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Results are presented demonstrating the effect of inductive coil geometry and current
sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc-
tive plasma accelerators. The electromagnetic coupling between the inductive coil of the
accelerator and a plasma current sheet is simulated, substituting a conical copper frustum
for the plasma. The variation of system inductance as a function of plasma position is
obtained by displacing the simulated current sheet from the coil while measuring the total
inductance of the coil. Four coils of differing geometries were employed, and the total
inductance of each coil was measured as a function of the axial displacement of two sep-
arate copper frusta both having the same cone angle and length as the coil but with one
compressed to a smaller size relative to the coil. The measured relationship between total
coil inductance and current sheet position closes a dynamical circuit model that is used to
calculate the resulting current sheet velocity for various coil and current sheet configura-
tions. The results of this model, which neglects the pinching contribution to thrust, radial
propellant confinement, and plume divergence, indicate that in a conical theta pinch ge-
ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic
energy of the exhausting propellant by up to 50% (at the upper bound for the parameter
range of the study). The decrease in exhaust velocity was larger for coils and simulated
current sheets of smaller half cone angles. An upper bound for the pinching contribution
to thrust is estimated for typical operating parameters. Measurements of coil inductance
for three different current sheet pinching conditions are used to estimate the magnetic
pressure as a function of current sheet radial compression. The gas-dynamic contribution
to axial acceleration is also estimated and shown to not compensate for the decrease in
axial electromagnetic acceleration that accompanies the radial compression of the plasma
in conical theta pinches.

Nomenclature

Ā cross sectional area (m2) M mutual inductance, (H)
α half cone angle (degrees) m current sheet mass, (kg)
C capacitance (F) P, P1, P2 gas-dynamic, initial, final pressure (Pa)
Fj , Fr Force (N) Re, Rp external circuit, plasma resistance (Ω)
I1, I2, Irms coil, plasma, RMS current (A) R, r major, minor radius (m)
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k transformer coupling coefficient ρA linear mass distribution (kg/m)
L0, LC parasitic, accessible inductance (H) V voltage (V)
L∗ nondimensional inductance V volume (m3)
lcoil coil length (m) vp, vup, vz pinched, unpinched, axial velocity (m/s)

I. Introduction

I t is desirable to extend the lifetime and increase the reliability of an in-space propulsion system as much
as possible since that maintenance or replacement of that system becomes particularly challenging once

it has been placed into orbit. Reducing the size and mass of the propulsion system, including the propellant
required to complete a mission can permit an increase in the amount of payload as a percentage of total
vehicle mass. The high values of specific impulse associated with electric propulsion (EP) reduces the amount
of propellant needed for a given mission relative to other conventional propulsion systems.

Pulsed inductive plasma thrusters[1–3] are spacecraft propulsion devices in which electrical energy is
capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-
varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current.
Propellant is accelerated and expelled at a high exhaust velocity (O (10− 100 km/s)) by the Lorentz body
force arising from the interaction of the magnetic field and the induced plasma current.

Thrusters of this type possess many demonstrated and potential benefits that make them worthy of
continued investigation. The electrodeless nature of these thrusters eliminates the lifetime and contamination
issues associated with electrode erosion in conventional electric thrusters. Also, a wider variety of propellants
are available for use when compatibility with metallic electrodes in no longer an issue. Pulsed inductive
accelerators have been successfully operated using propellants like ammonia, hydrazine, and CO2, and there
is no fundamental reason why they would not operate on other propellants like H2O. It is well-known that
pulsed accelerators can maintain constant specific impulse Isp and thrust efficiency over a wide range of
input power levels by adjusting the pulse rate to maintain a constant discharge energy per unit pulse. It
has also been demonstrated that a pulsed inductive thruster operating in or near the regime of optimum
dynamic impedance matching can operate at a relatively constant thrust efficiency over a wide range of Isp
values. Thrusters in this class have operated at high energy per pulse, and by increasing the pulse rate they
offer the potential to process very high levels of power using a single thruster.

Figure 1. Photographs of the MAD-IPA mounted on the VAHPER [4] thrust stand.

The capacitors in some inductive accelerators, like the Pulsed Inductive Thruster (PIT) [1–3], must be
charged to high voltages so that the induced fields can first ionize the propellant. One way to alleviate
this high voltage requirement is to partially ionize the propellant in front of the inductive coil such that
the induced electric field only needs to perform an under-voltage breakdown of already partially-ionized
propellant[5], allowing for a lower initial charge voltage on the capacitors. The use of preionization in pulsed
inductive devices is ubiquitous throughout the literature with a wide range of applications including plasma
fusion and spacecraft propulsion. For example, preionization has been successfully employed by striking a
glow discharge between two electrodes [6–8], sending a separate lower-energy pulse through an inductive
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coil[9–11], and creating a radio frequency plasma [12, 13]. Not all of the propellant must be preionized
because only the preionized propellant within a few characteristic length scales of the inductive coil has any
significant interaction with fields induced by the high-current pulse.

The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [14, 15], shown in Fig. 1,
employs an electron cyclotron resonance to partially ionize propellant in a thin region along the inner surface
of the inductive coil. Current sheet formation at this location initially presents the minimum inductance
to the capacitor bank, which is advantageous in that it allows for the maximum potential conversion of
electromagnetic field energy to work accelerating the propellant. Current sheet formation further from the
coil represents a loss in achievable electromagnetic acceleration, which is represented as a greater initial
inductance presented to the capacitor bank. A photograph of the microwave-driven preionization stage of
the MAD-IPA in operation is shown in Fig. 2.

Figure 2. A photograph of the MAD-IPA preionization stage operating on air at 2.7 Pascal (20 mtorr).

In this paper, we present a study of the effect of inductive coil geometry and current sheet trajectory on
the inductive electromagnetic coupling efficiency of the MAD-IPA and other conical theta pinch thrusters
that rely on current sheet acceleration of the plasma and operate at a propellant mass per pulse of between
1-10 mg. This work and the results presently do not encompass devices that employ compact toroid plasmas
or other very high gas density discharges. Experimental data are used to close a well-known model of thruster
performance to bound the current sheet exhaust velocity as a function of coil geometry and radial current
sheet compression. The rest of this paper describes the lumped-element circuit model used to calculate
current sheet acceleration, an experiment that yielded semi-empirical relations for various coil geometries
and current sheet trajectories to close the circuit model, the results of the model calculations, and a discussion
of the trends thruster performance.

II. Inductive Accelerator Modeling

Pulsed inductive thrusters are commonly studied with the use of a semi-empirical circuit model coupled
to a one dimensional momentum equation [2]. This circuit is shown in Fig. II, where I1 is the current
flowing in the driving circuit, I2 is the current flowing in the plasma current sheet, C is the capacitance of
the capacitor, M is the mutual inductance between the driving coil and the current sheet, L0 is the initial
(parasitic) inductance, LC is the accessible coil inductance, Rp is the resistance of the plasma, and Re is the
resistance in the driving circuit.

The equivalent circuit shown in Fig. 4 can be drawn and a set of equations can be derived to model
thruster performance in terms of these electrical parameters. From this circuit diagram, where V0 is the
initial voltage on the capacitor and V is the voltage on the capacitor as a function of time, the following
equations follow from the application of Kirchoff’s law:
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Figure 3. Lumped element circuit model of a pulsed inductive thruster inductively coupled to a plasma (taken
from Ref. [2]).

Figure 4. Equivalent circuit of a pulsed inductive thruster inductively coupled to a plasma used to derive a
set of governing equations to model thruster performance.

dI1
dt

=
LCV − LCReI1 −MRpI2 + (LCI2 +MI1)

dM

dt
LC (L0 + LC)−M2

(1)

dI2
dt

=
M
dI1
dt

+ I1
dM

dt
−RpI2

LC
(2)

dV

dt
=
−I1
C

(3)

The equation of motion for the current sheet can be written using Newton’s second law with the force
acting on the current sheet arising from the magnetic pressure between the driving coil and the current sheet
propellant mass in the sheet accumulating according to the snowplow model.

dvz
dt

=
[
LCI

2
1

2z0
exp

(
− z

z0

)
− ρA (z) v2

z

]
/m (z) (4)

where z is the axial displacement of the current sheet from the driving coil, m(z) is the total propellant mass
in the current sheet, ρA(z) is the linear mass density distribution, and vz is the axial current sheet velocity.

dz

dt
= vz (5)

For this study, the current sheet was modeled as a slug mass (ρA(z) = 0, m0 = mbit). The snowplow
accumulated mass in the sheet is then given by

m(t) =
∫ t

0

ρAvzdt
′ +m0. (6)

Adding the lumped inductive elements shown in Fig. 4 gives the total inductance,

Ltot = L0 + LC −
M2

LC
. (7)
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It can be seen from this equation that the total inductance changes as a function of time due to the time
changing mutual inductance, which varies due to the movement of the current sheet. An expression for the
mutual inductance as a function of current sheet axial position has been empirically determined [2] for a
half-cone angle of 90◦ (i.e. flat coil):

Ltot(z) = L0 + LC (1− exp (−z/z0)) (8)

where z0 is the decoupling distance. This expression is set equal to the previous expression for total induc-
tance (Eq. 7) and solved for the mutual inductance as a function of the axial separation distance between
the driving coil and the current sheet:

M = LC exp (−z/2z0) , (9)

of which the time derivative is,
dM

dt
= −LC

2z0
exp (−z/2z0)

dz

dt
, (10)

closing the set of six first-order ODEs, consisting of Eqs. 1, 2, 3, 4, 5, and 10, that can be readily solved
numerically. Of these six governing equations only Eq. 10 must be empirically found based upon the inductive
coil geometry. While Eq. 8 was developed for a planar coil geometry, it has been found to accurately represent
the axial inductive coupling behavior of ring-shaped and conical geometries as well [16, 17].

We nondimensionalize Eq. 8 by LC to produce a general relation for the change in total measured
inductance as a function of current sheet axial position:

Ltot/LC = L0/LC + (1− exp (−z/z0)) (11)

The first term on the right hand side of Eq. 11 represents a constant parasitic inductance inaccessible for
current sheet acceleration. The second term represents the total accessible inductance potentially convertible
to current sheet acceleration. It is this second term that isolates the effect of coil geometry on current sheet
acceleration, and we label this value L♦:

L♦ =
Ltot − L0

LC
= 1− exp (−z/z0) (12)

III. Experiment

If the value of dM/dt were known as a function of coil geometry at each axial location of the current sheet,
the model from section II could be solved numerically to calculate the effect of coil geometry on thruster
performance. To estimate this relation, we constructed inductive coils of various geometries and measured
the total inductance of these coils as a function of the displacement of a copper frustum that simulates the
presence of a current sheet. We assume that the current sheet geometry will mirror the coil geometry that
formed it, and constructed two simulated current sheets for each coili geometry in the form of copper frusta.
One frustum fits tightly against the inner surface of the coil while the second has a different minor radius
rcs to simulate radial compression (or pinching) of the current sheet. Pinching motion is assumed to leave
the half cone angle α and coil length lcoil unchanged where lcoil is defined as:

lcoil = (Rcoil − rcoil)/ tan(α).

Copper frusta were constructed from flat copper sheets whose thickness (0.062 inches) captures 99.9% of
the energy of an impinging electromagnetic field. The copper frusta were electrically isolated and fitted with
wooden conic sections that hold a fiberglass bolt on the centerline. A schematic of the experimental setup
is shown in Fig. 5 and a photograph of the inductive coils and their associated copper frusta are shown in
Fig. 6.

The inductive coils were constructed from 0.008” thick copper and 0.02” thick mylar. Four different
inductive coil geometries were studied, and for each inductive coil geometry two current sheet geometries
were studied representing two different current sheet trajectories. It is assumed that the current sheet
geometries mirror those of the inductive coils that would have created them. These geometries are described
in Tables 1 & 2 (the “P” at the end of those references associated with radially compressed current sheet
geometries stands for “pinched”).
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Figure 5. Schematic of controlled copper frustum displacement from the inductive coil.

Figure 6. Coils and copper conic frusta used in the experiment.

The total inductance (Ltot) was measured at 84 locations using an Agilent 4285A precision LCR meter
and is shown in Fig. 7 as a function of axial copper frustum displacement. We calculate values of L0, LC ,
and z0 for each coil geometry by fitting these data to Eq. 8. Values for LC and z0 are shown in Table 3
for the four different coil geometries studied. As L0 represents inaccessible inductance, we associate this
value with the parasitic inductance of the driving circuit, and assume it is not significantly affected by coil
geometry.

The coil with the lowest accessible inductance (LC), 20L, is taken as a baseline to which the other
geometries can be compared. The larger half cone angle of coil 38 allows the field created by a current pulse
through its conductive traces to develop in a larger volume and leads to a higher total flux for the same
current. The shorter inductive coils have a higher accessible inductance for two reasons. The shorter length
also allows the field to develop in a larger volume, leading to a higher total flux. A secondary reason relates
to the construction process. In shortening the length, we attempted to maintain the number of turns, but
in so doing, decreased the pitch angle of the traces such that the azimuthal component of the current in the
traces was increased. Since all other components of the current cancel by design of the inductive coil trace
pattern, the field is stronger for a given applied current in the shorter coil, leading to a higher accessible
inductance.

The loss of accessible inductance incurred by the pinched current sheets relative to the unpinched current
sheets, shown in Table 4, was calculated by taking the difference between LC at z = 0 for the pinched and
unpinched current sheets. This additional inductance can be seen in Fig. 7 as a higher value for inductance
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reference α (degrees) lcoil (cm) rcoil (cm)
12 12 4.3 4
20S 20 5 4
20L 20 10 4
38 38 10 4

Table 1. Inductive coil geometries studied.

reference α (degrees) lcoil (cm) rcs (cm)
CS12 12 4.3 3.9
CS12P 12 4.3 2.5
CS20S 20 5 3.9
CS20SP 20 5 2.5
CS20L 20 10 3.9
CS20LP 20 10 2.5
CS38 38 10 3.9
CS38P 38 10 2.5

Table 2. Current sheet geometries studied.

Current Sheet LC (nH) z0 (cm)
CS12 564 2.6
CS20S 624 2.6
CS20L 450 4.0
CS38 558 3.6

Table 3. Fit parameters for various unpinched current sheet geometries.
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Figure 7. Experimentally measured total inductance for various inductive coil geometries as a function of
current sheet displacement with a typical error bar shown. Pinched current sheet trajectories are represented
as crosses and unpinched current sheets are represented as circles.

at z = 0 for the pinched current sheets. From these data we conclude that pinched current sheets show
weaker initial coupling to the inductive coil.

Current Sheet L0 (nH) z0 (cm)
CS12P 445 2.6
CS20SP 466 2.6
CS20LP 344 4.0
CS38P 247 3.6

Table 4. Additional parasitic inductance values of various pinched current sheet geometries.

To isolate the effect of coil geometry from the influence of the driving circuit, we calculated L♦ for each
axial location by removing the value for L0 from each data point and non-dimensionalizing to LC . The
results are shown in Fig. 8 along with a plot of Eq. 12 (shown in red). Though none of the coil geometries
studied resembled that of the PIT MkV coil, the data fit well.

The similarity of the nondimensionalized inductance measurements for each geometry suggests that for
any given current sheet geometry within the range of parameters studied here, unique values for the accessible
inductance of the driving coil, LC , and the decoupling distance z0 can be determined using this method.
The fact that all data collapse when normalized to these variables suggests that the accessible inductance
decreases in the same sense as a percentage of the initial LC for all four coil geometries as the current sheet
displaces axially from the driving coil. Even though current sheet pinching causes a decrease in the initial
accessible inductance (or increase in the initial parasitic inductance), the accessible inductance for both
pinched and unpinched current sheets decreases in the same sense as a percentage of the initial value as the
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Figure 8. Plot of nondimensionalized inductance L♦ vs. nondimensionalized current sheet displacement.

current sheet decouples from the coil.

IV. Discussion

A. Current Sheet Trajectory and Coil Geometry

Experimentally determined values for L0, LC and z0 were inserted into Eq. 8 to model thruster performance
for each current sheet trajectory for each inductive coil geometry. A constant value of parasitic inductance of
100 nH is assumed for each case. For unpinched current sheets, this is equal to the total initial inductance of
the circuit, while the additional parasitic inductance listed in Table 4 is added to the external inductance to
yield a greater initial inductance for pinched current sheets. The model predicts the velocity of the current
sheet as a function of time. These predictions are presented in Figs. 9 & 10, with the former isolating the
effect of lcoil and the latter focusing on the effects of α and rcs where rcs simulates current sheet pinching.

Figure 9. Current sheet velocities versus time where current sheets for longer inductive coils (20L and 38)
have a more gradual acceleration that lasts longer relative to shorter inductive coils (12 and 20S).

The results plotted in Fig. 9 show that those axially translating current sheets created in the longer
coil/current sheet combinations experience a less intense acceleration process over a longer time relative to
the shorter coils, ultimately leading to a higher final exhaust velocity than in the shorter coil/current cases.
This result implies that the inductance changes more rapidly for the short coils, but that the current sheet
is electromagnetically coupled to the acceleration coil over a greater distance for the longer coils, leading to
a higher exhaust velocity. The observed trend is preserved for the longer and shorter pinched current sheets.
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Figure 10. Results of axial plasma acceleration modeling for different inductive coil geometries with Left:
un-pinched current sheets and Right: pinched current sheets.

When comparing the model results for the velocity of unpinched and pinched current sheets in Fig. 10, it
appears that when the current sheet is pinched it decouples from the driving coil faster, implying a decrease
in the achievable stroke length or, equivalently, an increase in the initial inductance presented to the driving
circuit. Stated differently, a current sheet that experiences more pinching results in a reduction in the
electromagnetic field energy available to accelerate the plasma. The final axial exhaust velocities attained by
all current sheet geometries studied are shown in Table 5, along with the percentage loss of exhaust velocity
and directed kinetic energy resulting from radial pinching of the current sheet.

Unpinched Cases vz (km/s) Pinched Cases vz (km/s) velocity loss
∆v
vzmax

KE loss

CS12 44 CS12P 31 30 % 50%
CS20S 43 CS20SP 33 23 % 41%
CS20L 49 CS20LP 36 27 % 46%
CS38 48 CS38P 43 10 % 20%

Table 5. Final exhaust velocities for various current sheet geometries.

As the half cone angle of an inductive coil is increased the accelerator exhibits lower susceptibility to
performance loss due to radial current sheet displacement. The explanation for this property lies in the change
in volume available for a magnetic field to occupy in each conical inductive coil/current sheet configuration
relative to the initial available volume. For efficient thruster operation, the initial inductance presented to
the circuit by the coil should be minimized, or stated another way the initial volume occupied by the field
generated by the coil should be minimized. This is accomplished when the current sheet forms as close to
the driving coil as possible because the field from the current sheet and the coil are summed between the coil
and the current sheet and mostly cancel within the rest of the domain. A radial displacement of the current
sheet increases the available volume between coil and current sheet less for coils of larger α. The decrease
in the volume enclosed by the current sheet ∆V as a fraction of the initial volume enclosed by the current
sheet V0 is shown in Fig. 11 for the four coil geometries studied. This change in volume is representative of
a loss of volume capable of shielding field generation at z = z0.

The model suggests that radial displacement of the current sheet is purely detrimental to its final exhaust
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Figure 11. Coils with a larger half cone angle experience a smaller loss of volume in which magnetic field is
shielded during a current pulse.

velocity, however the model only takes into account electromagnetic acceleration of the plasma current
sheet. Radial displacement may increase propellant utilization efficiency or increase overall thruster efficiency
by decreasing plume divergence. It may also contribute directly to plasma acceleration in the form of a
gas-dynamic pressure imbalance brought about by compression (or pinching) of the current sheet and the
entrained propellant. We proceed with a discussion aimed at estimating an upper bound on the pinching
contribution to axial thrust in these thrusters.

B. Potential Gas-dynamic Pinching Contribution to Thrust

Figure 12. Side view of coil and current sheet geometry Left: Initial conditions and Right: after pinching

To estimate an upper bound on the pinching contribution to thrust that will arise through radial plasma
compression, we make assumptions that will overestimate the achievable gas-dynamic propellant pressure.
These assumptions are:

1. The number of particles in the control volume (shown in blue and red in Fig. 12) remains constant.

2. Gas-dynamic compression of the current sheet is isentropic.

3. The control volume geometry mirrors the coil geometry, with the pinched current sheet displaced
radially where only the minor and major radii (rcs and Rcs respectively) of the current sheet volume
change while the length lcoil, half cone angle α and axial z location remain constant.

For isentropic compression we write:
PVγ = constant
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where P is the pressure, V is volume, and γ is the ratio of specific heats (taken as 1.4 for the present case).
From the uncompressed state 1 to the pinched state 2 the pressure change can be written as

P2 =
(

V1

V2

)γ
P1.

The initial volume V1 is

V1 =
πlcoil

3
(
R2
cs +Rcsrcs + r2cs

)
,

and under radial compression of ∆r the final volume is:

V2 =
πlcoil

3

(
(Rcs −∆r)2 + (Rcs −∆r) (rcs −∆r) + (rcs −∆r)2

)
,

We proceed with a rough estimate of the magnetic pressure acting on the plasma. In Fig. 7 the inductance
presented to the thruster is seen to increase as the conductor pinches inward. As a very rough estimate, we
assume for this zeroth-order analysis that the total inductance has a radial variation given as

Ltot(r̄) = L0 + LC

(
1−

(
r̄

rcoil

)N)
(13)

where r̄ is the average radial position of the current sheet

r̄ =
(Rcs −∆r) + (rcs −∆r)

2
, (14)

rcoil is the average radial location of the coil

rcoil =
Rcoil + rcoil

2
, (15)

and N is a parameter that depends on coil geometry. For coils 12, 20S, and 20L, values for N are chosen to
fit the inductance data in Section III as well as possible. For coil 38, a fit of the small set of data available
leads to a value of N < 2, which is unphysical because it would imply that the magnetic pressure on the
current sheet increases as the sheet compresses. This may imply that the form assumed for r̄ is incorrect or
needs refinement, or it could simply mean that the present data set for coil 38 is too sparse to accurately
capture the value of N . In either case, more data showing the variation of Ltot(r̄) should help reveal the full
nature of and correct form of Eq. 13.

The inductive force on the current sheet in the j-th direction is [2]

Fj =
I2
1

2
dL

dxj
. (16)

Force in the z-direction yields axial acceleration. Using Eq. 13 the radial force can be written as

Fr = −NI2
1LC

r̄N−1

Rcoil
N

(17)

where values for N are shown in Table 6

reference N

CS12 3.5
CS20S 3.2
CS20L 3.2
CS38 2

Table 6. Values for the parameter N that estimates the dependence of Ltot(r̄) on α.

This force acts over the average cylindrical area
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Ā = 2πr̄lcoil, (18)

resulting in a magnetic pressure

PB = Fr/Ā. (19)

The average magnetic and gas-dynamic pressure for each coil geometry is shown in Fig. 13 for three
different radial positions of the current sheet. These radial positions correspond to displacement to 25%,
50%, and 75% of the initial average coil radius. In other words, this simulates when the current sheet average
radius has compressed to 25% (most pinched case), 50%, and 75% (least pinched case) of the average coil
radius.

Figure 13. Results of magnetic and gas-dynamic pressure calculations at three different radial positions
representing displacement from the coil to 25%, 50%, and 75% of the average coil radius.

With the magnetic pressure orders of magnitude greater than P2, we expect very minimal additional
axial acceleration through gas-dynamic effects. It should be noted that these calculations are appropriate
for conical theta pinch accelerators, and similar pinching devices that operate at mass flow rates on the
order of 1 mg/s and have no imbedded magnetic field in the propellant prior to the main current discharge
through the inductive coil. The pinching contribution to thrust is orders of magnitude lower than the
electromagnetic contribution to thrust in the present case, but devices that operate at a higher mass flow
rate or those that embed a magnetic field in the propellant could have a higher pressure associated with
the volume bounded by the current sheet. Devices with these characteristics would reach an equilibrium
condition through a combination of gas-dynamic and magnetic pressure both resisting radial compression of
the propellant, reducing the overall pinching and attenuating inductive decoupling of the plasma from the
driving coil.

V. Conclusions

We have presented results demonstrating the effect of coil geometry and inductive current sheet trajectory
on the performance of a conical theta pinch pulsed inductive plasma accelerator. The inductive coupling
between the coil of the thruster and the plasma current sheet as a function of plasma displacement was
experimentally simulated for four different coil geometries. An empirical expression for the inductance
presented to the thruster terminals as a function of current sheet axial position was fit to experimental
data and used to close a system of coupled ODEs describing the acceleration of the plasma, which were
numerically solved for the exhaust velocity as a function of time for two current sheet trajectories for each of
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four inductive coil geometries. Both trajectories were for purely axial displacement of the plasma, with the
first plasma current sheet geometrically mirroring the inductive coil and the second radially pinched inward
a constant amount throughout the acceleration process. The final axial exhaust velocity was 10-30% lower
when the current sheet was pinched, with a decrease in final kinetic energy of 20-50%. Additional radial
compression is expected to further exacerbate these losses. As the coil and current sheet length is increased
for a constant minimum radius rcoil, the calculated exhaust velocity increases more slowly, but for a longer
period of time leading to greater overall acceleration with a difference in final velocity of roughly 10%.

Physically, we demonstrated that as the plasma radially compresses it decouples from the inductive coil,
expending some energy in electromagnetic pinching without later recovering the energy in axial acceleration
of the plasma. This decoupling results in a smaller percentage of the inductive stroke length available for axial
acceleration, reducing the overall achievable exhaust velocity. Larger cone angles attenuate the inductive
decoupling between coil and current sheet in the event of radial compression, resulting in a larger fraction of
the potential electromagnetic work directed into axial current sheet acceleration relative to the smaller cone
angles. Estimates of the gasdynamic pressure in the pinched current sheet of accelerators like the MAD-IPA
as compared to the magnetic pressure on the plasma imply a very low potential that the energy expended
compressing the plasma can be recovered as axially-directed kinetic energy.
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