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 3 

Abstract 39 

 40 

Host parasite diversity plays a fundamental role in ecological and evolutionary processes, yet 41 

the factors that drive it are still poorly understood. A variety of processes, operating across a 42 

range of spatial scales, are likely to influence both the probability of parasite encounter and 43 

subsequent infection. Here, we explored eight possible determinants of parasite richness, 44 

comprising rainfall and temperature at the population level, ranging behavior and home range 45 

productivity at the group level, and age, sex, body condition, and social rank at the individual 46 

level. We used a unique dataset describing gastrointestinal parasites in a terrestrial subtropical 47 

vertebrate (chacma baboons, Papio ursinus), comprising 662 faecal samples from 86 48 

individuals representing all age-sex classes across two groups over two dry seasons in a desert 49 

population. Three mixed models were used to identify the most important factor at each of the 50 

three spatial scales (population, group, individual); these were then standardised and 51 

combined in a single, global, mixed model. Individual age had the strongest influence on 52 

parasite richness, in a convex relationship. Parasite richness was also higher in females and 53 

animals in poor condition, albeit at a lower order of magnitude than age. Finally, with a 54 

further halving of effect size, parasite richness was positively correlated to day range and 55 

temperature. These findings indicate that a range of factors influence host parasite richness 56 

through both encounter and infection probabilities, but that individual-level processes may be 57 

more important than those at the group or population level. 58 

 59 
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 4 

 Understanding the forces driving the spread of infectious diseases in wild animal 60 

populations is becoming increasingly important. From a theoretical perspective, parasites and 61 

pathogens are thought to play a primary role in driving population dynamics and evolutionary 62 

processes (Anderson and May 1978; Tompkins 2001). In population dynamics, wildlife 63 

diseases can lead to rapid declines in threatened species (Smith et al. 2009) and pose a 64 

growing threat as a source of human zoonoses (Jones et al. 2008). In evolutionary processes, 65 

infectious diseases have long been proposed as a significant pressure in the shaping of mating 66 

and social systems (Freeland 1976), partly because frequent contact rates between mates and 67 

social partners might greatly facilitate the transmission of pathogens. 68 

Since most animals are infected by several parasite species, and even individually 69 

benign infections can have a cumulative pathogenic impact (McCallum 1994; McCallum and 70 

Dobson 1995), an understanding of the factors that determine the number of parasites an 71 

individual carries (i.e. host parasite richness) may be crucial to elucidating patterns of host 72 

vulnerability and the wider impacts of parasitism on host ecology and evolution (Bordes and 73 

Morand 2009). Indeed, host parasite richness has been linked to a diverse range of micro- and 74 

macro-ecological and evolutionary processes, such as adult mortality rates (Simkova et al. 75 

2006), the population-level maintenance of polymorphisms in immune genes such as the 76 

major histocompatibility complex (mammals: Goüy de Bellocq et al. 2008; Simkova et al. 77 

2006), and species diversification (e.g. primates: Nunn et al. 2004). Parasite richness is also 78 

becoming an increasingly important metric for understanding the impacts of anthropogenic 79 

disturbance on threatened taxa (e.g. primates: Chapman et al. 2005b; Gillespie et al. 2005; 80 

Valdespino et al. 2010). 81 

Despite its importance, we know surprisingly little about the determinants of host 82 

parasite richness. Indeed, theoretical progress in this area is constrained by the dearth of 83 

empirical research - and this is particularly true for field data - and a lack of information 84 
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 5 

necessary for modeling (Tompkins  et al. 2010). Within species, a variety of forces can 85 

potentially interact with host susceptibilities to shape parasite transmission across a range of 86 

ecological scales, from populations to individuals (Tompkins  et al. 2010). At the population 87 

level, seasonal environmental factors, such as increasing rainfall and temperature, are 88 

expected to increase parasite richness (Nunn and Altizer 2006), along with intrinsic factors 89 

such as population size and density, number of groups (for social species), and degree of 90 

population fragmentation (Chapman et al. 2005b; Morand and Poulin 1998; Nunn and Altizer 91 

2006). At the group level (in socially structured populations), the group size, area and 92 

productivity of the home range, and daily travel distance might all affect parasite richness 93 

(Nunn and Altizer 2006; Vitone et al. 2004) (but see also Bordes et al. 2009; Snaith et al. 94 

2008). Finally, at the individual level, a wide range of traits might influence parasite richness 95 

including body mass, age, social rank, reproductive state, hormone levels, immune status, and 96 

genetic constitution (for reviews, see : Nunn and Altizer 2006; Tompkins  et al. 2010). 97 

However, identifying independent, contemporaneous, effects of such myriad factors across 98 

spatial scales, and assessing their relative importance, remains a substantial challenge – 99 

especially when the complexity of factors involved necessitates an integrative approach, using 100 

concurrent monitoring of individuals and their environment through a longitudinal, rather than 101 

cross-sectional, design (Tompkins  et al. 2010). 102 

 103 

[Please insert Table 1 here] 104 

 105 

Here we investigate the relative importance of a range of factors that might influence 106 

host parasite richness. We structure our analysis to recognise the multiple spatial scales over 107 

which these factors operate (i.e. the population, group, and individual), and specify whether 108 

their mode of action is most likely to affect parasite richness through the probability of 109 
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 6 

encounter with parasites or the susceptibility to infection following encounter (sensu Nunn & 110 

Altizer, 2006). Our analysis focuses on patterns of gastrointestinal parasite richness in a wild 111 

social primate population of chacma baboons (Papio ursinus). While individually-based 112 

parasite studies in wild primates are uncommon (Nunn and Altizer 2006), they are of 113 

particular interest for at least three reasons. First, wild primates are perhaps the most serious 114 

wild source of cross-species disease transmission to humans, with sometimes catastrophic 115 

consequences for public health (e.g. ebola: Leroy et al. 2004). Second, primates are a taxon of 116 

high conservation concern, with disease posing a serious threat in some populations 117 

(Chapman et al. 2005a). Finally, studying a social species will contribute to our understanding 118 

of the dynamics of parasite transmission in group-living organisms that may be especially 119 

vulnerable to infectious diseases (Altizer et al. 2003).  120 

In Table 1, we detail the eight hypotheses tested. At the population level, our 121 

hypotheses predicted that parasite richness would increase with wet (H1) or hot (H2) 122 

conditions. At the group level, we predicted that parasite richness would be higher in more 123 

productive home ranges (H3), or in association with more extensive ranging behavior (H4). 124 

At the individual level, we predicted that parasite richness would be influenced by age (H5), 125 

sex (H6), physical condition (H7), and social rank (H8). Finally, we investigated the relative 126 

magnitude of the effects of all those factors that influence parasite richness, across spatial 127 

scales, in a single global model. 128 

 129 

MATERIALS AND METHODS 130 

 131 

Study system 132 

Our study was carried out on wild chacma baboons on the edge of the Namib Desert, 133 

in central Namibia, at Tsaobis Leopard Park (22
o
23’S 15

o
45’W). Tsaobis is characterized by 134 
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 7 

mountains and rocky foothills that descend to rolling gravel and alluvial plains. Vegetation is 135 

sparse, comprising grasses and herbs, shrubs and dwarf trees, although patches of aquifer-136 

dependent woodland grow along the ephemeral Swakop River bordering Tsaobis to the north. 137 

The landscape is arid and strongly seasonal: annual rainfall is low (mean ± SD: 123 ± 77mm, 138 

n=68 years) and falls only during the austral summer, primarily between December and April. 139 

The altitudinal range is 683–1445m. Shade temperatures can approach zero on winter nights, 140 

but exceed 40
o
C on summer days.  141 

Data were collected during two field seasons (June to December 2005, May to October 142 

2006) on two social groups. These comprised, in October 2006, 9 adult or subadult males, 16 143 

adult females, and 32 juveniles for the larger group (Troop J) and 7 adult or subadult males, 9 144 

females and 16 juveniles for the smaller group (Troop L). All subjects were fully habituated 145 

and individually identifiable. 146 

 147 

Faecal sampling and analysis 148 

A total of 662 faecal samples were collected immediately after defecation from 86 149 

individuals. The faeces were homogenized and a portion (mean ± SEM: 0.73 ± 4.10
-3

g) was 150 

weighed and stored in 4 ml of 10% buffered formalin solution immediately after collection, at 151 

room temperature. A mean of 8.1 samples per individual (SD=6.40, median=7, range: 1-37), 152 

and 53.4 samples per month (SD=27.8, median=61, range: 17-104), were collected through 153 

the study period. Faecal analysis was carried out using the modified formol-ether 154 

sedimentation technique (Allen and Ridley 1970), using merthiolate-formalin as a stain. 155 

Parasitic eggs, larvae, trophs, and cysts were recorded by species or morphotype, with 156 

measurements made to the nearest 0.1 mm using an ocular micrometer fitted to a compound 157 

microscope (further details on parasite indentification see Appleton et al. 1991; Appleton et 158 

al. 1986) Due to difficulties in identifying rounded-up trophozoites or pre-cystic stages within 159 
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 8 

small-sized amoebae, Entamoeba hartmanni, Endolimax nana, and Dientamoeba fragilis 160 

were pooled together into a morphotype designated as “small amoebae” (Fiennes 1972). 161 

Similarly, Entamoeba chattoni, Entamoeba histolytica, Entamoeba dispar and Iodamoeba 162 

buetchlii were pooled as “medium amoebae”. Host parasite richness was estimated for each 163 

faecal sample by the number of different species/morphotypes recorded. We assumed that 164 

when species/morphotypes were present we were able to detect them, but some false 165 

negatives may have occurred if a species was harder to detect when its intensity of infection 166 

or reproductive output were lower. 167 

 168 

Population-level environmental conditions (H1-H2) 169 

Rainfall was monitored on a daily basis. Similarly, maximal temperatures (Tmax) in 170 

the shade were recorded on a daily basis and were available for 179 days (78 % of the study 171 

period). Tmax varied across the study period (maximal mean ± SD = 31.9 ± 4.8, range = [20-172 

41]), with maximal values during summer (December) and minimal values in winter (July) in 173 

both years. Minimal and maximal daily temperatures were strongly correlated (Pearson’s 174 

correlations: rho= 0.71, n= 283, P < 2 .10
-16

), so only Tmax was used here.  175 

 176 

Group-level range productivity and ranging behavior (H3-H4) 177 

Group location waypoints were taken at half-hour intervals over at least 100 full-day 178 

follows for each group conducted between May and November, thus covering periods of both 179 

high and low plant productivity in the late austral summer and winter. Minimum convex 180 

polygons (Heupel et al. 2004), were constructed around these waypoints in ArcMap Version 181 

9.3 using HawthsTools extension package (http://www.spatialecology.com/htools/) to provide 182 

a simple estimation of the home range boundaries over the study period. Within the home 183 

ranges, plant production was estimated using the Normalized Difference Vegetation Index 184 
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 9 

(NDVI: Pettorelli et al. 2011): a satellite-based vegetation index based on the information 185 

collected by the Satellite Pour l’Observation de la Terre-Vegetation (SPOT VGT). NDVI is 186 

derived from the red to the near-infrared reflectance ratio [NDVI = (NIR-RED)/(NIR+RED)], 187 

where NIR and RED are the amounts of near-infrared and red light, respectively, reflected by 188 

the vegetation and captured by the satellite sensor (Jensen 2006). We use a spatial resolution 189 

of 1×1 km available at 10-day intervals in each troop’s home range (J and L). The home range 190 

boundaries were also used to determine the monthly home range size for each group (J: 191 

mean± SD= 12.3± 6.5 km
2
, range = [5-27], L: 26.8 ± 13.5 km

2
, [8-49]), while the waypoint 192 

locations were also converted into paths to measure daily travel distance for 208 days (92% of 193 

the study period) (J: mean ± SD = 5.9 ± 0.8, range = [5.2-8.0], L: 5.9 ± 1.5, [2.6-7.3]). In the 194 

analyses, we use the mean daily travel distance per month. 195 

 196 

Individual traits (H5-H8) 197 

We investigated the influence of age, sex, body condition, and dominance rank on 198 

parasite richness. Age and condition were determined through individual inspection during 199 

troop captures: in J troop, 42 individuals (of 52) were captured in July 2005 and 55 (of 57) in 200 

October 2006, in L troop 32 individuals (of 32) were captured in October 2006. Briefly, 201 

troops were captured using individual cages baited with corn cobs and set-up at dusk. The 202 

baboons were captured at dawn, anaesthetised using tiletamine-zolazepam, and all processed 203 

within a day to be released together the following morning when fully awake. Age was 204 

estimated through dentition: tooth eruption schedules for wild baboons were used to assign 205 

age up to the eruption of the molars, while age beyond this point was estimated on the basis of 206 

molar wear (Huchard et al. 2009a). Body size was estimated by crown-rump length, measured 207 

during capture. Physical condition was measured through morphometric data. Because there 208 

is no consensus on the best way to index condition (Green 2001; Lukaski 1987), we used 209 
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 10 

three different measures: (1) body mass, (2) mean skinfold thickness (MST), averaged across 210 

the triceps, abdominal, and subscapular regions, and (3) mid upper-arm fat (MUAF), a 211 

combination of the triceps skinfold thickness and the mid upper-arm circumference:  212 

42

2
SSC

MUAF
π

−=  213 

where S = triceps skinfold thickness and C = upper-arm circumference (Gibson 2005). In 214 

order to summarize these three measures into one general index, we conducted a principal 215 

component analysis (PCA). This analysis included all data from all individuals across 2005 216 

and 2006 for which the three indices were available (49 out of 51 individuals). The 217 

contribution of each measure to the first component (estimated through PCA square cosinus) 218 

was 0.71, 0.75 and 0.91 for MUAF, MST and body mass, respectively. The first principal 219 

component of the PCA accounted for 81 % of the total condition variation, and was then used 220 

as the body condition variable in our analyses. The mean time difference between our 221 

assessment of parasite richness (i.e. a given faecal sample) and the closest estimate of 222 

age/condition (at capture) was 73.4 ± 46.9 days. 223 

Sex was determined by visual inspection. To establish dominance ranks, agonistic and 224 

approach/avoid interactions (following Smuts 1985) were collected using ad libitum and focal 225 

observations across the study period (for details see: Huchard et al. 2009b). In order to control 226 

for differences in troop size, an animal’s absolute rank is divided by the total number of 227 

individuals in the group – thus alpha animals have the smallest rank. Ranks were estimated 228 

for sexually mature individuals (females reach sexual maturity around 4 years of age and  229 

males around 5 years of age: e.g. Altmann and Alberts 2003). 230 

In summary, the data available for each individual variable were as follows: 86 231 

individuals (662 samples) for sex, 76 individuals (613 samples) for age, 73 individuals (456 232 

samples) for body condition, and 44 individuals (298 samples) for dominance rank. 233 

 234 
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 11 

Statistical analyses 235 

To test the influence of socio-ecological factors on individual parasite richness, we ran five 236 

sets of Linear Mixed Models (LMMs) with parasite richness as the response variable. 237 

Although our response variable was discrete, we used LMMs rather than Generalized Linear 238 

Mixed Models (GLMMs) due to the need to incorporate temporal autocorrelation in the 239 

analysis (see below) which is so far only possible using LMMs fitted with a Gaussian 240 

distriution (Pinheiro  and Bates 2000). The residuals of all models were constant and normally 241 

distributed as checked by Q-Q plots and Shapiro-Wilk normality tests (P > 0.05 in all 242 

models). However, we also ran our models using GLMMs with a Poisson distribution (but 243 

without the autocorrelation term) and obtained the same results. All models tested include 244 

“baboon identity” nested in “troop membership” as random effects, to account for the non-245 

independence of multiple data collected from the same individual within a troop. Because 246 

estimations of parasite richness can increase (in a non-linear way) with faecal sample weight 247 

(Walther et al. 1995), we also controlled in each model for a potential effect of sample weight 248 

by introducing it as a fixed factor at the third polynomial degree. This degree was selected 249 

using an information theoretic approach: briefly, for each of the five models presented below, 250 

we initially compared the Akaike Information Criterion (AIC) scores of three alternative 251 

models with faecal sample weight fitted at the first, second and third order, and found that the 252 

latter consistently performed best (i.e. presented an AIC score at least two points lower than 253 

the alternative models). This third order relationship was further confirmed graphically by an 254 

asymptotic curve linking parasite richness to faecal sample weight. As a final statistical 255 

control, we also included the year of sample collection as a fixed effect. However, this was 256 

not found to be significant in any model examined and was therefore excluded in the final set 257 

of analyses, for simplicity. 258 
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 12 

The first set of analyses occurred in three successive stages, exploring the effects of 259 

the different variables at each considered scale (population, group, individual). The first 260 

model was designed to investigate the effect of a population-level factor on host parasite 261 

richness, specifically the effects of the maximum daily temperature (Tmax) averaged over the 262 

seven-day period during which the individual was sampled (Hypothesis H2; the effects of 263 

rainfall, Hypothesis H1, were tested independently due to the limited number of rainfall 264 

events: see below). We further explored if Tmax collected before the time of faecal collection 265 

predicted parasite richness better than contemporary measures by using an additional subset 266 

of lagged models for Tmax. These models included maximum daily temperature averaged 267 

across the seven-day period occurring one, two, three, four or five weeks before the sampling 268 

date, compared by AIC and the Tmax p-value. The model including Tmax averaged four 269 

weeks before sampling performed best (see Supporting Information Table S1), and was 270 

therefore used in further analyses (the global model).  271 

The second model was designed to investigate the group-level effects of home range 272 

productivity (H3) and ranging behavior (H4.a,b) on host parasite richness. Therefore, it 273 

included home range NDVI, home range area, and daily travel distances as fixed effects. As 274 

for Tmax, we also tested the NDVI measure lagged for 10, 20 and 30 days before sampling 275 

(as NDVI data were available for 10 days intervals), but found that contemporary NDVI 276 

performed best (see Supporting Information Table S2). 277 

The third model was designed to investigate the first three of our four individual-level 278 

effects, namely age (H5), sex (H6), and body condition (H7), on host parasite richness. These 279 

variables were all included as fixed effects in the same model. Age was introduced at the third 280 

polynomial degree to account for a potential non-linear effect, which was suggested by 281 

graphical exploration of the raw data and by a model AIC score 2 points lower than the 282 

alternative models (i.e. with first or second polynomial degrees). Crown-rump length was 283 
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 13 

additionally introduced in the model, to control for body size when investigating condition 284 

effects (Jakob et al. 1996). To investigate the effects of our fourth individual-level factor on 285 

host parasite richness, namely social rank (H8), we ran the individual-level model again for 286 

the subset of animals for whom social ranks were available (N = 44 adults), adding social 287 

rank as a fixed effect. We also included a sex*rank interaction term to account for profound 288 

sex differences in the acquisition of rank in this species (stable and heritable ranks among 289 

females; fluctuating ranks determined by fighting ability among males). 290 

Following our analyses of the factors determining host parasite richness at each of the 291 

three spatial scales, we ran a final model to integrate our findings and to explore the relative 292 

importance of each of these factors across scales. This global model included all the variables 293 

that were found to be significant in the single-scale models, and was run using the full sample 294 

(juveniles and adults). In order to compare the effect sizes of each variable in this global 295 

model, all variables were standardized to have a mean of zero and a standard deviation of one. 296 

In each model, we controlled for the temporal dependence of observations (i.e. temporal 297 

autocorrelation) by including a temporal correlation structure of the residuals. We compared 298 

the AIC of models having an autoregressive structure of order 1 to 7 (i.e. 1 to 7 lags of 299 

dependence between observations). In all the model sets described above, the final model 300 

with order 5 obtained the lowest AIC and was therefore selected. This was implemented using 301 

the correlation structure corARMA (Pinheiro  and Bates 2000) in the nlme package of R 2.8.0 302 

(R Development Core Team, 2003). The significance of fixed effects was evaluated using F-303 

tests according to the principle of marginality, testing each fixed effect coefficient when all 304 

other fixed effects are present in the model. Statistical significance is reported for full models 305 

(i.e. inferences were drawn with all predictors present) throughout (Mundry and Nunn 2009; 306 

Whittingham et al. 2006). The significance of random effects was tested by performing 307 

likelihood ratio tests (following a χ2 distribution) comparing two models differing only in the 308 
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presence of this effect. In all models, the random effect “troop identity” did not significantly 309 

affect individual parasite richness (Likelihood Ratio Test, P > 0.05) whereas “baboon 310 

identity” always had a significant effect (Likelihood Ratio Test, P < 0.001).  311 

 312 

RESULTS 313 

 314 

A total of 11 species or morphotypes of intestinal parasites including five nematodes, 315 

one acanthocephalan and nine protozoan, were found in the faeces of P. ursinus at Tsaobis 316 

(Table 2). One type of nematode egg, that occurred in 6% of individuals, could not be 317 

identified further (named Egg 1 hereafter). Based on species/morphotype, the median 318 

individual parasite richness was 3.00 (range= 0-8, mean ± SD= 3.2 ± 1.3).  319 

 320 

[Please insert Table 2 here] 321 

 322 

Population-level environmental determinants of parasite richness (H1-H2) 323 

Host parasite richness decreased across the dry season (Fig. 1). However, a peak was 324 

observed in November 2005 (median= 4.0; mean ± SD= 3.8 ± 1.3), 10 days after the first and 325 

only rain recorded in the study period (16mm, 29/10/05). During November, average 326 

individual values of parasite richness were significantly higher than in October 2005 327 

(median= 3.0, mean ± SD= 2.9 ± 1.1, Mann-Whitney test: W= 1345.5, n= 86 individuals, P = 328 

0.002), supporting our hypothesis that parasite richness increases after rainfall (H1). This 329 

difference was driven by protozoans (analyses excluding protozoans: W= 3435, n=86, P = 330 

0.25).  331 
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The best temperature predictor was Tmax averaged across the fourth week preceding 332 

the sampling date (Table 3, Table S1), suggesting a lagged response of parasite richness. 333 

Thus, host parasite richness was higher following hot weather four weeks earlier (Fig. 2).  334 

 335 

Group-level ranging determinants of parasite richness (H3-H4) 336 

Host parasite richness increased when groups travelled further, as predicted by 337 

hypothesis H4.b. In contrast, there was no effect of home range NDVI (H3, for either 338 

contemporary or lagged measures, Table S2) or home range area (H4.a) (Table 3). 339 

 340 

Individual-level trait determinants of parasite richness (H5-H8) 341 

Across all individuals, host age, sex, and body condition (together with body size, 342 

included as a control variable for condition) influenced host parasite richness (Table 3). Host 343 

parasite richness initially increases with age (supporting H5.a), but then peaks around sexual 344 

maturity, following which it declines (supporting H5.b) (Fig. 3). The sex effect indicated that 345 

parasite richness was higher in females than in males (contrary to H6), while the condition 346 

effect suggested that animals in better condition exhibited lower parasite richness (in support 347 

of H7.b) (Table 3, Fig. 4). Among adults only, we found no evidence that dominance rank 348 

affected parasite richness (failing to support H8), while the effects of age and sex were no 349 

longer significant (P > 0.05 in each case). The age effect remained non-significant when age 350 

was included at the first or second order (instead of the third) in this last model (after sexual 351 

maturity, the relationship between age and parasite richness appears roughly linear, Fig. 3). 352 

However, adults in better condition still exhibited lower parasite richness than those in poor 353 

condition (F = 4.43, P = 0.03).  354 

 355 

[Please insert Table 3 here] 356 
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 357 

Integrated global model for multiple-scale effects on parasite richness 358 

The integrated model corroborated the single-scale models (Table 4). A comparison of 359 

the effect sizes indicates that age had by far the strongest influence on parasite richness (effect 360 

size = 3.92 ± 1.46) followed by sample weight (effect size = 2.75 ± 1.03). Sex and body 361 

condition (together with body size) had comparable effect sizes, which were almost an order 362 

of magnitude smaller than the age effect (effect size mean ± SD = -0.47 ± 0.19 and -0.43 ± 363 

0.13 respectively). Finally, travel distance and lagged Tmax had the smallest effects (effect 364 

size = 0.21 ± 0.06 and 0.22 ± 1.07 respectively). 365 

 366 

[Please insert Table 4 here] 367 

 368 

DISCUSSION 369 

 370 

Identifying the determinants of multiple parasite infections in wild animals is crucial 371 

for both fundamental and applied, conservation-based, reasons, since they may represent 372 

important drivers of both evolutionary change and population dynamics. However, there are 373 

surprisingly few studies of the drivers of parasite richness in wild populations (Tompkins et 374 

al. 2010), and most of these have worked at a single spatial scale. In this study, we found that 375 

gut parasite richness in a wild primate population increases with higher rainfall and maximum 376 

daily temperature at the population level, and with longer daily travel distances at the group 377 

level, as well as showing more complex covariation with age, sex, and body condition at the 378 

individual level. These findings, and how they compare to previous studies on parasite 379 

richness in wild populations, are summarised in Table 5. Finally, integrating our analyses 380 
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across the three scales of population, group, and individual, suggests that host age is the 381 

primary predictor of parasite richness.  382 

 383 

[Please insert Table 5 here] 384 

 385 

At the population level, we observed significant effects of rainfall and maximum daily 386 

temperature on host parasite richness, indicating an important influence of climatic conditions 387 

on parasite encounter rates. The increase in water-borne protozoan parasites associated with 388 

rainfall represents a preliminary result since it is based on only a single rainfall event. 389 

Nevertheless, it provides circumstantial evidence that precipitation can increase parasite 390 

richness on a short timescale (H1). Parasite richness also increased following a period of hot 391 

weather but with a four-week lag (H2). The mechanisms linking temperature to gastro-392 

intestinal parasite prevalence have been extensively studied, with several species of helminths 393 

requiring a minimum temperature for development (Boag 1985), having shorter generation 394 

times at relatively high temperatures, and/or producing more intermediate stages in their life 395 

cycle when temperature increases (Pietrock and Marcogliese 2003). Protozoan taxa are 396 

similarly affected, commonly displaying higher reproductive rates at higher temperatures 397 

(Rodriguez-Zaragoza 1994). The lagged response most likely reflects the cumulative time 398 

required by the free-living stages of parasites to react to environmental variation and for the 399 

host to be exposed to, and contaminated by, the growing populations of infectious parasitic 400 

forms.  401 

At the group level, we found that longer daily travel distances (H4.b) but not larger 402 

home ranges (H4.a) were associated with higher host parasite richness. This supports the idea 403 

that more intensive movement patterns within a relatively stable home range, rather than 404 

variation in the home range area itself, are associated with increased parasite exposure and 405 
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subsequent infection with parasites that accumulate in the environment and mature in the host 406 

to produce ova (Nunn and Altizer 2006). The lack of association between home range NDVI 407 

and parasite richness (H3) further suggests that group-level changes in parasite encounter 408 

rates primarily result from the group’s behavioral response to environmental variation rather 409 

than fluctuations in the density of infectious parasite stages, i.e. the baboons encounter more 410 

parasites because their groups are travelling further, not because there are more parasites to 411 

encounter per unit distance travelled. 412 

At the individual level, we found co-variation between parasite richness and age, sex 413 

and body condition. Previous research on the age-parasite richness relationship (H5) has 414 

produced inconsistent results when assuming a linear pattern (Table 5). Our finding of a non-415 

linear relationship, positive before sexual maturity but negative afterwards, might help to 416 

explain these inconsistencies – and reflect a combined effect of both encounter and infection 417 

probabilities. In the first case, the positive part of the curve might reflect cumulative exposure 418 

to parasites if the probability of encountering new parasite species is constant over time 419 

(Nunn and Altizer 2006). This would suggest a relatively slow rate of acquisition of new 420 

infections by young animals in this population. In the second case, the negative part of the 421 

curve, exhibiting a weaker slope, might reflect an improved adaptive immune response 422 

following repeated exposures to parasites (Hudson and Dobson 1997) and/or better 423 

survivorship of those individuals possessing stronger immune defenses against multiple 424 

infections. This hypothesis is supported by a recent study in this same population, where 425 

MHC heterozygotes (class II Mhc-DRB region) appeared to show higher survivorship 426 

(Huchard et al. 2010). Heterozygosity at MHC class II loci has already been found to mediate 427 

individual parasite richness in natural populations (Goüy de Bellocq et al. 2008; Oliver et al. 428 

2009). Multiple infections might thus constitute the selective pressure increasing the mortality 429 

rate of individuals with low MHC diversity, if they display limited ability to fight multiple 430 
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parasites, as previously found in fish hosts (Simkova et al. 2006). Notably, a recent 431 

comparative primate study found that parasitic nematode richness associated positively with 432 

the nonsynonymous nucleotide substitution rate at the functional part of the MHC molecule, 433 

but not with MHC allelic diversity (Garamszegi and Nunn 2011). It is also possible that the 434 

weaker relationship linking age to parasite richness after sexual maturity might at least 435 

partially reflect the stabilization of individual parasite communities when they have reached a 436 

given threshold, mediated through competitive interactions among multiple co-infecting 437 

parasites (decreasing the probability of subsequent infection by additional parasite species) 438 

(Graham 2008).  439 

 We also found that females harbour more parasite species than males (H6). Although 440 

males are generally found to be more susceptible to parasitism than females (e.g. Klein 2004), 441 

results from primate field studies have been less consistent, with several reported cases of 442 

female-biased parasitism (e.g. Clough et al. 2010; reviewed in Nunn and Altizer 2006). In this 443 

case, there is no reason to expect female baboons to have a higher probability of encounter 444 

with parasites than males, so the most likely explanation for this difference is that females 445 

have a higher susceptibility to infection. One possibility is a social effect, given that all adult 446 

males outrank all adult females, but the lack of a sex*rank interaction does not support this. 447 

Alternative explanations may relate to the costs of reproduction in females, including the 448 

production of exaggerated sexual swellings when cycling and the nutritional stress associated 449 

with pregnancy and lactation, or to complex interactions between sex hormones and immune 450 

status. A recent field study in lemurs reported immune-enhancing effects of testosterone on 451 

parasite species richness, suggesting that differences in immune responses due to sex steroids 452 

might potentially lead to female-biased parasitism, at least in the case of host parasite richness 453 

(Clough et al. 2010).   454 
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Parasite richness was higher in poor-condition animals (H7.b) but there was no 455 

evidence that dominant animals carried more or fewer parasite taxa (H8). Our findings for the 456 

effects of physical condition corroborate the results of the one previous study to date that has 457 

also explored this relationship (Lello et al. 2005). The negative association between body 458 

condition and parasite richness suggests a role of infection rather than encounter probability, 459 

but the direction of the causal arrow remains uncertain: while poor condition might reflect a 460 

host’s weak capacity to fight parasites on the one hand, it’s also possible that the deleterious 461 

effects of multiple infections could lead to poor condition on the other. In the latter case, 462 

although most of the parasites reported here are not thought to be highly pathogenic, some 463 

might still impact baboon health (Ruch 1959). The amoeba E. histolytica can cause severe 464 

diarrheal and dysenteric diseases, and affect the liver, lungs, brain, and other areas; while 465 

others like B. coli can become pathogenic if the host’s natural resistance is depleted by a poor 466 

diet (Ruch 1959). Whatever the causal direction, the observed association may help to explain 467 

why females in better condition in this population display a higher reproductive success 468 

(Huchard et al. 2009b). Our lack of rank effect was in contrast to theoretical expectations but 469 

consistent with most previous empirical studies in primates (Table 5), and may reflect 470 

confounding co-variation between rank and condition. 471 

 When focusing solely on adults, body condition remained the only individual trait 472 

influencing parasite richness. In comparison with the full model including juveniles, the 473 

disappearance of both age and sex effects reflects either decreased statistical power arising 474 

from a smaller sample, or a weaker influence of such traits after sexual maturity. The latter 475 

hypothesis is plausible in the case of age, since the slope of the relationship linking age to 476 

parasite richness weakens in adulthood (Fig. 3), but seems counter-intuitive in the effect of 477 

sex, which is usually reinforced among sexually mature individuals. Given that sex ratios are 478 

relatively balanced in both our full and restricted sample, the disappearance of this effect 479 

Page 20 of 40

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 21 

among adults might reflect a genuine pattern. Post-hoc interpretation is necessarily 480 

speculative, but could involve parental investment or maternal effects preferentially biased 481 

towards male offspring, which might translate into improved parasite resistance in early life 482 

(Hayward et al. 2010) - although the hypothesis of sex-biased maternal investment has not 483 

been strongly supported by empirical studies of non-human primates so far (Bercovitch 2002; 484 

Brown 2001). 485 

 The final global model integrating variables across scales largely confirmed the results 486 

obtained within scales (all variables previously found to be significant in their respective 487 

single-scale models remained significant in the multi-scale model), but also emphasized the 488 

importance of working at multiple ecological scales. Comparing the effect sizes of each 489 

variable in the global model suggests that the individual-level factors have a higher influence 490 

on patterns of variation in parasite richness than population- or group-level factors. In fact, 491 

age had by far the biggest effect on parasite richness, followed by sex and body condition, and 492 

finally by maximal daily temperature and daily travel distance. As such, the global model 493 

suggests that, while variation in encounter probability at both the population and group level 494 

do influence host parasite richness, the strongest effects are related to both encounter and 495 

infection probabilities at the individual level. Two areas of uncertainty in this interpretation 496 

should be highlighted. First, due to the difficulties involved in working at wider spatial scales 497 

with large social vertebrates, our sample of groups and populations is necessarily small. 498 

Similarly, we only sample one season (the dry winter season) over two years, and it is 499 

possible that in other seasons and/or years different patterns would be obtained. Extrapolation 500 

of our conclusion (that individual-level processes play the predominant role) beyond the 501 

sample and conditions investigated here should therefore be made with caution. Second, 502 

estimation of the relative importance of encounter and infection probabilities at the individual 503 

level is challenging. On the one hand, the effects of body condition (and probably sex) 504 
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emphasize the importance of susceptibility to infection at the individual level. On the other, 505 

the age effect includes both encounter and susceptibility to infection, with the former having 506 

the strongest effect (since the negative relationship between age and parasite richness after 507 

maturity is relatively weak). While neither of these uncertainties can be fully resolved here, 508 

they do help to highlight those areas that might be prioritized for further research. 509 

 In conclusion, these findings demonstrate that host parasite richness in animal 510 

populations may be associated with a range of factors operating on multiple scales. In this 511 

case, parasite richness is highest in poor-condition females at the time of sexual maturity, 512 

when their social group is travelling longer daily distances, and when environmental 513 

conditions are characterized by high rainfall and temperature. This study also suggests that 514 

individual traits, acting through both encounter and infection rates, can have a higher impact 515 

on parasite richness than group- or population-level factors acting through encounter rates 516 

alone. Our results emphasise the value of integrative approaches based on the longitudinal 517 

sampling of known animals in well-documented ecological contexts, and suggests that such a 518 

design can provide unique insights into the relative importance of different factors shaping 519 

host parasite richness and its impact in wild populations. 520 

 521 
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Table 1. Potential factors influencing host parasite richness explored in this study. Factors are grouped by the scale at which they operate 1 

(population, group, and individual). Further information is also provided on the proposed mechanism (whether each factor is more likely to 2 

influence parasite richness through the probability of parasite encounter or susceptibility to infection following encounter). The positive effect of 3 

a considered factor is noted (+), and a negative effect is noted (-). 4 

 5 

Scale Factor Hypotheses under test  

Population Rainfall H1 
(+) encounter probability ~ due to the accelerated development, replication or survival of parasites 

in wetter conditions (Nunn and Altizer, 2006). 

 

Temperature  H2 
(+) encounter probability ~ due to the accelerated development, replication or survival of parasites 

in hotter conditions (Nunn and Altizer, 2006). 

Group 
Home range 

productivity 
 H3 

(+) encounter probability ~ because vegetation can be a surrogate measure of environmental 

moisture and thermal conditions for parasites (Bavia et al., 2001) or can represent a breeding or 

sheltering site for parasites (Ceccato et al., 2005; Lindsay et al., 1991) 

 

 H4.a 

Home range size: 

(+) encounter probability ~ due to an increased probability of encounters with parasites in a larger 

home range (Nunn and Altizer, 2006).  

 

Ranging 

behavior 

H4.b 

Daily travel distance: 

(+) encounter probability ~ due to an increased probability of encounters with parasites in a more 

intensively used home range (Nunn and Altizer, 2006).  

Individual H5.a  
(+) encounter probability ~ due to an accumulation of parasites in older individuals resulting from a 

stable probability of encounters with new parasites over time (Nunn and Altizer, 2006) 

 
Age 

H5.b  
(-) susceptibility to infection ~ due to a reinforced immunity in older individuals following repeated 

contacts with multiple parasites (Hudson and Dobson, 1997) 

Page 29 of 40

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 
6 

1 
Here assuming high social rank for dominant individuals, low social rank for subordinates 7 

 8 

 9 

 
(+ males) encounter probability ~ higher parasite richness in males due to higher consumption of 

food and thus more opportunity to eat contaminated items (Nunn and Altizer, 2006) 

 
Sex  H6 

(+ males) susceptibility to infection ~ higher parasite richness in males (Zuk and McKean, 1996), 

due to immunosuppression typically resulting from elevated testosterone levels (Roberts et al., 

2004)  

 

H7.a 
(+) exposure probability ~ animals that eat more are in better physical condition but also have more 

opportunity to eat contaminated items (Nunn and Altizer, 2006) 

 

Physical 

condition 

H7.b 
(-) susceptibility to infection ~ due to a better ability to resist infections for animals in good physical 

condition (Irvine et al., 2006)  

 

H8.a 

(+) encounter probability ~ higher parasite richness in dominant individuals due to higher 

consumption of food and thus more opportunity to eat contaminated items (Nunn and Altizer, 

2006) 

 
Social rank

1
 

H8.b 
(-) susceptibility to infection ~ higher parasite richness in subordinate individuals due to stress 

compromising immunocompetence (Nunn and Altizer, 2006)  
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Table 2. Individual patterns of parasite infection (662 samples, 86 individuals), with 

species/morphotypes ordered by prevalence. The “Medium Amoebae” category includes E. 

histolytica, E. dispar and I. buetchlii. The “Small Amoebae” category includes E. hartmanni, 

E. nana, and D. fragilis. “Egg 1” corresponds to an unidentified nematode species. For 

nematodes, the median and range of intensity of infection is expressed in egg per gram. For 

protozoans, the intensity of infection is expressed as a score on a 5-point semi-quantitative 

scale (0-4). Parasite prevalence is expressed as the number of individuals infected by a given 

parasite species (or category in the case of medium and small amoebae) divided by the total 

number of individuals, and is given in percentage.  

 

Species Median Range Prevalence (%) Parasite  phylum 

Streptopharagus pigmentatus  153.4 0.0-4431.5   77.5 Nematode 

Entamoeba coli 1.6 0.0-3.0 77.1 Amoeboid 

Balantidium coli 1.3 0.0-4.0 66.6 Ciliate 

Small-sized amoebae 0.4 0.0-3.0 30.3 Amoeboid 

Chilomastix mesnili 0.3 0.0-1.7 23.1 Flagellate 

Medium-sized amoebae 0.5 0.0-2.0 21.9 Amoeboid 

Physaloptera caucasia  0.0 0.0-464.5 14.6 Nematode 

Unidentified species (Egg1) 0.0 0.0-30.7 5.8 Nematode 

Ascaris sp. 0.0 0.0-81 0.02 Nematode 

Subulura sp. 0.0 0.0-98 0.01 Nematode 

Macracanthorhynchus hirudinaceus 0 .0 0.0-1 0.01 Acanthocephalan 
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Table 3. Influence of environmental factors, ranging behavior, and individual traits on 

individual baboon parasite richness. Each model represents a different scale: population-level 

factors (524 samples, 82 individuals, AIC=1685.28), group-level factors (599 samples, 86 

individuals, AIC=1955.47) and individual-level factors (456 samples, 73 individuals, 

AIC=1437.07). 

 

1 
Daily maximum temperature is averaged over the seven-days occurring four weeks before sample collection 

(see results) 

2
 The reference category for sex is female. 

Model Variables Estimate SE F-value df P-value 

       

Population level Sample weight^3 2.06 1.17 3.16 3 0.03 

 Tmax 
1
 4.83 1.73 7.75 1 <0.01 

       

Group level Sample weight^3 2.20 1.19 3.02 3 0.03 

 Home range NDVI 3.31 4.28 0.6 1 0.44 

 Home range area -0.01 0.01 1.44 1 0.23 

 Travel distance 0.28 0.07 15.95 1 <0.001 

       

Individual level Sample weight^3 3.30 1.06 4.32 3 <0.01 

 Age^3 3.45 1.58 2.85 3 0.03 

 Sex 
2
 -0.53 0.19 7.5 1 <0.01 

 Body condition -0.18 -0.08 5.08 1 0.02 

 Body size 0.01 0.01 4.45 1 0.04 
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Table 4. Multiple-scale influences on baboon parasite richness (386 samples, 72 individuals, 

AIC= 1170.02). All variables were standardised (mean of zero, standard deviation of one) and 

are ordered by their effect size.  

 

Variables Estimate SE F-value df P-value 

Age^3 3.92 1.46 4.41 3 <0.01 

Sample weight^3 2.75 1.03 5.79 3 <0.001 

Body size 0.48 0.19 6.24 1  0.01 

Sex 
1
 -0.47 0.19 5.97 1  0.02 

Body condition -0.43 0.13 11.22 1 <0.001 

Tmax (with four-week lag) 
2
 0.22 1.07 5.79 1 <0.01 

Travel distance 0.21 0.06 10.56 1  0.001 

1
 The reference category for sex is female. 

2
 Daily maximum temperature is averaged over the seven-days occurring four weeks before sample collection 

(see results) 
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Table 5. Evidence from previous empirical studies. Previous studies in captivity, or studies 

examining other parasitic measures such as prevalence or load, are not reported here. The positive 

effect of a considered factor is noted (+), a negative effect is noted (-), and no effect is noted by (0). 

 

Scale Factor Evidence from previous empirical studies This study 

Population Rainfall 

(+) comparative studies: bacteria across human populations (Guernier et 

al., 2004); gamasid mites across small mammals (Krasnov et al., 

2008) 

(0) field study of helminths in red foxes (Barbosa et al., 2005) 

(+) 

 

Temperature 

(+) comparative study of fungi in French forest (Vacher et al., 2008); 

field study of helminthes in red-legged partridge (Calvete, 2003) 

(0) comparative studies: all parasite types in humans at large 

geographical scale (Guernier et al., 2004); endo- and ectoparasites in 

fish (Rohde and Heap, 1998); field study of helminthes in red foxes 

(Barbosa et al., 2005) 

(+) 

Group 
Home range 

productivity 
No previous studies 0 

 
Home range 

size 

(0) comparative study of gut parasites in mammals
 

(Watve and 

Sukumar, 1995) 

(-) comparative study of helminths in mammals (Bordes et al., 2009) 

0 

 
Daily travel 

distance 

(+) comparative study of helminths in primates (Nunn and Dokey, 

2006); field study of chigger infections in California meadow mice 

(Mohr and Stumpf, 1964) 

(+) 

Individual Age 

(+) Longevity: comparative studies of Protozoans across primates 

(Nunn et al., 2003); ectoparasites across Pericidae fish (Ranta, 1992); 

helminths across freshwater fish (Bell and Burt, 1991); field study of 

endo- and ectoparasites in coral-reef fish (Lo et al., 1998) 

(0) Longevity: comparative study of ectoparasites across cyprinid fish 

(Simkova et al., 2006); field studies of gut parasites: red-fronted 

lemurs (Clough et al., 2010); mandrills (Setchell et al., 2007); 

chimpanzees (Muehlenbein, 2005) 

(-) Longevity: comparative study of helminths across mammals 

(Morand and Harvey, 2000) 

Polynomial 

relationship 

with (+) 

effect before 

sexual 

maturity and 

a (-) effect 

for adults 

 

Sex 

(+ males) comparative study: ectoparasites in small mammals (Morand 

et al., 2004); field study of fleas in desert rodents (Krasnov et al., 

2005) 

(+ females) field studies: fleas in rodent Acromys russatus (Krasnov et 

al., 2005); lice in neotropical birds (Clayton et al., 1992) 

(0) No bias: field study of gut parasites in red-fronted lemurs (Clough et 

al., 2010) 

(+ females) 

 
Physical 

condition 
(-) field study of helminths of the wild rabbit (Lello et al., 2005) (-) 

 

Social rank
1
 

(+) field study of gut parasites in chimpanzees (Muehlenbein, 2005) but 

analyses not shown. 

(0) field studies: gut parasites in ursine colobus (Teichroeb et al., 2009); 

red-fronted lemurs (Clough et al., 2010); mandrills (Setchell et al., 

2007) 

0 
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1 
Here assuming high social rank for dominant individuals, low social rank for subordinates 
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Figure legends  

 

Fig. 1. Temporal variation of parasite richness during the study period. Monthly variation in 

parasite richness for the 2005 and 2006 study periods (means and standard errors) are 

displayed in the top panel. Monthly parasite prevalence (expressed as a fraction of total 

individuals) for each parasite species or morphotype for the 2005 study period are displayed 

on the bottom panel.  

 

Fig. 2. Relationship between host parasite richness and daily maximum temperature (Tmax), 

averaged over the seven-days occurring four weeks before sample collection. The means and 

standard errors of Tmax for each parasite richness score are shown. 

 

Fig. 3. Relationship between host parasite richness and age. Circles represent the mean 

parasite richness for an individual. The fitted line was drawn using a locally weighted 

polynomial regression (Cleveland, 1979) with the lowess command in R 2.8.0 (R 

Development Core Team, 2003). 

 

Fig. 4. Relationship between host parasite richness and physical condition. The means and 

standard errors of physical condition for each parasite richness score are shown. 
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