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ABSTRACT. While studying finite amplitude ultrasonic wave resonance in a one dimensional liquid-filled 
cavity formed by a narrow band transducer and a plane reflector, subharmonics of the driver’s frequency were 
observed (1,2) in addition to the expected harmonic structure.  Subsequently, it was realized that the system was 
one of the many examples of parametric resonance in which the observed subharmonics are parametrically 
generated. The generation mechanism also requires a sufficiently high threshold value of the driving amplitude 
so that the system becomes increasingly nonlinear in response.  The nonlinear features were recently 
investigated and are the focus of this paper.  An ultrasonic interferometer with optical precision was built.  The 
transducers were compressional, undamped quartz and Lithium Niobate crystals ranging from 1-10 MHz, 
driven by a high power amplifier.  Both an optical diffraction system and a receiver transducer attached to an 
aligned reflector were used to observe the generated frequency components in the cavity.  There are at least 5 
regions of excitation that were identified:  

1. Linear region: at low intensity of the ultrasonic wave only the driving frequency component is present. 
The diffraction pattern of a light beam, normal to the sound field, is symmetric.  

2. Nonlinear region: with increased sound amplitude the diffraction pattern becomes asymmetrical 
indicating the generation of harmonics.   

3. Subharmonic region:  with further increase of the amplitude above a threshold value (and sensitive to 
alignment of the transmitter and the reflector), subharmonics are generated which are indicated by 
additional orders in the diffraction pattern.  

4. Chaos: at sufficiently high ultrasonic amplitude the diffraction pattern is smeared out. This region is 
identified as the Chaotic Region.  

5. Beyond chaos: further increase of the amplitude produces a stable pattern beyond the chaotic region. 
The diffraction pattern is almost continuous indicating many low frequency components. 

A first-principle-based explanation of the experimental findings is presented. 
 
INTRODUCTION. It is well known that if a parameter of an oscillatory system varies periodically 
between certain limits, the system can also oscillate with a frequency roughly equal to one-half of the driving 
frequency. The term parametric excitation is used to describe such phenomena.  The most quoted, readily 
observed, and understood problem was reported by Melde in 1859. Melde’s experimental arrangement 
consisted of a stretched string of length l and mass per unit length  with one end fastened to the prong of a 
tuning fork.  When the fork set the string into longitudinal vibration with amplitude A and frequency 2, Melde 
found that transverse vibrations of displacement amplitude g were excited with frequencies nearly half of that of 
the tuning fork. Lord Rayleigh in 1887 recognized that the subharmonic generation is the result of instabilities 
caused by variation of the tension T0 and showed that the Mathieu’s equation 
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describes the main features of the problem; where h =A/l.   Solutions of this equation are of the Floquet type. 
Recent analysis indicates (3) that Melde’s experiment may also show chaotic behavior. Other examples of 
parametric phenomena in physics are discussed in ref (4). The objective of this paper is to discuss some features 
of an ultrasonic parametric system and to demonstrate the excitation of chaos and chaos reversal in the system. 
 
ULTRASONIC PARAMETRIC GENERATOR. The ultrasonic parametric generator consists of a 
liquid filled one dimensional cavity bounded at one end by a rigid reflector and the other end by an oscillating 
boundary, a piezo-electric transducer. If the driver transducer amplitude is high, harmonics are generated by the 
nonlinearity of the medium.  If the driver amplitude is then increased to a sufficiently larger value (and when 
accurate alignment of the transducer and reflector is achieved) other frequencies, called subharmonics, are 
generated.  

A model was developed (5) which assumes that the subharmonics are parametrically excited waves 
produced by instabilities introduced through the vibration of the transducer face. The vibration of the transducer 
periodically alters the cavity length and therefore the resonant frequencies. The threshold for subharmonic 
generation depends on the amplitude of the oscillations. Parametric oscillation in a liquid filled cavity is given 
by the Mathieu-type expression 
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where g is the cavity displacement,  is the wave attenuation coefficient, c is the sound velocity,  is the 
angular frequency, a = (n/)2 where  is the nth resonance frequency, q = a(A/l) where A is the tranducer 
drive displacement amplitude, l is the cavity length, and z = t where t is time.  The conditions for threshold 
subharmonic excitation are obtained from equation (2). There are two conditions which must be satisfied: 

1. The resonant frequency of the lowest subharmonic mode must be nearly equal to one half the drive 
frequency; 

2. The amplitude A of the driver must be large enough to satisfy the threshold condition given as 
 
                                                                                 /A l c  .  (3) 

The solutions of the Mathieu’s equation occur in the alternating regions or bands of stability and instability 
(defined by the factors “a” and “q” in Eq.(2)) with increasing values of the factor “a” (see Fig. 1).   
 

 
 
 
Both a and q are functions of the transducer drive amplitude. A more complete accounting of the phenomenon 
may be described by expanding Eq.(2) to include nonlinear contributions.  The more complete equation is given 
as (5) 
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where B/A is the nonlinearity parameter of the liquid.  A first order approximation to the solution of Eq.(4) 
indicates that the threshold condition of parametric excitation is the same as that given by equation (2).  Other 
theoretical studies to address the nonlinear features of this parametric system have been reported recently (6,7). 

 
REGIONS OF ULTRASONIC WAVE GENERATION IN THE LIQUID FILLED 
CAVITY. The experimental system shown in Fig. 2 consists of an interferometer with optical precision 
controls used to adjust the positions of the piezo-electric transducer (1MHz-10MHz; driven by a powerful 
amplifier) and a receiving transducer attached to an aligned reflector with lapped flat and parallel surfaces used 
to measure the generated  frequency components in the cavity.  

A visual assessment of the phenomena is obtained by passing laser light through the ultrasonic beam as 
indicated in Fig. 3.  The laser light is diffracted into various orders n at angles n given by 
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FIGURE 1. Regions of solution for the Mathieu’s Function  



 
FIGURE 2. Experimental system 
 
 
where λ is the wavelength of the light.  Fig. 3 shows the diffraction patterns obtained for various transducer 
drive amplitudes (voltages): (a) low amplitude ultrasonic waves  (5V); (b) finite amplitude waves (50V) 
resulting in an asymmetric diffraction pattern; and (c) parametric resonance (150V) producing extra diffraction 
orders due to the generation of subharmonics. The received frequency spectrum corresponding to the parametric 
resonance region is shown in Fig. 4.  In addition to the driver transducer frequency at 5MHz, the second and 
third harmonics at 10MHz and 15MHz, as well as  subharmonics at 2.5 MHz are  displayed in Fig. 4. 
 

 
FIGURE 3. Laser beam diffraction by ultrasonic wave: a. Linear Region, b. Nonlinear Region, c. 
Subharmonic Region 
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FIGURE 4. A plot of wave amplitudes vs. Frequency components including cavity generated Fractional 
Harmonics 
 
PATH TO CHAOS. A significantly higher transducer drive voltage (450V) in the parametric resonance 
region leads to a cascade of bifurcations with increasing drive amplitudes that culminate in the generation of the 
chaotic pattern shown in Fig. 5a.  Instead of distinct diffraction orders, the laser produces a smeared out image 
due to the chaotic oscillations. Further increases in the transducer drive voltage (to 500V) leads to a second 
region of stability following the region of chaotic instability.  The diffraction pattern in the second region of 
stability is shown on Fig. 5b. The pattern is similar to that of Fig. 3c, indicating the presence of stable 
subharmonics. 
 

                
     a. Chaos                            b. Beyond Chaos 

 
FIGURE 5. Laser Beam Diffraction Ultrasonic Waves: a. In the Chaotic Region (450V)   b. Beyond Chaotic 
Region (500V). 

 
CONCLUSIONS. In an ultrasonic parametric system, increasing acoustic drive amplitudes from a region of 
oscillation stability into an unstable region leads to a cascade of bifurcations (subharmonics) culminating in 
chaotic oscillations. A further increase in the amplitude results in a reversion of the chaos into a second region 
of stability.  
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