written by ASF in ANTLRviii (ANother Tool for Language Recognition), scans through SCL scripts
and recognizes and categorizes text structures according to predefmed grammatical rules. Discussion of how the
lexer works requires an understanding of natural language processing algorithms and is outside the scope of this
paper. However, once the lexer has finished categorizing the text in the SCL script, NetBeans will then color all the
text according to the rules predefmed by the user's mapping. For example, illegal keywords may by default
highlight red, while SCL and ASF keywords highlight blue. Furthermore, once the plugin is installed in NetBeans,
users can change the color mappings to their own choices via the NetBeans options dialog. Thus, ILOA users who
prefer a different color scheme than the default can define their own without any ASF intervention. The advantages
of the syntax highlighting plugin are much more than aesthetic-readable code is far easier to review, debug, and
maintain, and very few developers write code today without syntax highlighting.

- 6 -
Kennedy Space Center August 5, 2011

NASA USRP - Internship Final Report

!!Un ~bu9 ~Io To.!!! !ooll ~ndow !:!olp

tonfi9> v "if ?J ~ B' ~.•

-- If rod.Elt is nOt ignited. roc1et cannot accelerate
1 f HasIgn; ted ::; 0 then

return
end 1f

-- Add fuel um:,' _ax output is r"eached
if FuelFlow < 1 then

FuelF1QlJil ::; FuelFlow + 0.1
end 1f
I
- - Delay to ensure that fue 1 ; s not added tOO qui c~ ly
••it 20 ticks

;t..testTest.scl XL- --l
1 -------- ---
2 -- script AccelerateRodet
]

.. -- This sc.ript accelerates the rodet by increasing fuel
5 - - flow unt i 1 des; red speed is reached
e ---
7 script Acee' .rat,Rocket toSp••d
., glab.' HasIgn;ted
9

10
11
12
1]

14
15 -- Continue increasing speed unt; 1 goal is reached
Ie repe..t whil e Speed < toSpeed
17
18
19
20
21
22
23
24
25
2e end repeOlt
27
211 -- Goal speed reached. cut off fuel
29 ~lI!t FuelFlow to 0
30
31 end AccelerateRocket

Figure 6. SCL Syntax
Highlighting. This screenshot
shows the example script from Fig­
ure 4 opened in NetBeans with SeL
syntax highlighting installed In
this case, numbers are colored
orange, making them easier to rec­
ognize and search for. By clicking
Tools ~ Options, users can ma­
nually set the color preferences for
different text expressions.

Figure 7. The LCS Display Editor. The Display Editor
makes creation of complex displays like the one shown relatively
straightforward The left panel allows users to select and modify
properties for any object in the display. The right panel navigates
the display and provides the user with DSF-defined widgets.

IV. Case Study: The Display Editor

A. Selection of a COTS Product
While the Display Editor's

requirements have remained the same
since its inception-to give ILOA
engineers a fully graphical tool to edit
launch displays-how the program is
implemented has changed greatly since
the beginning of development. The
proof-of-concept for the Display Editor
was originally built with Java's Swing
framework, a graphical package built in
to the Java language that contains base
elements like windows, buttons, and text
fields. In order to give ILOA users
features like manual drawing tools and
predefmed widgets, DSF performed
multiple trade studies and decided upon
using a COTS package called JViews to
build the final Display Editor on.
Although this process required extra
effort to research and critique all the
available products, the decision
ultimately saved DSF from having to
code many basic graphical capabilities
from scratch, again demonstrating the
advantage of using COTS software.

JViewsix is a Java Swing interface editor that allows users to create interactive graphical displays without
any programming. Developed by ILOG, a subsidiary of IBM, JViews not only provides the ability to drag and drop
graphical components onto a display but also has strong support for primitive lines and shapes as well as tools for
editing images, gradients, and text. Furthermore, a powerful internal database allows users to define complex
graphical interactions without any programming by using the included JViews interfaces. Widgets and text fields

- 7 -
Kennedy Space Center August 5, 2011

NASA USRP - Internship Final Report

can update their displayed output based on the internal database, so by linking the JViews internal database with the
CMS database, DSF provides the Display Editor with an easy way to update visual data based on data that flows in
from launch hardware. For example, the State Component, a prominent DSF widget, is a dynamic object that can be
user-defined to change image based on incoming data. One application of the State Component is the graphical
construction of valves and pipes that visually open and close based on the state of the external hardware.
Furthennore, DSF is currently working on providing a way to allow ILOA users to build their own custom widgets
using the Niews interface.

B. Display Editorffest Driver Applications
Development of the Display Editor is actually split into two parts, design-time and runtime. Design-time

code refers to parts of the software used only to build the displays. The primary design-time component is the
Display Editor itself, which creates and saves displays in .idbd fonnat (lLOO's modified version of Extensible
Markup Language (XML» but does not actually execute them. Runtime code refers to parts that are responsible for
actually executing the displays as standalone programs, maintaining communication between the JViews and CMS
databases, updating displays as new data flows in, and passing along button clicks in the displays as commands to
the CMS database. The runtime is handled by the Test Driver application, which is similar to the Display Editor but
executes displays rather than edits them. In addition to its graphical capabilities, JViews also contains a strong,
well-documented API that encourages user extension of functionality. As such, DSF has added many additional
features to Display Editor and Test Driver that are specific to developing LCS displays. One example is a versatile
number fonnatter, a set of options that allows user to customize how raw quantitative data from launch hardware is
displayed on the screen.

Figure 8. Number Format Options Dialog. Users can
select from a variety offormatting options for numerical output.
Certain options are enabled or disabled by default depending on
what the physical hardware supports.

II CiIl,,1 IOK

o BlniUY

o
6

Oetu

Edit Number Fonnat

CDtdmu

Show Number Bue Prefix

~ Show Leading Zeros

OShow Positive Sign

hddill. After Num"r.

Number .f mllU:

Numbers RI,ht of Dedmu Point:

OHtx

C. The Display Editor Number Formatter
Number formatting is one aspect

of launch displays that is very important to
ILOA users, as properly fonnatted numbers
make quantitative data much easier to track
and digest. Traditionally, text-based
display systems printed numbers on the
screen the way they were received, making
it very hard for launch engineers to
interpret quantities, especially when
hundreds might be displayed at once. In
fact, the issue was so significant that, in
some cases, professional typists were hired
to manually transcribe incoming numbers
into a readable format for the engineers!
The freedom of a graphical display coupled
with the power of the JViews database
makes number formatting both highly
customizable and automatic, reducing the
potential for human error and increasing the
amount of output that can be displayed on
screen without being confusing. The
number fonnatting system in the Display
Editor is an example of functionality that was wholly developed by NASA on top of the COTS product. The DSF­
defmed Niews widget that displays numerical output is called a text measurement and resembles a simple digital
counter. Text measurements, like all display components, receive their data from the JViews database, which in turn
is updated by the CMS database. Thus, raw, unfonnatted number data is sent from CMS through DSF, but before
this data propagates the JViews database and gets displayed, several options are available to ILOA users so that they
can choose exactly how their numbers appear at runtime and launch. These options include simple preferences like
showing plus signs for positive numbers and number of significant figures as well as powerful operations like the
ability to convert output to hexadecimal, octal, or binary number bases. Furthennore, in the Display Editor, users
can preview what their text measurement outputs will look like long before any real data is available. These options,
combined with JView's ability to freely drag text measurements around, result in the capability for users to create
more meaningful layouts with numerical output.

- 8 -
Kennedy Space Center August 5, 2011

Figure 9. Number Format Preview. This
close-up shows several text measurement previews
placed next to their valves and thermometers.

I I

NASA USRP - Internship Final Report

Programmatically, the number formatting system is wholly independent of JViews, relying only on numbers
and character sequences (also known as Strings) to produce the formatted output. In some ways, it functions as a
standalone package that is used by both the Display Editor and Test Driver (Display Editor uses it to define user
formatting options, while Test Driver extracts them and formats the output). ILOA users select their options through
dialogs in the GUI, and for each text measurement, a hashmap is produced mapping all of the options to their
desired properties. In addition to this, a String is produced that encodes all the formatting options-this is required
so that when the display is saved into a .idbd file, the formatting options are preserved in the XML. The formatting

package is also highly extendable-a factory class
generates appropriate formatters as needed for text
measurements, and runtime formatting is done through a
black-box interface that can be subclassed by new
formatters as needed. Occasionally text measurements
can be configured to display Strings rather than numbers,
and this versatility allows the formatting package to also
handle String formatting with minimal extra effort from
the DSF developer (currently, the String formatter only
defines a maximum length, but additional options can be
added modularly as needed).

V. The Future ofLCS

A. Commercial Launch Opportunities
While a few commercial space companies have had recent success in launching rockets into orbit, it may be

a few years before a final partnership between NASA and a commercial launch vehicle provider is finalized. The
lack of a designated launch vehicle, however, does not impede the development of the LCS infrastructure, which has
enjoyed continued support from NASA management. Commercial companies that do select KSC for their launch
site in the near future will undergo the same development process as ILOA in creating scripts and displays to
interface with their hardware. However, by then LCS will be much more comprehensive and robust in functionality,
having been in continuous development until then. In addition to the ASF and DSF tools, the LCS front end will
contain a program called the Component Build, which packages a display and all its dependencies together into a
single archived file. Before launch time, all required displays will go through Component Build and finally be
grouped into a Test Configuration Identifier (TCID). The TCID thus represents the configuration of an entire launch
system, ready to be swapped in and out of the Firing Room of the Launch Control Center (LCC). Before launch
day, however, the TCID will be deployed to simulated firing rooms for testing purposes.

B. Future NASA Initiatives
Until commercial launch vehicles begin arriving at KSC, LCS software will support the early testing of

NASA vehicles like the Space Launch System" which is the current replacement to the Shuttle Program. Expected
to launch beginning in 2017, the Space Launch System is composed of a combination of Ares rocket technology and
Shuttle rocket technology and will carry the Multi-Purpose Crew Vehicle (MPCV) (previously known as Orion
under the Constellation program). At the time of this paper's authorship, early testing of LCS with the MPCV has
already begun, as well as support for various Expendable Launch Vehicles'i. The ILOA team is building displays
and scripts to operate ground support vehicles and equipment that are native to KSC and will support any future
launches that take place. Thus, even in NASA's transition period between vehicles, LCS is busy preparing the
infrastructure for the future.

VI. Conclusion

At the time of this paper's authorship, space exploration is at a major crossroads. Dominated for decades
by government agencies like NASA and the Russian Federal Space Agency (formerly the Soviet Space Program),
space travel will soon become widely available to commercial companies and potentially even the consumer market.
While the Space Shuttle Program's end marks the culmination of one of the most successful space programs in
history, the opportunities of the future are even more promising. In order to support the launch vehicles of the
future, however, software is required that takes full advantage of new technology. The LCS infrastructure, designed
from scratch to be powerful, modular, and safe, will help guide space travel to new levels of availability, safety, and
ambition by providing a universal framework for future launches.

- 9 -
Kennedy Space Center August 5, 2011

. (

• 1 , •

NASA USRP - Internship Final Report

Acknowledgments

This paper's author thanks Linda Crawford for her mentoring and Caylyne Lapolla for her help and
support. Additional thanks go out to all ASF and DSF team members, who were always a pleasure to work with and
offered help whenever available. Finally, the author thanks Kennedy Space Center and the University Student
Research Program for their internship opportunity.

References

i NASA's Constellation Program, URL:
http://www.nasa.gov/missionpages/constellation/main/index2.htmI

ii NASA Commercial Space Transportation, URL:
http://www.nasa.gov/exploration/commerciaVindex.html

iii NASA's Launch Processing System (LPS), URL:
http://science.ksc.nasa.gov/shuttle/technology/sts-newsreflstsover-prep.html#stsover-Ips

iv NASA Authorization Act of 2010, URL:
http://commerce.senate.gOY/pubIic/index.c fin?p=Legislation&ContentRecord id=8d7c 1465-f852-483 5-ba84­
25faf56bbb36

v Data Distribution Service (DDS) Specifications, URL:
http://www.omg.org/technology/documents/dds spec catalog.htm

vi Spacecraft Command Language for Mission Critical Command and Control, URL:
http://www.sra.com/scV

vii NetBeans Integrated Development Environment, URL:
http://netbeans.org/

viii ANTLR, ANother Tool for Language Recognition, URL:
http://www.antlr.org/

ix IBM ILOG JViews Enterprise, URL:
http://www-OI.ibm.com/software/integration/visualization/jviews/enterprise/

x NASA's Space Launch System & Multi-Purpose Crew Vehicle, URL:
http://www.nasa.gov/exploration/newspaceenternrise/slsmpcv/index.html

xi Kennedy Space Center Expendable Launch Vehicle Status Reports, URL:
http://www.nasa.gov/centers/kennedy/launchingrockets/status/2011/index.html

- 10-
Kennedy Space Center August 5, 2011

