
NASA – Internship Final Report 
 

1                                                   Summer 2011 Session 
 
 

Robust Control Algorithm for a Two Cart System and an 

Inverted Pendulum 

Chris L. Wilson
1
  

Mississippi State University, Mississippi State, MS, 39762 
 

 Pedro Capo-Lugo2 

NASA Marshall Space Flight Center, Huntsville, AL, 35812 
 
The Rectilinear Control System can be used to simulate a launch vehicle during liftoff. Several control 

schemes have been developed that can control different dynamic models of the rectilinear plant. A robust 

control algorithm was developed that can control a pendulum to maintain an inverted position. A fluid slosh 

tank will be attached to the pendulum in order to test robustness in the presence of unknown slosh 

characteristics. The rectilinear plant consists of a DC motor and three carts mounted in series. Each cart’s 

weight can be adjusted with brass masses and the carts can be coupled with springs. The pendulum is 

mounted on the first cart and an adjustable air damper can be attached to the third cart if desired. Each cart 

and the pendulum have a quadrature encoder to determine position. Full state feedback was implemented in 

order to develop the control algorithm along with a state estimator to determine the velocity states of the 

system. A MATLAB program was used to convert the state space matrices from continuous time to discrete 

time. This program also used a desired phase margin and damping ratio to determine the feedback gain 

matrix that would be used in the LabVIEW program. This experiment will allow engineers to gain a better 

understanding of liquid propellant slosh dynamics, therefore enabling them to develop more robust control 

algorithms for launch vehicle systems.  

 

Nomenclature 

   = mass of cart one 

   = mass of cart two  

   = mass of pendulum 

k = spring constant 

c1 = friction acting on cart one 

c2 = friction acting on cart two 

   = force of friction 

L = length of the pendulum arm 

  = gravitational constant 

  = state vector 

 ⃗⃗  = state estimate vector 

  = output vector 

 ⃗⃗  = output estimate vector 

 

 

I. Introduction 

he Rectilinear Control System can be used to simulate a launch vehicle during liftoff by the use of the two cart 

system and the inverted pendulum. A control algorithm for the two cart system was developed in order to 

simulate the coupling of a multi-stage rocket. This algorithm controls the position of the first cart with the added 

disturbance of the second cart coupled with a spring.  
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Once a control algorithm is developed that will maintain the pendulum in an inverted position, a liquid slosh tank 

will be attached to the pendulum to test for robustness in the presence of unknown slosh characteristics. This 

experiment will provide engineers a cost effective simulation of a rocket, therefore enabling them to develop more 

robust control algorithms for launch vehicle systems. 

 

 

II. Overview of the Model 210a Rectilinear Control System 

The Model 210a Rectilinear Apparatus is designed to provide insight to control system principles through hands-

on demonstration and experimentation 1. The rectilinear plant consists of a DC motor and three carts mounted in 

series. The cart weight can be adjusted with brass masses and the carts can be coupled with different sized springs. 

The A-51 Pendulum Accessory is mounted on the first cart for the lower pendulum and the inverted pendulum 

systems. The pendulum length and location of the point mass can be adjusted. An optional disturbance motor can be 

attached to any cart and an adjustable damper can be attached to the third cart if desired. Each cart and the pendulum 

have a high resolution quadrature encoder to determine position. A fluid slosh tank has been constructed that can be 

attached to the pendulum in order to test for robustness in the presence of slosh dynamics. This attachment will 

enable engineers to simulate fuel slosh present in liquid propellant launch vehicles.  
 

 

 
 

Originally, the Rectilinear Control System contained a data acquisition board which executed the control 
algorithm and collected data from the experiment. However, this board is no longer functioning and has been 

replaced with a LabVIEW user interface and Peripheral Component Interconnect (PCI) cards. LabVIEW is an icon 

based programming language which enables the user to make programming structures rather than lines of code. The 

PCI cards are located within the computer and allow the computer to access the data output from the system.  

 

 

III. Procedure 

In order to properly program the system dynamics into the algorithm, the equations of motion must be developed 

by using Newton’s Second Law. These equations are then converted to state space equations in order to input into 

the MATLAB program. This MATLAB program converts these state space equations from the continuous time 

domain to the discrete time domain. Using the pole placement method, this MATLAB program places the poles of 
the system at a desired location based on the phase margin and the damping ratio. Once the poles have been 

positioned, Ackermann’s formula is used to determine the feedback gains of the system at the specified pole 

locations. These feedback gains as well as the discrete state space equations are then programmed into the 

LabVIEW algorithm and tested. 

 

Figure 1. Rectilinear Control System  
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A. Dynamic Systems 

In order to get a better understanding of the Rectilinear Control System as well as the basics of controls theory, 

an algorithm was developed to control a one cart system. This program initiates a step function to make the cart 
move to a specified position or a sine function so the cart can oscillate at a certain amplitude and frequency.  

 

 

 
 

 
 

Once this program was functional, an algorithm to control a two cart system was created. This algorithm controls the 

position of cart 1 with the added disturbance of a second cart attached by a spring. Similar to the one cart system, 

this program can also implement a step function or a sine function.  

 

 
 

 

 
The next control scheme that was developed was the lower pendulum system, which consists of the A-51 Pendulum 

Accessory attached to the first cart in a hanging position. This method can be seen in Figure 1. This algorithm is 

used to dampen out the swinging of the pendulum due to a minor disturbance. For instance, once the user gives the 

pendulum a tap, the cart will move in order to stop the swinging of the pendulum. The final control scheme that was 

used was the inverted pendulum system. This system uses the same algorithm as the lower pendulum with one sign 

Figure 3. Two Cart System 

Figure 2. One Cart System 
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change in order to change the direction the cart moves. This algorithm will maintain the pendulum in an inverted 

position by moving the cart and will correct for minor disturbances.  

 

B. Development of Dynamic Equations 

It was determined that the B state space matrix (force matrix) had to be multiplied by the hardware gain in order 

to convert the output from volts to newtons. The hardware gain was experimentally calculated to be    
 

 
. 

However, after the LabVIEW algorithm was tested with the feedback gains, it was discovered that the actual 

hardware gain was 
   

    

 

 
. This difference might be due to the conversion of the state space matrices from continuous 

time to discrete time. Without dividing the hardware gain by .005, the feedback gains are too high to control the 

system.  

The equations of motion for each system were obtained by using Newton’s Second Law (    ) 

and summing the forces of the system in the horizontal direction. Because the plant has multiple degrees of freedom, 

Lagrange’s equations were used to derive the state space representation of each dynamic system. If     is called the 

generalized force in the direction of the     generalized coordinate, T is the kinetic energy and V is the potential 
energy, then Lagrange’s equation is given by  
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Expressing the Lagrangian,      , the equation can be written as: 
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The left side of this equation sums all energy that is conserved in the dynamic system and the right side represents 

the work done by external forces on the system. Solving these Lagrange equations will give the dynamic equations 

the form    ̇       , where M is the mass matrix, K is the dissipation matrix, and G is the shaping matrix. 

Rearranging this equation to the form  ̇             , where        and        .  

 

1. One Cart System 

 

Equation of Motion: 
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Figure 4. One Cart Block Diagram 
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2. Two Cart System 

 

 Equations of Motion: 
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  State Space Equations: 
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3. Lower Pendulum System 

 

Equations of Motion: 

 

(     ) ̈      ̈    ( ) 
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State Space Equations: 
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Figure 5. Two Cart Block Diagram 
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4. Inverted Pendulum 

 

Equations of Motion: 
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Figure 5. Lower Pendulum Block Diagram 
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State Space Equations: 
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IV. Data and Analysis 

A. Control System Design 
A closed loop control system was used in the development of the LabVIEW algorithm. A closed loop control 

system uses a measurement from the sensor and compares it to the desired output in order to correct for error2. 

Figure eight displays a block diagram of a closed loop control system. Because the two cart system and the 

pendulum systems have multiple degrees of freedom, it was decided that full state feedback would be used to control 

the system. Full state feedback places the closed-loop poles of the system at a desired location. Ackermann’s 

formula is then utilized to determine the feedback gain values. The command in MATLAB for Ackermann’s 

formula is        (     ). Where A and B are the state space matrices and p is the location of the poles. Figure 

seven shows the K matrix values found in each dynamic system.  

 

 

 

 TxxxGuKyxM   

Figure 6. Inverted Pendulum Block Diagram 
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Calculated Feedback Gains for Each System 

 

One Cart System  5228.0398.44  

Two Cart System (200 N/m spring)  764.00076.00286.211357.1  

Two Cart System (390 N/m spring)  6118.00077.01461.243475.1  

Two Cart System (830 N/m spring)  1974.00076.08572.41485.1  

Lower Pendulum System  3168.21982.20725.14019.128   

Inverted Pendulum System  138383.013861.01144.4428514.44   

 

 

In order to use full state feedback, all states of the system must be known. However, the encoders on the Rectilinear 

Control System only have the capability to measure position. Therefore, a method called state estimation must be 

used in order to determine the velocity states of the system. State estimation is determined using the following 

equation: LyxBKLCAyyLBuxAx 
 )()( . Where A is the system dynamics matrix, B is 

the force matrix , K is the feedback gain matrix, and L is the observer gain matrix.  

 

 

 
 

 

 

B. Data Analysis 
Figure nine shows the step function input of the one cart system. The first graph is the cart’s position, the second 

graph is the cart’s velocity, and the last graph is the voltage input to the motor. In this experiment, the cart was 

programed to move one centimeter. As you can see the cart overshoots one centimeter and the closed loop control 

system corrects the error and moves the cart back to the correct position. Also, the cart had a relatively quick rising 

time and its steady state error was approximately zero. The amount of overshoot can be controlled by selecting a 

lower set of feedback gains. This requires lowering the phase margin and the damping ratio within the MATLAB 

program.  

 

Figure 8. Diagram of closed loop control system 

Figure 7. Feedback Gains Using Ackermann’s Formula 
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Similarly, figure ten shows the one centimeter step response of the two cart system using the three different sized 

springs: 200N/m, 390 N/m, and 830 N/m. The first graph is the position of cart one, the second graph is the position 

of cart two, and the final graph is the voltage input to the motor. This response shows how the added disturbance of 

the second cart attached with a spring disrupts the system. The two cart system takes almost seven milliseconds to 

go into steady state, which is two milliseconds longer than the singe cart system. By taking a look at the individual 

spring constants and how the system responds, we can learn a lot about control systems and how to develop more 

robust control algorithms. For instance, as the spring constant increases, the cart becomes easier to control and the 

overshoot of the cart decreases. Also, due to the increased spring constant the rising time of the system greatly 
increases and the system goes into steady state much quicker.  

 

 

 
 

 

Figure 9. Single Cart Step Response 

Figure 10. Step Response of the Two Cart System 
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Figure eleven shows the response of the lower pendulum system. The first graph is the cart position, the second 

graph is the pendulum angle, and the last graph is the voltage input to the motor. The pendulum was given an initial 

tap of seven degrees. As a result the cart moved almost two centimeters in order to dampen out the motion. The 

pendulum swing lost three degrees on just the first swing and two more on the next swing. The gains that were used 

in this experiment could not correct the pendulum for anything less than two degrees. This system was used to 
determine how the cart would respond to the unbalance of the pendulum and was used to develop the inverted 

pendulum algorithm. The only difference between the lower pendulum algorithm and the inverted pendulum 

algorithm is the cart moves in the opposite direction to balance the system. 

 

 

 
 

 

 
The inverted pendulum algorithm currently only maintains the pendulum in an inverted state for approximately 

ten seconds. A systems check is currently underway in order to determine the error in the hardware gain. Once the 

correct hardware gain of the system is determined, better feedback gain values will enable the algorithm to maintain 

the pendulum in the inverted position indefinitely. Therefore, no data has been reported for this system.  

 

 

V. Conclusions 

In conclusion, by the use of the Rectilinear Control System engineers have access to a low cost demonstration 

test bed that has the ability to simulate a rocket on liftoff. This will enable them to develop more robust and efficient 

control algorithms for launch vehicle systems. Also, this test bed will allow engineers to study slosh dynamics that 

will be experienced in liquid propellant rockets. By observing the two cart system we can conclude that the coupling 
between rocket stages is easier to control and will react faster if it has a greater stiffness constant. The necessity of a 

closed loop control system can be observed in the step responses of each system. The closed loop system enables the 

algorithm to make corrections for error in the motor output.   

 

 

 

 

Figure 11. Lower Pendulum Response  
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Appendix A: LabVIEW Program 
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Appendix B: MATLAB Program 

 
%% Pole Placement for 2-cart system 
%  2 cart continuous to discrete 
%  Chris Wilson (06/13/2011) 

  
clc,clear 

  
c1=0.014;   % Friction on cart 1 (N*s/m) 
c2=0.014;   % Friction on cart 2 (N*s/m) 
m1=2;       % Mass of cart 1 (kg) 
m2=2;       % Mass of cart 2 (kg) 
k=200;      % Spring between carts (N/m) 

  
Khw=469/.005;   %Hardware gain 

  
%Continuous Model 
F=[0 0 1 0;0 0 0 1;-k/m1 k/m1 -c1/m1 0;k/m2 -k/m2 0 -c2/m2];    %A matrix 
G=[0;0;Khw/m1;0];   %B matrix 
C=[1 0 0 0;0 1 0 0];        %output matrix 
T=0.001;  %sampling rate 

  
%Discrete Model 
[A,B]=c2d(F,G,T);   %converts to discrete form 

  

PM=.1;     %phase margin 
damp=.9;  %damping ratio 
p=damp*[cos(PM*pi/180)+sin(PM*pi/180)*i,cos(PM*pi/180)-sin(PM*pi/180)*i, ... 
        (0.01+cos(PM*pi/180))+sin(PM*pi/180)*i,(0.01+cos(PM*pi/180))-

sin(PM*pi/180)*i]   %pole locations 

  

  
K=acker(A,B,p); %Developes the K matrix based on the desired pole locations 

  
%figure(get_fig('2cart place')) 
pzmap(tf(1,poly(p))) 

  
%% 

  

PM=1; 
damp=0.9; 
p=damp*[cos(PM*pi/180)+sin(PM*pi/180)*i,cos(PM*pi/180)-sin(PM*pi/180)*i, ... 
        (0.01+cos(PM*pi/180))+sin(PM*pi/180)*i,(0.01+cos(PM*pi/180))-

sin(PM*pi/180)*i]; 
L=place(A',C',p)'; 

  

%figure(get_fig('2cart acker')) 
%pzmap(tf(1,poly(p))) 

  
u=0; 
q=[0;0;0;0]; 
tact=0; 
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x=[0;0;0;0]; 
xd=[1;1;0;0]*1e-2; 
Nf=100; 

  
for k=1:Nf         %state estimation equations 
    y(:,k)=C*x(:,k); 
    u(k)=-K*(q(:,k)-xd); 
    q(:,k+1)=A*q(:,k)+L*(y(:,k)-C*q(:,k))+B*u(k); 
    x(:,k+1)=A*x(:,k)+B*u(k); 
    tact(k+1)=(k+1)*T; 
end 

  
figure 
subplot(2,1,1) 
plot(tact(1:end-1),x(1,1:end-1)*100,tact(1:end-1),q(1,1:end-1)*100,'--

','linewidth',2) 
subplot(2,1,2) 
plot(tact(1:end-1),x(2,1:end-1)*100,tact(1:end-1),q(2,1:end-1)*100,'--

','linewidth',2) 
figure 
plot(tact(1:end-1),u) 
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