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Abstract: Heat transport in highly porous fiber networks is analyzed via two-point correlation functions. Fibers are
assumed to be long and thin to for allow a large number of crossing points per fiber. The network is characterized
by three parameters: the fiber aspect ratio, the porosity and the anisotropy of the structure. We show that the
effective thermal conductivity of the system can be estimated from knowledge of the porosity and the correlation
lengths of the correlation functions obtained from a fiber structure image. As an application, the effects of the fiber
aspect ratio and the network anisotropy on the thermal conductivity is studied.
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1 Introduction

Highly porous fibrous materials (HPFM) have many
applications worldwide. Such materials range from
paper products, flexible thin-film transistors, and
physiological systems to high-temperature materials.
In particular, they have extensive use in the aerospace
industry as thermal protection systems. PICA (pheno-
lic impregnated carbon ablator), a material developed
by NASA, is an example of currently used HPFM-
based insulating systems [1, 2]. PICA is made from a
carbon fiber insulation (Fiber Materials, Inc. under the
trade name Fiberfom®) impregnated with a phenolic
resin (for example, Borden Chemical SC1008®). The
typical diameter of the fibers in PICA is 14-16 um
and their length exceeds ~1600 pm. The resin creates
a highly porous thermoset structure after polymeriza-
tion with a low bulk density ranging from 0.22 to 0.27
g/cm®. Characterization of the effective properties of
this novel material is a challenging task.

Thermal conductivity (TC) is one of the most im-
portant properties of HPFM. Since these materials are
heterogeneous composites, the effective thermal con-
ductivity (ETC) is the relevant quantity. Accurate
estimation of the ETC is important to provide input
for thermal response modeling under operating condi-
tions and also to provide guidence for the selection of
the optimum materials to meet specific design require-
ments. In addition to low ETC, relevant properties
of PICA include reasonable strength, low weight, and
excellent ablative properties, among others. Thermal
conductivity in fibrous materials depends on the in-

trinsic TC of the constituents and also on the specific
topology of the fiber network and the matrix, which
is a phenolic resin in the case of PICA. In fact when
the TC of the matrix is negligible, the only conduc-
tive heat transport mechanism in HPFM is the direct
conduction through the fiber contacts.

Several approaches and numerical methods have
been reported in the literature for TC modeling of fi-
brous material [3-8]. White et. al., for example, inves-
tigated numerically the influence of anisotropy on the
electrical conductivity of networks of finite rods near
the percolation threshold by using a resistor network
(RM) approach [3]. In this approach, the fiber system
is modeled as an equivalent network of resistors. The
effective electrical conductivity was obtained by solv-
ing a system of linear equations obeying Kirchoff’s
laws at each node. It was shown that a discretized
model can be used to calculate the ETC of fiber com-
posites built from a low-conductivity matrix embed-
ded with high-thermal conductivity fibers. Numerical
results agreed with analytical models [6]. Qualitative
estimation of conductivity has also been reported in
Ref. [4]. It was shown there that the conductivity can
be expressed in terms of the porosity, the fiber thick-
ness and the mean distance between fiber crossings.

Recently we showed that the ETC of HPFM can
be estimated utilizing the two-point correlation func-
tion (CF)[8]. We demonstrated that the effective TC
can be written in terms of the total porosity and the
correlation lengths of the CF along each (x, y and 2)
direction. This approach is particularly useful for sys-
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tems where the RM approach is computationally in-
tractable. While that previous work presented a rigor-
ous CF analysis of fiber networks and its implications
for ETC determination, practical examples of the CF
approach were not included. In the present work, we
provide such examples and present results estimating
the ETC of 2D models of fiber networks. We start
in Section 2 by reviewing the main points of the pro-
posed approach. In Section 3, numerical computa-
tions of TC are performed and their dependence on
the fiber aspect ratio and the anisotropy of the fiber
ensemble is studied.

2 Theory

2.1 Thermal conductivity of fiber networks

We consider a dilute random array of cylindrically
shaped fibers in a matrix. We assume the matrix does
not contribute to the thermal transport. Note we only
consider conductive thermal transport, therefore, heat
propagation through the fiber network is the only ther-
mal transport mechanism in the structure. If n is the
fiber concentration, i.e. the number of fiber in the unit
cube, the volume fraction of the fiber phase can be
written as V; = mnd?l/4 (V; = ndl in the 2D case),
where [ and d denote the length and the diameter of
the fibers, respectively. The porosity of the structure
isp = (1 — V). We assume the fibers have large as-
pect ratios, (I/d > 1), so that each of them has many
crossing points along their length and thus the mean
distance between the neighboring connecting points
A (i.e. connectivity) is small compared to the fiber
length (A < [). This also means that the fiber concen-
tration is large enough, so that we are well above the
percolation threshold.

We also assume cylindrical symmetry for the fiber
network along the z-axis and consider an external
thermal gradient applied along this axis, i.e., the heat
flow takes place along the z-direction. The heat flux,
1;;, through a fiber connecting two points r; and r;
at two close planes z = 0 and z = h, respectively is
given by
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Here T'(r;) denotes the temperature at r;, £ is
the fiber thermal conductivity, l;; = |r; — r;| =
h/|cos 6;;|, and 6;; is the angle between the fiber and
the z-axis. The total flux through the plane z = 0
is obtained by adding all fluxes corresponding to the
fibers crossing the plane
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This allows us to determine the effective thermal
conductivity Keg as:
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In the above expression, N = 45/7D? is the total
number of fibers crossing the plane at z = 0, S is the
side area of the specimen in this plane, and D} is an
average distance between the fibers crossing the plane

z = 0. Supposing that (cos 0;;[T'(r;) — T'(r;)]) =

(cos 0;;)([T'(r;) — T'(r;)]), one finds
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where D) is an average distance between the fibers
along the z-direction, so that V; = d*(2D, +
Dy)/(D} Dy).

Following a similar analysis we can consider the
TC across the z-axis. The results for the components
of kg along and across the the z-direction are respec-
tively
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Equations (1) and (2) express the fact that the ef-
fective TC of the fiber network can be estimated by
knowing only: (i) the intrinsic TC of the fiber, (ii)
the components of the mean distance among the fibers
along and across the heat flux direction and (iii) the
porosity of the structure. Such expressions can also
be used for 2D fiber networks by omitting the factor 2
in the denominator. In the next section, we show how
the D parameter can be estimated from the CF of the
fiber structure.

2.2 Two-point correlation function

Valuable information on the morphology of heteroge-
neous materials is contained in the the n-point corre-
lation functions (n = 1,2,3,---). These microstruc-
tural descriptors were originally introduced by Brown
[9] in the context of the effective properties of com-
posites and subsequently have been deeply investi-
gated by Torquato [10].

We introduce the two-point CF of the fiber struc-
ture as
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Figure 1: Correlation function W (z, 0) of a 2D fiber
network (b), measured along the horizontal axis of the
image, x. All fibers have the same length, [ = 20
units and width d = 0.4 units. Fiber centers and ori-
entations were allow to have random values. Typical
correlation lengths of W (z, 0) are highlighted in (a).

where (- - - ) denote an ensemble average and the char-
acteristic function 7(r) given by

(r) = 1, ifrisinside a fiber
mry= —1, otherwise,

represents the fluctuation of the local TC with respect
to its mean value. For statistically homogeneous me-
dia, equation (3) depends only on the distance be-
tween two arbitrary points r and 7/, [W(r,7') =
W (|r — 7'|)]; it is equal to unity at the coordinates
origin, W(0) = 1, and vanishes at the infinity (see
Fig. 1).

The CF as defined by equation (3) can be directly
computed from the digital image of the fiber structure.
There currently exists a variety of nondestructive tech-
niques to obtain two- and three-dimensional images of
materials, including optical microscopy, synchrotron-
based tomography and magnetic resonance imaging
[10]. Through a thresholding procedure, the gray-
scale image of a fibrous material can be reduced to
a binary image in which gray values lighter than a
chosen threshold are set to white and the others set
to black [11]. The resulting pixel data can then be
described by the stochastic function, 1(r), and equa-
tion (3) can be directly applied.

The profile of the CF curve provides useful in-
formation about the fiber structure. For example, the
fiber length (i.e., largest fiber dimension) can be esti-

mated as the distance at which the CF drops to zero.
For the fiber structure illustrated in Fig. 1, this value
is found to be [y = 50d, which is in perfect agreement
with the fiber length used in the simulation where we
had set [y = 20 units and d = 0.4 units. The first cor-
relation length of the CF curve, [.,, on the other hand,
is related to the smallest fiber dimension: the width
of the fibers. One interesting question is: to which
parameter of the fiber structure is associated the sec-
ond correlation length (second inflection point), Ic,,
appearing in the inset of Figure 1?

As demonstrated in [8], this parameter provides
information about the fiber network as a whole. For
2D fiber structures, where all fibers intersect if they
are long enough and close, the second correlation
length coincides with the fiber connectivity (average
distance between interfiber crossings), l., ~ A, which
determines the conduction pathways in the structure.
For 3D fibers structures on the other hand, the second
correlation length is not A but the mean distance be-
tween the fibers, [., ~ D. Therefore A or D can be
estimated from equation (3) and inserted into equa-
tions (1) and (2) to estimate the effective TC.

3 Numerical Results and Discussion

In this section, we present results that used the ap-
proach presented above to estimate the effective TC
of 2D fiber structures as a function of the fiber param-
eters. The structures simulated were constructed of
conducting sticks (i.e., straight fibers) of equal length
[ and width d (I > d) and were randomly positioned
in a unit-size square. Within this square we generated
random (x;,y;),i = 1,2--- N, pairs of coordinates
by using a pseudorandom number generator. We used
the same “seed” to allow the same data to be gener-
ated for repeated evaluations. We then attached the
center of one stick to the site (x;,y;) by choosing a
random orientation #;, with respect to the y-axis com-
prised in a given interval, —f < #; < 6. For these
values, a stick was plotted by drawing a rectangle be-
tween the points [z; — (I/2)sinb;,y; — (1/2) cos 0]
and [z; + (I/2) sin 6;,y; + (1/2) cos 6;]. By changing
the limiting values, 6y, different degrees of align-
ment for the fibers can be obtained and thus different
anisotropies for the fiber ensemble produced. The de-
gree of anisotropy is quantified by an orientation pa-
rameter, S = 2(cos? ¢;) — 1, which varies from, 0, for
isotropically oriented sticks, to 1, for perfectly aligned
sticks. The fiber network is thus fully characterized by
three parameters, namely the porosity, p, the fiber as-
pect ratio, (I/d) and the anisotropy, S. Different val-
ues of these parameters lead to different fiber struc-
tures. Figures 2(a) and 2(c) show two 1000-sticks
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Figure 2: (a) Two dimensional fiber network with porosity p = 0.81 and orientation parameter S = 0.01, composed
by 1000 fibers with aspect ratio I /d = 100. (b) Correlation functions W (x,0) and W (0, y) of (a) taken along the
horizontal and vertical axis, respectively. (¢) Same as (a) but for S = 0.40. (d) Same as (b) but for (c).

samples with fixed ({/d) = 100 and p = 0.81 for
S =0.01 and S = 0.40, respectively.

We started by analyzing the effect of the fiber as-
pect ratio on the effective TC. To do that we fixed the
width of the fibers to a length of 0.0015 unit (i.e.,
d = 1.5% of the square side length) and we chose
an anisotropic fiber configuration characterized by a
S = 0.4 value. A total of 50 structures with different
aspect ratios in the interval, 80 < (I/d) <2000, were
generated to form high-resolution images and used as
input for TC estimation. A full data set of 1400 x 1400
pixels for the images was enough in providing good
statistic for the CF computations. In our analysis we

assumed that the heat flow in the structures take place
along the x-direction (i.e., horizontal axis in Fig. 2).

Following the procedure outlined in Section (2.2),
the CF of each fiber network was calculated along and
across the heat flow direction and the second correla-
tion length, [.,, was estimated from them. The fiber
density V; was evaluated by counting the number of
pixels belonging to the fiber phase (“black pixels”).
After inserting values of fiber density and correlation
length into the 2D version of equation (2), the ratio
of the effective TC to the intrinsic fiber conductiv-
ity, ket /k f, was calculated for each simulated struc-
ture. Figure 3(a) presents the results as a function of



05 (a) ; Kefy
eff : '.r.......wvr.§
Kf r ~°
0.4+ o
[ P
»
/.
[ o
0.3 K
.............. By
K cose®
s et Kef
0.2F ,P .
ror «'./.
L ¢ o
L) o
01 ' ¥
L /.

Il Il Il Il Il Il 1 Il Il Il
100 300 500 700 900 1100 1300 1500 1700 1900
Iid

0.2

(b) J

Kegt 181 P
Kf 0.161

0.141 e
0.12 ‘/,."/‘
./'
0.11ags®®
..
0.08 I
0.06- e
0.04F

0.02 ¢

Figure 3: Effective thermal conductivity along (x%;) and across (xZ;) the normal to the substrate (coincides with
direction of heat flow) as a function of the fiber aspect ratio (a) and the orientation parameter S (b) (see text for

details).

[/d. As it can be seen, the effective TC along and
across the heat flow direction, (x%g,x’;), increases
with increasing fiber aspect ratio. The component
of TC along the heat flow, for example, starts with
a low value of x%; = 0.06x; when the percolated
network is formed by “short” fibers (I/d ~ 80), and
then increases slowly until it reaches a constant value
of about 0.28k¢. A similar behavior is also observed
for £, but in this case, TC values saturate at large
l/d to 0.48k¢. This is an expected result, since as
the fibers become longer, the number of fiber con-
tacts increases and therefore the connectivity value of
the fiber network decreases, giving an increase in TC.
When the fibers are long enough, further elongation
of the fibers means an increase in the number of dead
ends. However, this does not change the connectivity
of the structure and the effective TC remains constant.
This is precisely the behavior observed for both #Z;
and xY; at large aspect ratio values, I /d = 1300.

The gap observed in Figure 3(a) between the xZ;
and /@gﬂc curves is a consequence of the anisotropy of
the structure, as we used a fixed value of S = 0.4 for
all the simulations. Thus, for each sample, the fibers
were generated with a significant degree of align-
ment along the y-axis [see Figure 2(c)]. As a con-
sequence, the [., of the CFs along the y-axis was
found to be larger than those measured along the heat
flow direction [see Fig. 2(d)]: therefore, according to
equation(2), kZ; > K%, V(1 /d).

Next we studied the influence of anisotropy on the
effective TC. In order to do that, we simulated fiber
samples with the same aspect ratio (I/d = 100) and
porosity (p = 0.81), but with different orientation pa-

rameter values. The estimation of the effective TC
was carried out analogously to our previous study, that
is, through the CF analysis of the respective fiber im-
ages. The results are shown in Figure 3(b).

From the figure it can be seen that there are two
characteristic trends in the effective TC as a function
of the network orientation. First, for low values of S,
the effective TC along and across the heat flow direc-
tion are roughly the same, %5 = k5 ~ 0.099%;.
This is not a surprising result, since at those values
of .S the fiber network is strongly isotropic and there-
fore the correlation lengths of the CF along any di-
rection coincide [see Fig. 2(a)]. Second, as the axial
fiber alignment (S > 0.1) increases, £%; and x’; de-
part from 0.099x¢ in a completely different way: <25
drops to 0.002x¢ while /@gﬂ increases until reaching
a values of 0.2k at S = 1. The explanation of the
above relies on the fact that as the fibers become more
favorably oriented along the y-axis, the number fiber
contacts along this axis decreases while the contacts
along x increase. This change in the network architec-
ture causes an increase in connectivity with S along y
and thus a decreasing (increasing) of the effective TC
along (across) the heat flow direction. The same de-
pendence of x%; for 3D structures was found by White
and coworkers [3].

4 Conclusion

We have shown that the effective TC of percolated
fiber networks can be estimated by utilizing informa-
tion contained in the CF of the structure. The only pa-
rameters required are the porosity of the structure (or



the fiber density) and the correlation length of the CF
along some characteristic directions. The estimations
of TC shown in this work for 2D networks demon-
strate the applicability of the CF approach.
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