Lunar Impact Detections During the 2010 Geminid Meteor Shower

Ronnie J. Suggs/NASA/MSFC/EV44

Lunar video observations are routinely conducted at the NASA Marshall Space Flight Center in Huntsville Alabama for the detection of meteoroid impacts. Over 240 impacts have been detected since the start of the observing program initiated approximately 5 years ago. During this time it has been fairly rare that lunar observing conditions and the weather have been favorable during the peak of the major showers. However, observing conditions were marginally favorable during the peak of the 2010 Geminids. On Dec. 14, 2010 approximately 5.5 hours of video were recorded. Even though the lunar phase was just outside the constraints established for optimum lunar impact monitoring, the resulting video was of sufficient quality that 21 lunar impacts were detected yielding an average impact rate of approximately 4 per hour. This compares to 17 lunar impacts detected over 40 nights of observations (approximately 100 hours of lunar video) yielding an average impact rate of 1 per 6 hours for the whole of 2010, excluding Dec. 14. The results of the 2010 Geminid lunar impact detections will be discussed along with previous results from the 2006 Geminid shower that also coincided within the lunar observing window.

Lunar Impact Detections During the 2010 Geminid Meteor Shower

NASA Meteor Video Observations and Analysis Workshop Aug 4-5, 2011

Ron Suggs NASA / MSFC Rob Suggs NASA / MSFC Danielle Moser Dynetics Rhiannon Blaauw Dynetics

Overview

Summary of Lunar Team's 5 years of lunar video observations

- Observation setup & constraints
- Observing statistics

Lunar observations during the Geminid 2010 shower

- Impacts observed
- Example video frames
- Comparison with 2006 Geminid shower observations

NASA MSFC Automated Lunar and Meteor Observatory

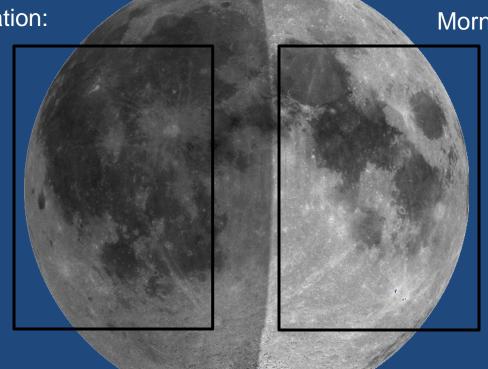
NASA MSFC, Alabama

- Telescopes
 - Three 14" (0.35m)
- Detectors
 - · Watec 902H2 Ultimate
 - Astrovid Stellacam EX

Remote Observatory in Walker County Georgia near Chickamauga

Observing Constraints

Field of View:


Balance between resolution, coverage area & phase constraints

Lunar Phase Constraint:

0.1 to 0.45 Illumination to reduce glare Yields 8-9 nights per month

Evening Observation:

Waxing crescent from twilight end to moonset

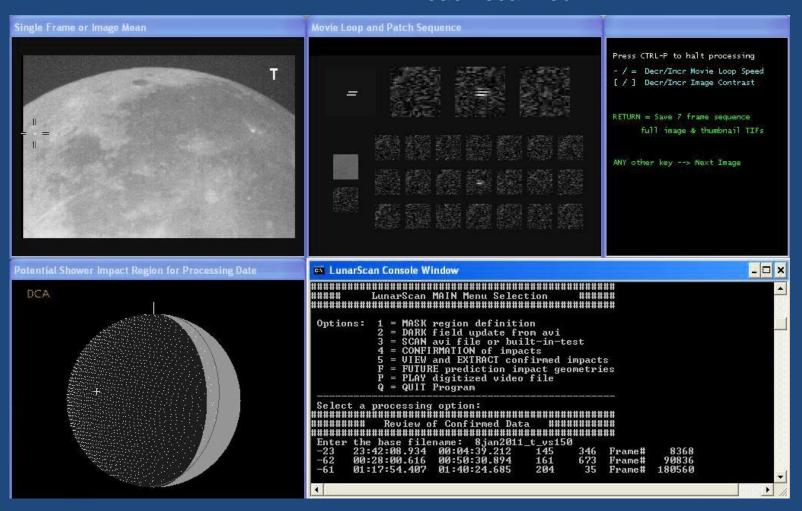
Morning Observation:

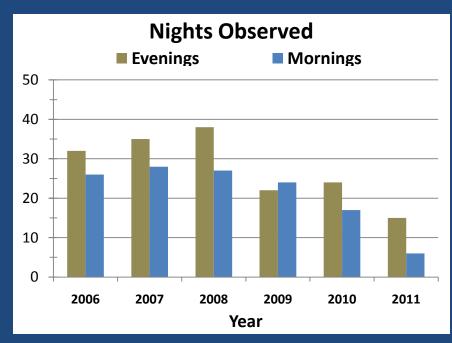
Waning crescent from moonrise to twilight

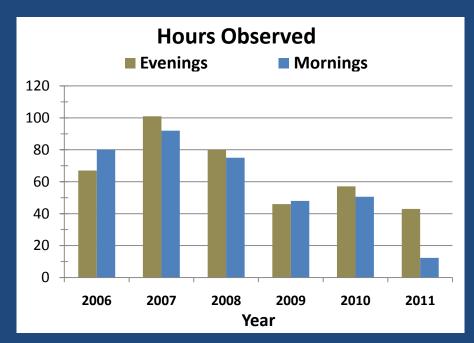
Lunar Video Example Frame

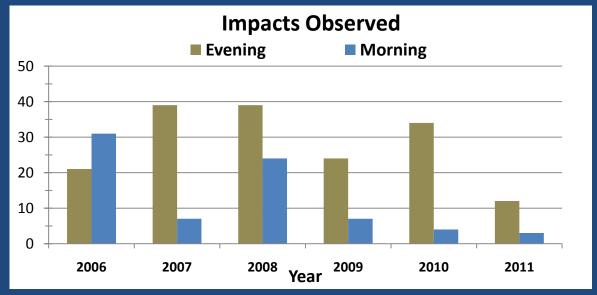
9 Jan 2011 01:17:55 UTC

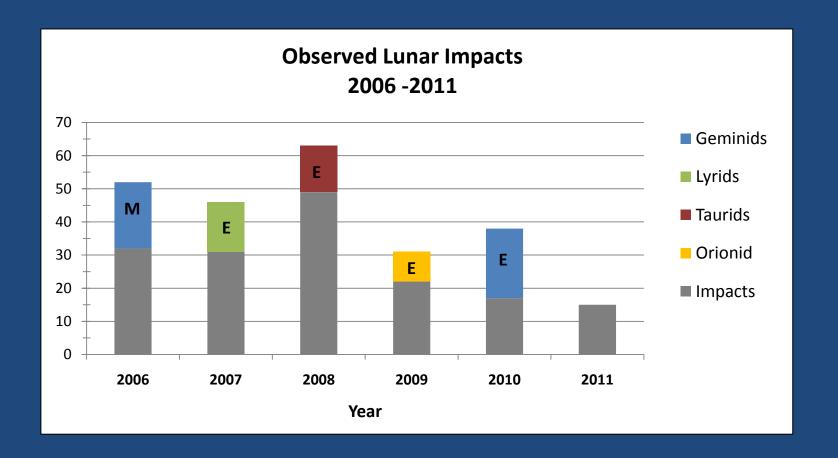
Tower Video

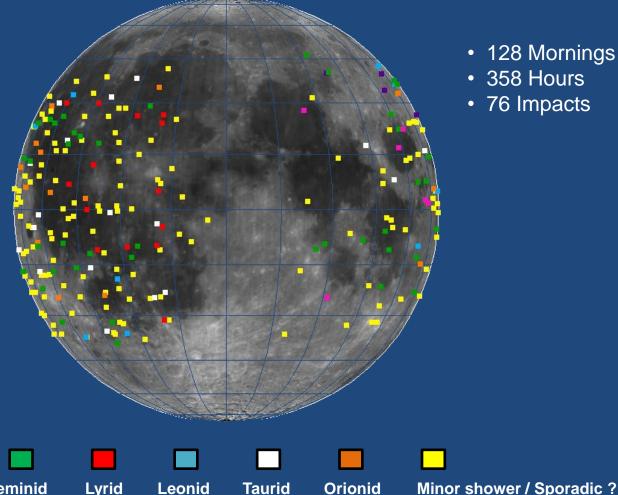

South Dome Video


Lunar Video Impact Detection


Peter Gural's Flash Detection Software version 1.5


Tower & South Dome Videos are each scanned


Yearly Observing Statistics

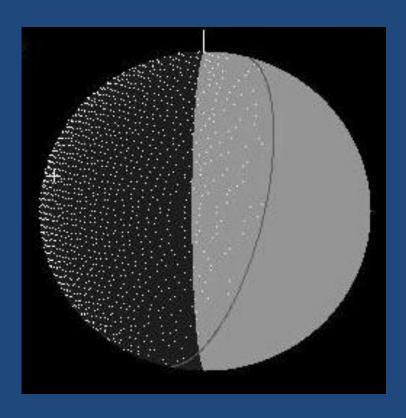

Significant Shower Events

5 Years of Lunar Observations

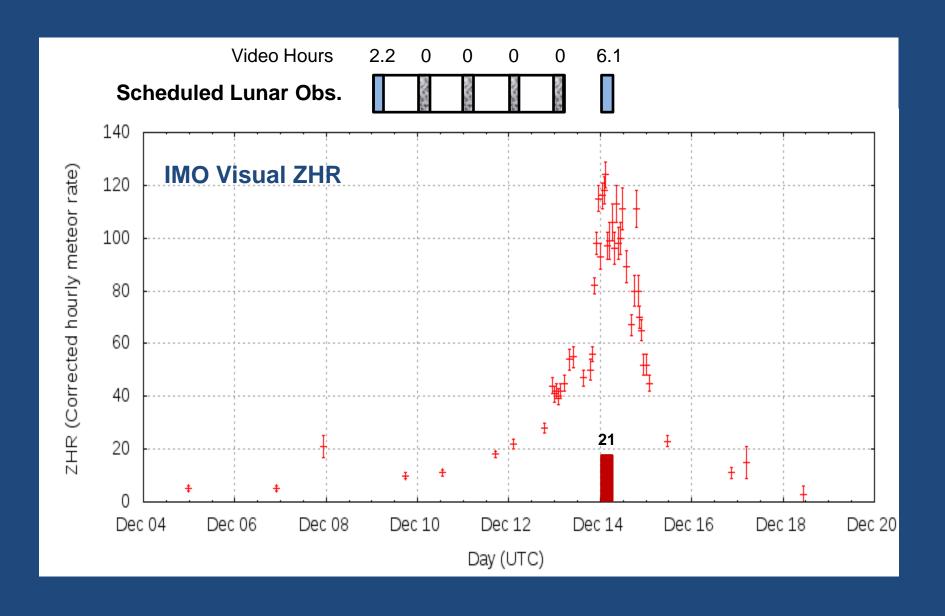
- 600 Nights Scheduled
- 294 Nights of Observations
- 752 hours of Video
- 245 Impacts Detected

- 166 Evenings
- 394 Hours
- 169 Impacts

Geminid


Minor shower / Sporadic?

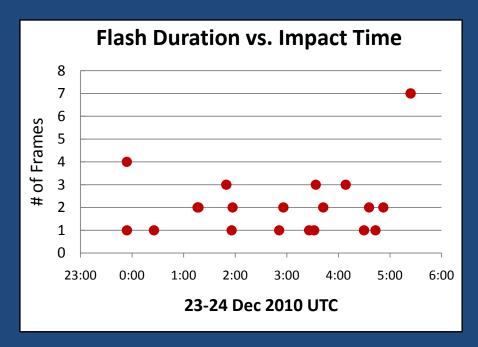
Lunar Observations During 2010 Geminids

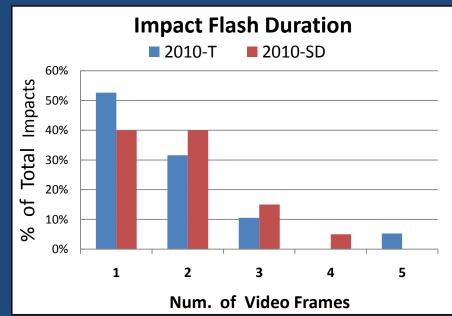

Scheduled Lunar Observations: Evenings of 9–13 Dec UTC

Lunar Impact Geometry

14 Dec. 00:00:00 UTC

2010 Geminid Observations

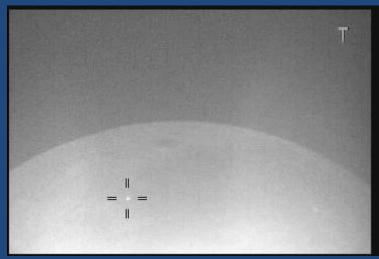

Observed Lunar Impacts

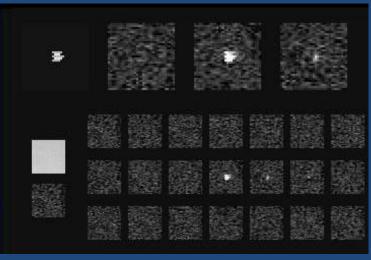

Video Duration = 6.06 hrs D = Detected C = Confirmed O = Obscured / Unresolved

13/14 Dec2010

					Observation Status			# Video Frames			Flash Quality		
Flash#	UT	Lon	Lat	Region	Tower	SD	W	Tower	SD	w	Tower	SD	w
1	23:53:51.6	-47.0	-16.0	Billy	D	D	0	3	4	х	bright	very brt.	x
2	23:53:56.9	-58.0	-17.0	Fontana	D	С	0	1	1	х	faint	very faint	x
3	00:25:25.5	-75.0	24.0	Eddington	D	С	0	1	1	х	mod. brt.	mod. brt.	x
4	01:16:14.6	-39.0	-32.0	Lee	D	D	0	2	2	х	bright	bright	x
5	01:16:42.0	-27.0	-13.0	Darney C	0	D	0	х	2	х	х	mod. brt.	х
6	01:17:08.8	-25.0	-10.0	Eppinger	0	D	0	х	2	х	х	faint	х
7	01:49:31.5	-66.0	25.0	Briggs	D	D	С	2	3	1	bright	bright	faint
8	01:55:48.1	-41.0	-12.0	Letronne	D	D	0	2	1	х	faint	bright	х
9	01:56:51.5	-64.0	-10.0	Grimaldi	D	С	0	1	2	х	faint	faint	x
10	02:51:00.7	-86.0	-17.0	Kopff B	D	D	0	1	1	х	bright	mod. brt.	х
11	02:55:57.6	-41.0	-39.0	Lacus Excelle	D	D	0	3	2	х	very brt.	brt.	х
12	03:25:50.9	-58.0	26.0	Zinner	С	D	0	2	1	х	faint	mod. brt.	x
13	03:31:47.3	-62.0	24.0	Schiaparelli	D	D	0	1	1	х	faint	faint	x
14	03:33:38.7	-71.0	13.0	Cardanus	D	D	С	2	3	1	bright	bright	faint
15	03:42:19.7	-39.0	18.0	Bessarion A	С	D	0	1	2	х	faint	mod. brt.	x
16	04:08:31.1	-68.0	-22.0	Darwin H	D	D	0	2	3	х	bright	bright	x
17	04:29:48.1	-78.0	14.0	Vasco Da Ga	D	С	0	1	1	х	faint	very faint	x
18	04:35:39.8	-89.0	-17.0	Kopff	С	D	С	1	2	1	faint	faint	very faint
19	04:43:03.5	-47.0	20.0	Aristarchus F	С	D	0	1	1	х	faint	mod. brt.	x
20	04:52:12.1	-50.0	21.0	Herodotus	D	D	0	1	2	х	faint	mod. brt.	x
21	05:23:56.1	-65.0	-32.0	Lagrange L	D	х	0	7	Х	х	very brt.	х	х


Impact Flash Duration


Impact #1 23:53:52 UTC 12Dec

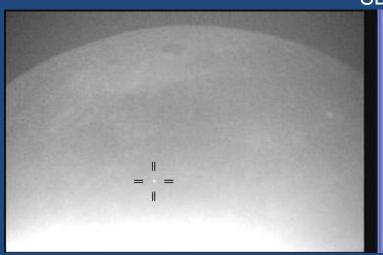

SD Video

Tower Video

Impact #3 00:25:25 UTC

SD Video

Impact not detected by Lunarscan in SD Video


Tower Video

Impact #5 01:16:42 UTC

SD Video

Tower Video

Impact Obscured by Glare No Confirmation

Impact #16 04:08:31 UTC

SD Video

Tower Video

Impact #19 04:43:04 UTC

SD Video

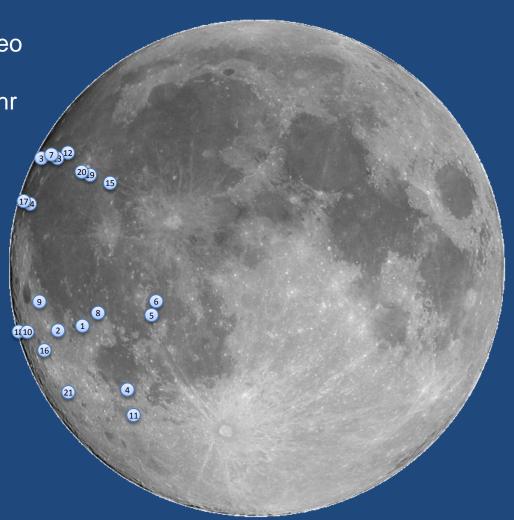
Tower Video

WCO Video

Impact #21 05:23:56 UTC

Tower Video

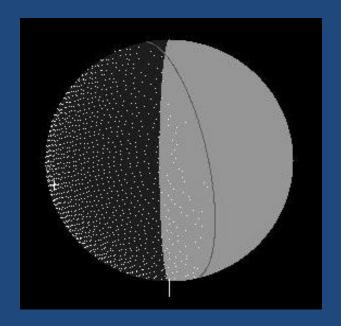
7 Video Frames

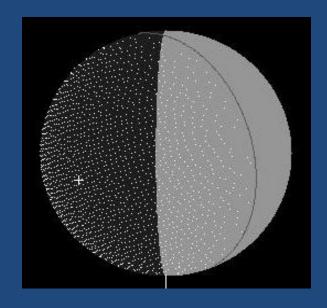


2010 Geminids Observed Lunar Impacts

• 6.1 hrs of video

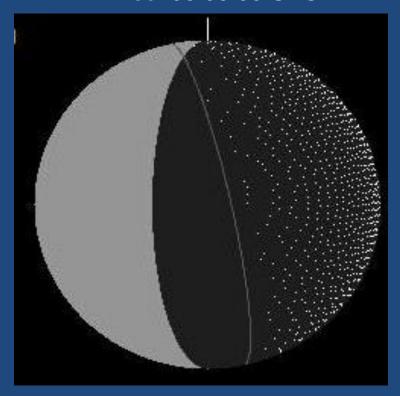
21 Impacts

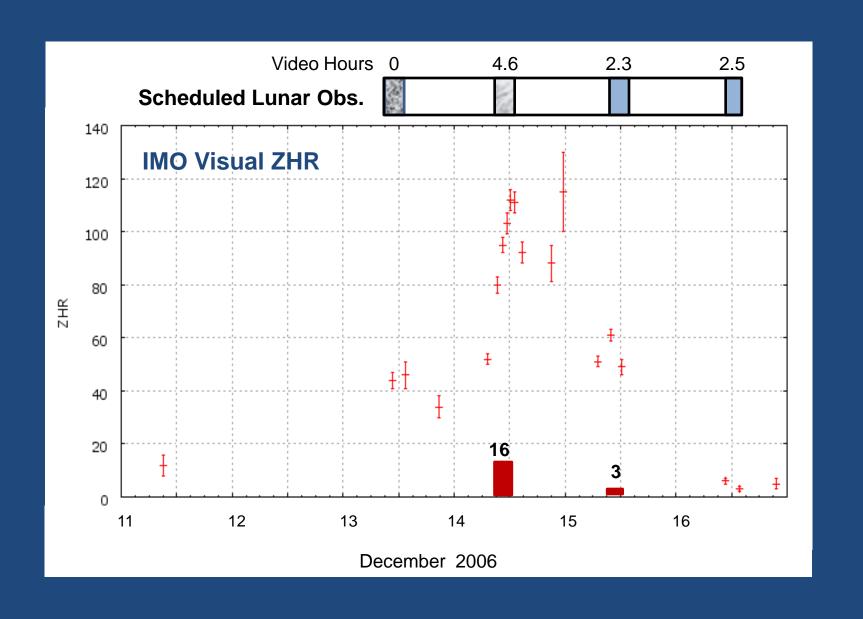

• 3-4 impacts / hr


Minor Showers During December

14 Dec 2010

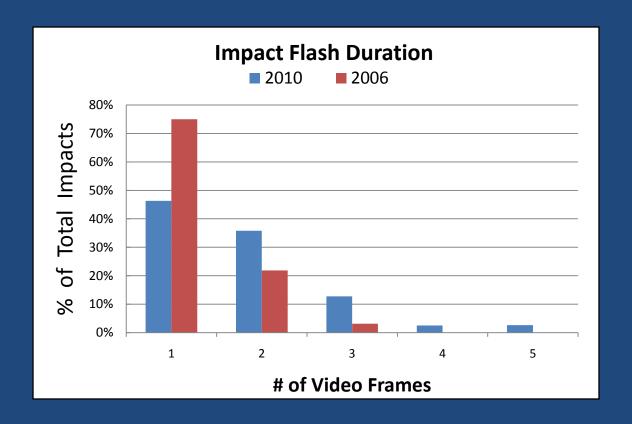
Monocerotids


sigma-Hydrids


2006 Geminid Shower

Scheduled Lunar Observations: Mornings 13–17 Dec UTC

Lunar Impact Geometry 14 Dec. 08:00:00 UTC



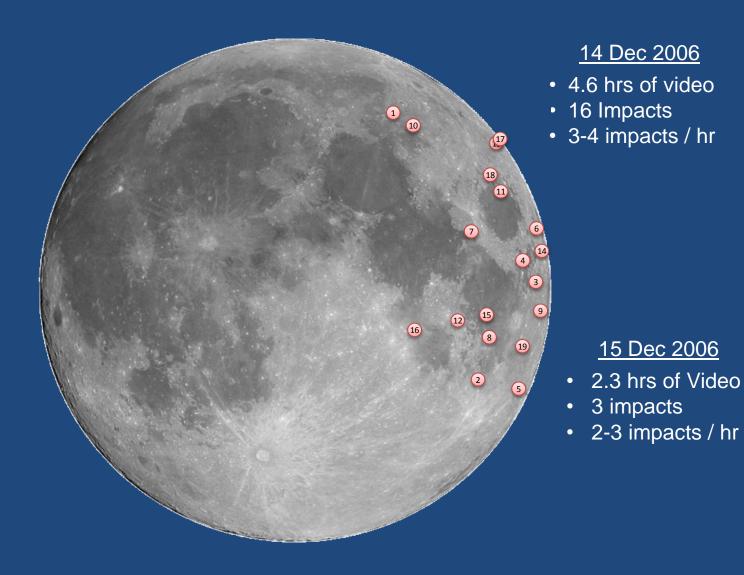
2006 Geminid Observations

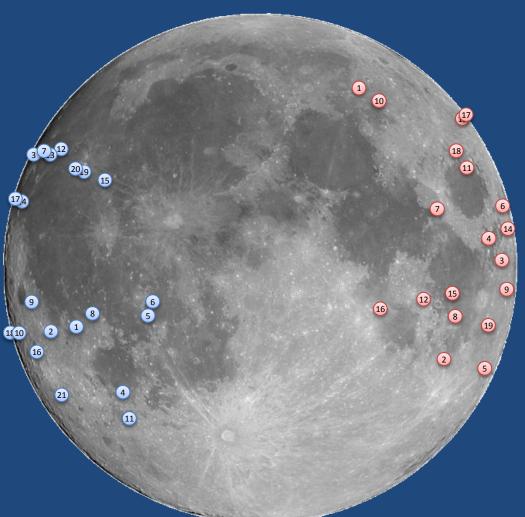
Observed Lunar Impacts

14 Dec 2006 Video			eo Duration = 4.6 hrs			D = Detected C = Confirmed						
					Observation Status		Video Frames		Peak Mag			
Impact #	UT	Lon	Lat	Region	Tower	SD	Tower	SD	Tower	SD		
1	08:12:40.0	33.5	46.5	Lacus Somni	D	С	1	1	9.5	х		
2	08:16:46.4	51.5	-21.0	Biot B	D	D	2	1	9.1	9.4		
3	08:32:06.6	70.5	2.5	Mare Undarui	D	С	1	1	9.8	х		
4	08:32:52.0	66.0	7.5	Mare Undarui	С	D	1	1	10.5	9.6		
5	08:39:57.2	74.0	-23.0	Phillips B	D	С	1	1	9.8	х		
6	08:46:02.0	80.0	14.5	Hansen B	D	С	1	1	9.6	х		
7	08:50:36.1	46.5	12.5	Palus Somni	D	D	1	1	8.5	9.4		
8	08:51:20.6	51.5	-11.0	Mare fecundit	С	D	1	1	10	9		
9	08:56:43.0	84.0	-5.5	Mare Smythii	D	D	1	1	8.8	8.7		
10	09:00:22.1	39.0	40.0	Maury P	D	D	2	2	9.1	8.7		
11	09:03:33.0	61.0	22.0	Mare Crisium	С	D	1	1	10.2	10.7		
12	10:11:07.3	40.5	-8.5	Gutenberg	D	D	2	2	10.2	10.3		
13	10:28:51.1	83.5	36.0	Gauss	С	D	1	2	х	10.2		
14	10:56:41.8	71.5	7.5	Mare Undarui	D	D	1	1	9.7	9.5		
15	11:21:22.6	49.0	-6.0	Mare fecundit	С	D	1	1	х	10.4		
16	11:28:08.4	28.0	-9.5	Theophilus	D	D	3	2	9.2	9.5		
15 Dec 2006 Video Duration = 2.3 hrs												
17	09:15:14.0	85.0	37.5	Beals	D	D	1	1	10.1	х		
18	09:17:39.0	60.0	26.5	Delmotte	D	D	1	1	7.7	8.3		
19	09:53:28.0	67.0	-13.0	Lame N	D	х	3	Х	6.7	Х		

Impact #10 9:00:22 UTC

SD Video




2006 Geminids Observed Lunar Impacts

Geminids 2006 & 2010 Lunar Impacts

14 Dec 2010

- 6.1 hrs of video
- 21 Impacts
- 3-4 impacts / hr

14 Dec 2006

- 4.6 hrs of video
- 16 Impacts
- 3-4 impacts / hr

15 Dec 2006

- 2.3 hrs of Video
- 3 impacts
- 1-2 impacts / hr

Summary

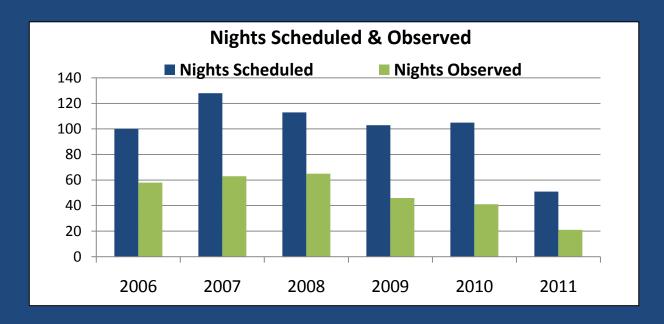
Lunar Observations were taken during the 2010 & 2006 Geminid showers.

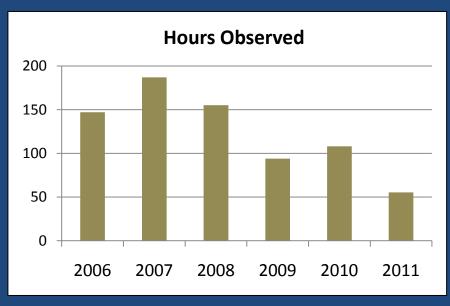

Similar Lunar impact rates were observed for both 2010 & 2006 Geminid showers.

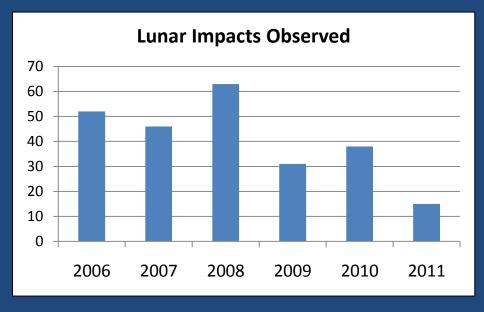
Flash durations for the 2010 impacts were on average longer than the 2006 flash durations.


Lunar Meteor 14 Dec 2010

SD Video




Tower Video



Backup Charts

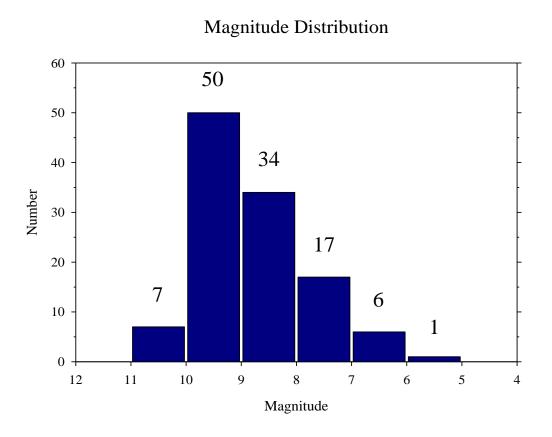
Yearly Observing Statistics

Approximately 3 Years of Analyzed Video Observations

- 548 hours of analyzed lunar video
- 212 hours of photometric quality
- 115 impacts retained out of 175

Evening Lunar Videos

- 277 hours total
- 118 hours retained
- 74 impacts retained out of 110


Morning Lunar Videos

- 271 hours total
- 94 hours retained
- 41 impacts retained out of 65

Summary of Analysis Results

- Total observing hours (photometric quality) = 212.4 hrs
- Total impacts in this period = 115
 - 108 to a magnitude completeness limit ~ 10th mag.
- Approximate detectable mass limit = 100g
- Average observing area = 3.8x10⁶ km²
- Calculated Flux = $1.34 \times 10^{-7} \text{ km}^{-2} \text{ hr}^{-1}$
 - Evening 1.55x10⁻⁷ km⁻² hr⁻¹
 - Morning 1.07x10⁻⁷ km⁻² hr⁻¹
- Observed flux asymmetry = 1.45 : 1
- Modeled flux asymmetry from major and minor shower contributions during observation period = 1.57

Histogram of Flash Magnitudes

Shows completeness to approximately magnitude 10

MSFC Activities During the 2010 Geminids

NASA Web Chat

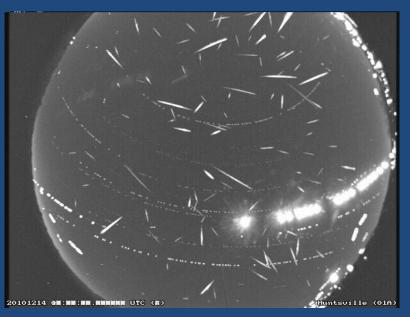
- NASA media event "Up All Night" chat.
- Allows public to ask questions of MSFC scientists through the night (3500+ questions).
- All-night chatters were Danielle Moser and Rhiannon Blaauw.
- Streamed live video of the shower to the web (~355,000 views)

Sky Observations

- Narrow Field Camera (Watec, 23° FOV)
 - UFO capture software
- All Sky Fireball Camera
 - ASGARD software

Lunar Observations

Sky Observations 14 Dec 2010


Intensified Camera

- 235 meteors
- 137 Geminids

All Sky Fireball Camera, Huntsville

- 102 single station meteors
- 18 double station Geminids

