
(12) United States Patent
Hinchey et al.

(54) SYSTEMS, METHODS AND APPARATUS FOR
MODELING, SPECIFYING AND DEPLOYING
POLICIES IN AUTONOMOUS AND
AUTONOMIC SYSTEMS USING
AGENT-ORIENTED SOFTWARE
ENGINEERING

(75) Inventors: Michael G. Hinchey, Bowie, MD (US);
Joaquin Penn, Seville (ES); Roy
Sterritt, Newtownabbey (GB)

(73) Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1342 days.

(21) Appl. No.: 11/536,969

(22) Filed:	 Sep. 29, 2006

(65)	 Prior Publication Data

US 2007/0074182 Al	 Mar. 29, 2007

Related U.S. Application Data

(63) Continuation-in-part of application No. 11/532,800,
filed on Sep. 18, 2006, now Pat. No. 7,886,273, which
is a continuation-in-part of application No.
11/461,669, filed on Aug. 1, 2006, which is a
continuation-in-part of application No. 11/203,590,
filed onAug. 12, 2005, now Pat. No. 7,739,671, which
is a continuation-in-part of application No.
10/533,376, filed on Apr. 29, 2005, now Pat. No.
7,484,688.

(60) Provisional application No. 60/789,627, filed on Mar.
28, 2006.

(1o) Patent No.:	 US 7,992,134 B2
(45) Date of Patent:	 Aug. 2, 2011

(51) Int. Cl.
G06F 9145	 (2006.01)

(52) U.S. Cl 717/126
(58) Field of Classification Search 717/126

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

	

6,901,494 132 *	 5/2005 Zumkehr et al 711/167

	

7,406,683 132 *	 7/2008 Kalidindi et al 717/137

	

7,587,711 132 *	 9/2009 Fausak 717/139

* cited by examiner

Primary Examiner John Chavis
(74) Attorney, Agent, or Firm Heather Goo

(57) ABSTRACT

Systems, methods and apparatus are provided through which
in some embodiments, an agent-oriented specification mod-
eled with MaCMAS, is analyzed, flaws in the agent-oriented
specification modeled with MaCMAS are corrected, and an
implementation is derived from the corrected agent-oriented
specification. Described herein are systems, method and
apparatus that produce fully (mathematically) tractable
development of agent-oriented specifications) modeled with
methodology fragment for analyzing complex multiagent
systems (MaCMAS) and policies for autonomic systems
from requirements through to code generation. The systems,
method and apparatus described herein are illustrated through
an example showing how user formulated policies can be
translated into a formal mode which can then be converted to
code. The requirements-based programming systems,
method and apparatus described herein may provide faster,
higher quality development and maintenance of autonomic
systems based on user formulation of policies.

27 Claims, 51 Drawing Sheets

102 ORIENTED
SPECIFICATION

MODELED
WITH MACMAS

108

3602
VISUALIZATION ANALYZERTOOL

3604

AGENT-
ORIENTED

SPECIFICATION

2602
CODE

TRANSLATOR

2604
COMPUTER
LANGUAGE
PROGRAM

3600

https://ntrs.nasa.gov/search.jsp?R=20110015388 2019-08-30T17:10:17+00:00Z

U.S. Patent	 Aug. 2, 2011	 Sheet 1 of 51	 US 7,992,134 B2

102

 Y

AGENT-
ORIENTED

SPECIFICATION
MODELED

WITH MACMAS

108

ANALYZER

104

TRANSLATOR

IMPLEMENTATION

106

FIG. 1	 100

U.S. Patent
	

Aug. 2, 2011	 Sheet 2 of 51	 US 7,992,134 B2

TRANSLATE INFORMAL SPECIFICATION INTO
PROCESS-BASED SPECIFICATION SEGMENTS

202

204
AGGREGATE THE PROCESS-BASED

SPECIFICATION SEGMENTS INTO A SINGLE
PROCESS-BASED SPECIFICATION

TRANSLATE THE SINGLE PROCESS-BASED
SPECIFICATION

INTO HIGH LEVEL LANGUAGE INSTRUCTIONS

206

208
COMPILE THE HIGH LEVEL LANGUAGE

INSTRUCTIONS INTO EXECUTABLE CODE

FIG. 2	 200

U.S. Patent	 Aug. 2, 2011
	

Sheet 3 of 51
	

US 7,992,134 B2

302
VERIFY
SYNTAX

304
MAP TO

PROCESS-BASED
SPECIFICATION

202

306
CONSISTENCY
WITH OTHER

PROCESS-BASED
SPECIFICATIONS

308
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 3	 300

U.S. Patent
	

Aug. 2, 2011	 Sheet 4 of 51	 US 7,992,134 B2

ANALYZE A FORMAL SPECIFICATION
DERIVED FROM SCENARIOS

404

NO
: LAW IN FORMAL
SPECIFICATION	 No

YES

CORRECT THE FLAW IN THE SCENARIOS

402

406

FIG. 4	 ",-400

U.S. Patent
	

Aug. 2, 2011	 Sheet 5 of 51	 US 7,992,134 B2

TRANSLATE SCENARIOS INTO A FORMAL
SPECIFICATION

502

504
ANALYZE THE FORMAL SPECIFICATION

TRANSLATE THE FORMAL SPECIFICATION
INTO SCRIPT

506

FIG. 5	 I\,— 500

U.S. Patent
	

Aug. 2, 2011	 Sheet 6 of 51	 US 7,992,134 B2

MECHANICALLY TRANSLATE DOMAIN
KNOWLEDGE INTO FORMAL SPECIFICATION

SEGMENTS

AGGREGATE THE FORMAL SPECIFICATION
SEGMENTS INTO A SINGLE FORMAL

SPECIFICATION

602

604

606
TRANSLATE THE SINGLE FORMAL

SPECIFICATION
INTO SCRIPT(S)

GENERATE A SCRIPT FROM THE SCRIPT(S)

608

FIG. 6	 \^— 600

U.S. Patent	 Aug. 2, 2011
	

Sheet 7 of 51
	

US 7,992,134 B2

702
VERIFY
SYNTAX

704
MAP TO FORMAL
SPECIFICATION

602
706	 VERIFY

CONSISTENCY
OF FORMAL

SPECIFICATION

708
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 7	 700

U.S. Patent
	

Aug. 2, 2011	 Sheet 8 of 51	 US 7,992,134 B2

802

TRANSLATE POLICY(S) INTO FORMAL
SPECIFICATION SEGMENTS

804
AGGREGATE THE FORMAL SPECIFICATION

SEGMENTS INTO A SINGLE FORMAL
SPECIFICATION

806
TRANSLATE THE SINGLE FORMAL

SPECIFICATION
INTO HIGH LEVEL LANGUAGE INSTRUCTIONS

808

COMPILE THE HIGH LEVEL LANGUAGE
INSTRUCTIONS INTO EXECUTABLE CODE

FIG. 8	 11^1'— 800

U.S. Patent
	

Aug. 2, 2011
	

Sheet 9 of 51
	

US 7,992,134 B2

902

VERIFY
SYNTAX

904

MAP TO FORMAL
SPECIFICATION

802

906
CONSISTENCY
WITH OTHER

FORMAL
SPECIFICATIONS

908
VERIFY LACK
OF OTHER

PROBLEMS

FIG. 9	 ^ 900

U.S. Patent
	

Aug. 2, 2011	 Sheet 10 of 51	 US 7,992,134 B2

ANALYZE A FORMAL SPECIFICATION
DERIVED FROM POLICY(S)

1004

NO
7 LAW IN FORMAL
SPECIFICATION	 o

YES

CORRECT THE FLAW IN THE POLICY(S)

1002

1006

FIG. 10	 1000

U.S. Patent	 Aug. 2, 2011	 Sheet 11 of 51	 US 7,992,134 B2

TRANSLATE POLICY(S) INTO A FORMAL
SPECIFICATION

1102

1104
ANALYZE THE FORMAL SPECIFICATION

TRANSLATE THE FORMAL SPECIFICATION
INTO AN IMPLEMENTATION

1106

FIG. 11	 1100

U.S. Patent
	

Aug. 2, 2011	 Sheet 12 of 51	 US 7,992,134 B2

1202

MECHANICALLY TRANSLATE POLICY(S) INTO
FORMAL SPECIFICATION SEGMENTS

1204
AGGREGATE THE FORMAL SPECIFICATION

SEGMENTS INTO A SINGLE FORMAL
SPECIFICATION

1206
TRANSLATE THE SINGLE FORMAL

SPECIFICATION
INTO IMPLEMENTATION(S)

1208

GENERATE AN IMPLEMENTATION FROM THE
IMPLEMENTATION(S)

FIG. 12	 \\^- 1200

U.S. Patent	 Aug. 2, 2011
	

Sheet 13 of 51
	

US 7,992,134 B2

1302
VERIFY
SYNTAX

1304
MAP TO FORMAL
SPECIFICATION

1202
1306	 VERIFY

CONSISTENCY
OF FORMAL

SPECIFICATION

1308
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 13	 1300

U.S. Patent	 Aug. 2, 2011	 Sheet 14 of 51	 US 7,992,134 B2

GENERATE AN AGENT-ORIENTED
SPECIFICATION MODELED WITH MACMAS

1402

1404
ANALYZE THE AGENT-ORIENTED

SPECIFICATION

TRANSLATE THE AGENT-ORIENTED
SPECIFICATION INTO SCRIPT

1406

FIG. 14	 1400

U.S. Patent
	

Aug. 2, 2011	 Sheet 15 of 51	 US 7,992,134 B2

1502
TRANSLATE POLICY(S) INTO AGENT-

ORIENTED SPECIFICATION SEGMENTS

1504
AGGREGATE THE AGENT-ORIENTED

SPECIFICATION SEGMENTS INTO A SINGLE
AGENT-ORIENTED SPECIFICATION

1506
TRANSLATE THE SINGLE AGENT-ORIENTED

SPECIFICATION
INTO HIGH LEVEL LANGUAGE INSTRUCTIONS

1508
COMPILE THE HIGH LEVEL LANGUAGE

INSTRUCTIONS INTO EXECUTABLE CODE

FIG. 15	 "Il'- 1500

U.S. Patent	 Aug. 2, 2011
	

Sheet 16 of 51
	

US 7,992,134 B2

1602
VERIFY
SYNTAX

1604
MAP TO AGENT-

ORIENTED
SPECIFICATION

1502
VERIFY

1606	 CONSISTENCY
WITH OTHER

AGENT-
ORIENTED

SPECIFICATIONS

1608
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 16	 ll-l'— 1600

U.S. Patent	 Aug. 2, 2011	 Sheet 17 of 51	 US 7,992,134 B2

TRANSLATE POLICY(S) INTO AN AGENT-
ORIENTED SPECIFICATION

1702

1704
ANALYZE THE AGENT-ORIENTED

SPECIFICATION

TRANSLATE THE AGENT-ORIENTED
SPECIFICATION INTO AN IMPLEMENTATION

1706

FIG. 17	 1700

U.S. Patent
	

Aug. 2, 2011	 Sheet 18 of 51	 US 7,992,134 B2

ANALYZE AN AGENT-ORIENTED
SPECIFICATION DERIVED FROM POLICY(S)

1804

NO
AGENT-ORIENTI
SPECIFICATION

?

YES

CORRECT THE FLAW IN THE POLICY(S)

1802

1806

FIG. 18	 1."--1800

U.S. Patent
	

Aug. 2, 2011	 Sheet 19 of 51	 US 7,992,134 B2

1902
MECHANICALLY TRANSLATE POLICY(S) INTO

AGENT-ORIENTED SPECIFICATION
SEGMENTS

1904
AGGREGATE THE AGENT-ORIENTED

SPECIFICATION SEGMENTS INTO A SINGLE
AGENT-ORIENTED SPECIFICATION

1906
TRANSLATE THE SINGLE AGENT-ORIENTED

SPECIFICATION
INTO IMPLEMENTATION(S)

1908
GENERATE AN IMPLEMENTATION FROM THE

IMPLEMENTATION(S)

FIG. 19	 1900

U.S. Patent	 Aug. 2, 2011
	

Sheet 20 of 51
	

US 7,992,134 B2

2002
VERIFY
SYNTAX

2004
MAP TO AGENT-

ORIENTED
SPECIFICATION

1902
2006

CONSISTENCY
OF AGENT-
ORIENTED

SPECIFICATION

2008
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 20	 I\,,,— 2000

U.S. Patent	 Aug. 2, 2011	 Sheet 21 of 51	 US 7,992,134 B2

00N w 0^ T

0 N
_(D

W W

r O O

_U
N r

N

Z

o^ Z
m Z

(V	 J N

CO
N

O
NV-

04
I T-

N

U

M	 00
C%4	 (Y)T

Of z N
w

CD
Z W

OW Z W
^ w a 0

Ow o
w
Y QOQ
w
W

m

U) Nr
W
Y

r
N

w
co U

co

T
N

U
Q Q

Of
Q
2E

0
Q U)

U H
w

w
0

T
0	 co o

r
co

r Z

N r	 TN	 (V N N
NN NO Tr
N

r
N N

U.S. Patent	 Aug. 2, 2011	 Sheet 22 of 51
	

US 7,992,134 B2

2202	 2204
INFORMAL	 LAWS OF

SPECIFICATION	 CONCURRENCY

2206

TRANSLATOR

2208
PROCESS-

BASED
SPECIFICATION

2210
	 2212

CODE
ANALYZER	 TRANSLATOR

2214
COMPUTER
LANGUAGE
PROGRAM

FIG. 22
	

2200

U.S. Patent	 Aug. 2, 2011	 Sheet 23 of 51	 US 7,992,134 B2

FIG. 23	 lll^- 2300

2302

2310

U.S. Patent	 Aug. 2, 2011	 Sheet 24 of 51

2402

POLICY(S)	 LAWS OF
CONCURRENCY

US 7,992,134 B2

2204

2404

TRANSLATOR

FORMAL
SPECIFICATION

2406

2408

ANALYZER

2410
CODE

TRANSLATOR

2414
COMPUTER
LANGUAGE
PROGRAM

FIG. 24	 2400

U.S. Patent	 Aug. 2, 2011	 Sheet 25 of 51	 US 7,992,134 B2

FIG. 25	 I\"- 2500

2502

2506

U.S. Patent	 Aug. 2, 2011	 Sheet 26 of 51	 US 7,992,134 B2

102
YAGENT-

ORIENTED
SPECIFICATION

MODELED
WITH MACMAS

108

ANALYZER

2602

CODE
TRANSLATOR

COMPUTER
LANGUAGE
PROGRAM

2604

FIG. 26	 "1,-2600

108 YAGENT-
ORIENTED

SPECIFICATION
MODELED

WITH MACMAS

108

ANALYZER

U.S. Patent	 Aug. 2, 2011	 Sheet 27 of 51
	

US 7,992,134 B2

2702

SCRIPT
TRANSLATOR

2704

SCRIPT

FIG. 27	 ^,- 2700

U.S. Patent
	

Aug. 2, 2011	 Sheet 28 of 51	 US 7,992,134 B2

2202
	

2204
INFORMAL	 LAWS OF

SPECIFICATION	 CONCURRENCY

2802
CSP

TRANSLATOR

2804
CSP

SPECIFICATION

2806

2808	 2810
VISUALIZATION t, --- ^ ANALYZER	 CSP TOOLTOOL

2804

MODIFIED CSP
SPECIFICATION

2212

CODE
TRANSLATOR

HIGH-LEVEL 12214
COMPUTER

FIG. 28	 LANGUAGE	 2800PROGRAM

O
O
0')
N

O
W Q
O J
OZ

O
N
_d
U-

ON
N

C9
Z W

Z >
LU

a^
7

O
m
wY

00

V-

U.S. Patent	 Aug. 2, 2011	 Sheet 29 of 51
	

US 7,992,134 B2

00
N
N

CflN
N

w Cf'

O ^—

LLJ

M O

N
_)

Z

O Z C\1 Z

V-
	 CD	 NN J	 N	 O	 O	 ^

00	 00	 NN	 N	 N

N ^
N

g

U

o
O

N

N NN O
N N

w

Q
w
IL
Y)

w
YQ
w
IL
m

00

U	 N	 CO

N
O

Z w
v" J

U Z Q
w

Oa

N

N

q
U
g0	

OV

U)
0	

o	 O	 co

N	 N	 N	 N

r
N

w
z
Ofw
F-
Z

U.S. Patent	 Aug. 2, 2011	 Sheet 30 of 51	 US 7,992,134 B2

2302

2204)/-- I	 2304
LAWS OF	 SCENARIOS	 I INFERENCE

CONCURRENCY	 I ENGINE

2306

TRANSLATOR

2308

2310
FORMAL	 ANALYZER

7	 SPECIFICATION

2312
3002 REVERSE	 SCRIPTSCRIPT	 TRANSLATOR

TRANSLATOR

2314

SCRIPT

FIG. 30	 llll^- 3000

U.S. Patent	 Aug. 2, 2011	 Sheet 31 of 51	 US 7,992,134 B2

00

N

	

LU	 M
_	 .-

	

0 F—	 Ur

	

W CL	 W
0^2

r O	 O
N	 M

Z	 J

O Z	 N Z

	

y¢ N 	 O	 NN
Q	

N > N

	

TI- 	0	 O

	

M	 M	 O(p 	 N	 N	 M	 O
N	 r,^	 NN	 ,o

_M O

N co_U	 N	 0	 0

Y	 Z~	 N	 Q	 Www^	 ZV
C	 w	 WZ	 coz wU)	 z

	

Q	
a.0̂	 ow	 CKw	 QY	 0

w	 coW	 ^
W	 WC/)	

N	 Y

N
It*	 W	 co_

N
N

N	 U	 <	 0 Qp	 0

	

0	 U	 F—

	

cn	 W
V)
	

w

0	 o	
co
	 °	 Z

N	 N	 N	 N	 N

N O	 ^t
N N	 N

U.S. Patent	 Aug. 2, 2011	 Sheet 32 of 51

2402

POLICY(S)	 LAWS OF
CONCURRENCY

US 7,992,134 B2

2204

3202

CSP
TRANSLATOR

3204

CSP
SPECIFICATION

3206

3208	 3210

VISUALIZATION	 ANALYZER	 CSP TOOLTOOL	 1*--^

3204

MODIFIED CSP
SPECIFICATION

2410

CODE

TRANSLATOR

HIGH-LEVEL2414
COMPUTER

FIG. 32	 LANGUAGE	 3200
PROGRAM

U.S. Patent	 Aug. 2, 2011	 Sheet 33 of 51 US 7,992,134 B2

w Q!

O Fw--2p
w Q_
0_

M	 OU
N

_U

Z

oM Z
Q

M Z
^`-N J
c,4

N	 (DO0	 0	 T-
M	 CN	 N ONrN

Nr
N

w

o	 0
F-

0	 o	 Cfl

N	 N	 N

w
Q
w

CL

w

Qw
Q_
co

lqtN
N

g
a
W
o ^.

0
T-
N

N NN O
^ rN N

r

00
M

N O w
UU Z Q

lom-

9 Q

O
LU

O^U^
F-

00
N

OwZ
Z_ >

Owa°
0w

O
w
Y

O

w
z
of
w
Z

IctV.
N

co
NV—
N

CDN
N

M
M

d
U-

O0
co
co

U.S. Patent	 Aug. 2, 2011	 Sheet 34 of 51	 US 7,992 ,134 B2

2502

2204	 ------
2304^

LAWS OF	 POLICY(S)
	

INFERENCE
CONCURRENCY	 I ENGINE

2504

TRANSLATOR

2506

FORMAL	
P

ANALYZERSPECIFICATION

REVERSE I	 TRANSLATOR
TRANSLATOR

2510

IMPLEMENTATION

FIG. 34	 ^,— 3400

2406

3402

^II^

0r
N

N

N

Cf)O

O Q^O
o^ 20	 U

O
co

w
Y

co

N

r̂wz-C
ŵ
z

N

0	 0
r	 r	 T
N	 N	 N

_M co

_U N co

z N O

U)
z

w

o~

O FW—

01
W 0-

chi

N
_U

z

Q
O Z M

N Q N co
0
LO
N

M

U-

O
LO
M

Y

CD
	 o

N	 M
	 0

NT-
C\1

Of
W O

LU F—

JW

Zz W

F-

OWZ U
Z W
a°

U.S. Patent	 Aug. 2, 2011	 Sheet 35 of 51
	

US 7,992,134 B2

00
Nr
N

ON
rN

W
Y
W
w
m

OMOMMENMR

rywY
w
CL
co

It
N_

N

a
`^ ro

0
N

N N
N O

N N

U.S. Patent	 Aug. 2, 2011	 Sheet 36 of 51	 US 7,992,134 B2

AGENT-
102	 ORIENTED

SPECIFICATION
MODELED

WITH MACMAS

108

3602
VISUALIZATION

TOOL ANALYZER

3604

AGENT-
ORIENTED

SPECIFICATION

CODE
TRANSLATOR

2602

2604
COMPUTER
LANGUAGE
PROGRAM

FIG. 36
3600

U.S. Patent	 Aug. 2, 2011	 Sheet 37 of 51 US 7,992,134 B2

C'7	 00
N	 r_U

z	
N

W
O0

W
J
z

O (n
Uza

w Q

a

Nr

w
N

U Qp O
2i^— UU)

0	
OO 	 Cfl

r	 r	 r	 r
N	 N	 N	 N

W

Q
wa

w
Q
w
0-
U)

N_

N

QJW
Q

Or
N

N NN Or rN N

OWz_ U

H ^zw
0 ca

0
QO
m
w
Y

cor

f
wH
z

rrN

co	 O
O	 (D
r	 N O

NrN

W Q^

O^

W W

^ O
'r- U
N

_U

z

Z c^
>

z

N	 —j

Coo
N

N

CflNrN

C'7

LL

O
O
ti
c)

27023802	 REVERSE
SCRIPT

TRANSLATOR

SCRIPT
TRANSLATOR

U.S. Patent Aug. 2, 2011	 Sheet 38 of 51	 US 7,992,134 B2

108

AGENT-
ORIENTED	 108

SPECIFICATION	 ANALYZER
MODELED

WITH MACMAS

SCRIPT

2704

FIG. 38	 3800

co
N
N

O
C'7

b

LL

w C^

OH
W

O O
N O

U co
Z

C) Z
<

Z
TT

N J N O	 00 O
I l-	 ON	 T co

C'7 ONT
N

(DNT
N

C'7
00

N	
Co

Z	 N O w	 O^a N ^aJ
U) Z Z W U Q

Q
OI

OwZ
Z >
0 0

w
Y

W
w
Cn

w
Qw
w
U) N

T

N
w

cn O	2

<O	 OU

^)-j rL-J-j 	 rL-7
U)

0	
O	 O	 Cfl

T	 T	 T	 T
N	 N	 N	 N

N

Q
O
m
w
Y

00T
N

H
w
Z

w
H
Z

T

N

N a
U

Q
J

U)
cl ItO

T
N

N NN OT TN N

U.S. Patent	 Aug. 2, 2011	 Sheet 39 of 51
	

US 7,992,134 B2

U.S. Patent	 Aug. 2, 2011	 Sheet 40 of 51	 US 7,992 ,134 B2

el—
z
O

4002	
w

^Q^ J

co
Q

— —

AA

z
O

	

4004
U
w
UJ	 SELF-

Q

	Q	
PROTECTION

(n J
m
Q

AVOID	 AVOID RUN	 AVOID LOSS
z	 CRASHING	 OUT OF	 OF
O	 POWER	 CONNECTION

N

4006 < w

	

RECOVER	 RECOVER
FROM LOSS OF	 FROM SOLAR
CONNECTEION	 STORMS

RM PROTECT FROM
z	 SOLAR STORMS
O

4008w
	Q	 MEASURE	 SWITCH OFF	 USE ALL AS ASOLAR

	Q J

	

STORMS	 SUB-SYSTEMS	 SHIELD

AUTONOMIC
FIG. 40	 PROPERTIES	 4000

U.S. Patent	 Aug. 2, 2011	 Sheet 41 of 51	 US 7,992,134 B2

^z -t
ry

4002

QPROSPECTING
m	 ASTEROID BELT

1	 (B1
`^	 v

z
O

4004	 }	 ORBIT	 SEND EARTH
^Q
^ J

m
Q

FORM ORBIT
AND MEASURE

z
IN
	 INFORM ORBIT	 MEASURE

4006Q w

U) J

ca

Q ESCAPE ORBIT	 ADJUST ORBIT	 MINFORM

z	 MEASURE	 MEASURE	 MEASURE	 MEASUREO
Fz ^	 (IMAGE)	 (GFORCE)	 (FORM)	 (GFORCE)

4008 J L) Q

CO J

CO
Q	 MEASURE	 MEASURE

(IMAGE)	 (X-RAY)

FIG. 41	 4100 AUTONOMOUS
PROPERTIES

U.S. Patent	 Aug. 2, 2011	 Sheet 42 of 51	 US 7,992,134 B2

z0
ry

4002
^ Q PROSPECTING
m	 ASTEROID BELT
Q

BB

z0
U	 EXPLORE AND

4004	 }	 DISCOVER	 APPROACH

U^

---------- T------------ t --------
m
Q

z
0 N SEARCH NEW	 INFORM	 EVALUATE	 MOVEU Ir ASTEROID	 ASTEROID

4006 Q w

Q

^Q
i

m

Z
O

MEASURE (DISTANCE)MEASURE	 DECIDE IF4008	 MEASURE (FORM)
Q	 (IMAGE)	 MEASURE (GFORCES) 	 ABORT

ma

FIG. 42	 4200 AUTONOMOUS
PROPERTIES

'w J
C^ W
Z)

w^0

W
m T- w

M —

W
Of
W

Qw
2

U.S. Patent
	

Aug. 2, 2011
	

Sheet 43 of 51
	

US 7,992,134 B2

U)
w
ryD
U)

w
2E

C7z
m

O

NO
co

FIG. 43

m

7.
ry
O
LLz

0~.^ m

m0

Ow
w^^

0 cm
CO

Q0^
mow q
W>¢

m QJ
O w

0Lu
Z W

O
cY)It

OO
co

O
Q^—

Q q_v

O

w

OwD
W

Q¢^

wW

ry

U) —
F5

LL J
W

Om

wP-0
w q U

m

W

-

co

0 z
O

^^ 4300

U.S. Patent	 Aug. 2, 2011	 Sheet 44 of 51	 US 7,992,134 B2

[SELPROTECSC.STORMINTENSITY
> RISKFORSYSTEMSFACTOR]SAILASSHIELD

4404

44 T
MEASURESTORMS

IOTECTING

[SELPROTECSC.STORMINTENSITY
> RISKFORSYSTEMSFACTOR]

SAILASSHIELD

FIG. 44	 4400

LY J WC7 J	
LU

LU

a

w°

W 0 J O	 W
W
m

O ^O J LL
LLI^C7 w

LL OJO°J O — ° F— W H Z
O z 2 0 ^°(n W

Y M2 J O J co

RECEIVER

U)
z	 [LL]

20 LO

Ow LLB

co) > Q°
Za FQ
W J Q
v ^ d

ASTEROI

z

° Q/ o F-
Of Z
w W
F

w co Z

^a
1	 Q w
1	 w z

w

^	
a LLJ

O a
O a

FIG. 45

O
LO

w

L]
W
UO
d
LiJ
W
U)

z
w
H
H

F

scDc

D 1L

N

l(1

>O

^WQ
O (if QJI

w F l
00 ED

?00
7

/ ^
0

I ~ 0 ..
z 0

r	
m
Q a O

I	 O
LLI
w Li

I ^ J
w

N
W

LLI
 Z W 2

MM IJ

^0 ^?00/

LT
C

U.S. Patent	 Aug. 2, 2011	 Sheet 45 of 51
	

US 7,992,134 B2

c9

1
LO

OcoQ Ww°

H
OLr 00 ^ O^ mm
HW W'W(A ^H ^W'
UJ Oc4J wm ppWJ JW ..W ^^ W ..
Oo OQQ° Q^ QH
a ^7^0^
LL w (^ C7 ° U
Ld

^U^O U^JQO co	 O

=\	 LO	 LO

o MEASURE	 ^/	 \

W	 \	 m	 ^
w Q	 `	 p z ^^\ ^ w	 W (~n

H0	 F-° ^t /HW	 Z D WQW\^w w

	

IIW	 O 00 I ^^ 00	 O O ^^°o ^J	 Om
0 w	 O^

ao w
	 O	 I^
 (L U)

r_j	 Q	 Q0	 J

	

1 0-
11 w	 0	 ^	 w Q

W W	 J J w	 `M^ ° J
Z0	

WL]
U) / \ Q J Wm/	 Q WQ	 °Q Q 	O 0Z0	 Ow ~ J z ^^
WW	

/	 O U-/ 	 O^ a0	 0(D^

01-0
nRRITF

O

RBITERz	 z	 z
l z -///(((\\\

N

\l
O

^

^w	 °^	 0
°	 H ~0 w m

w
Z

W
° p

22W°
p^Z)O W

M
O

a °^Wm 0
O W

Uj
J O

W
>wLL-	 (n

LU

w -i

o^ w Q Q ^O oJ2 a

(L
2	 W 00

<
^HZm

W J	 ^

F-

(X 0()'Q

(n

W
CO

^Q w N H 0 w ° ..

>O~

m 1̂ W O LLS	 W,W	 w
C07DWM

F-~OQ
F—0000

w CO 2 O

W
__ < W° Z)O Qz_	 (n

°LL22OW0	 LLB w W'W(n(n
LY	 2 2 200f QQ <mm<02

H

Q^

O U 	\^Z	 1
U W
W ~Z

^ ^	 I
00	 I

C5 C5U U
00

WWJJ
W W

W

W
U
O

LLJ
W
U)

z

W
H
a

w
0

a

U.S. Patent
	

Aug. 2, 2011
	

Sheet 46 of 51
	

US 7,992,134 B2

f

/

1

I
IY

I ^

I0
U)

I

I

C^
Q
J

0
U)

I

I
m
C0

^LL
W
O

I

1

NO0
It

0

/I

z

y W

O

0
O >Z
f- W

W W^CO^Z
U) W
Q^
W Z^m
J W
Q ^
O
0 a

0

~QU) O\Z^
WU
^-w
Z>

^^ 1
00 1

	

UU	 Iww
	00 	 I

	

^ ^	 I

J J

co co

	

^	 I
	0U 	

IOz

~W

	

U~	 IW z

00
^U

U) U)

)VdS\\
	I 	 I

A
A
I-
Z
W

oQ o
^W U
>^ >^

Z
20

LU

v OU

LU

LOBO

O
ILL J

U)I	 I U)J
WW w

I W'C
\W WZLL

W~I

J

O~ ..C/) O
0

JFi	 71-

FIG. 46

zU	 0)D
0 u o00

LI O
Qf- W

i 00 w^J
X 00 - >
n^^b 0U)
Q^ J ^ W ~
^LLOM > ?
Z) LL 2
.0 0 2 of of
J- 0 —

 -
O O 4600

Y 2 LL co co

U.S. Patent	 Aug. 2, 2011	 Sheet 47 of 51	 US 7,992,134 B2

/ESCAPEORBIT \
	 r 4512	 r4512

(GOAL: ESCAPE AN ORBIT`
'ATTERN: SELF-PROCEDUR IA

	

IN:	 OUT:	 J
ORBITER.
^RBITM

1..N

	

4502	 ORBITER

SELFPROTECTORBITER

ROLE GOAL: MAINTAIN ORBIT AND
MEASURE
MRI MEASURE GOAL: GETMODEL
MRI ORBITS GOAL: GET THE ORBIT
MODEL

MRI OFFSUBSYS GOAL: PROTECT FRO M
SOLAR STORM
MRI TRIMMINGSAILS: TRIM SAILS
ORBITM: ORBITMODEL
RELATIVEPOS: POS
ASTEROIDRELATIVEPOS: POS
ASTDATA:ASTDATA
ASTMODEL: ASTMODEL

STORMVECTOR:VECTOR3
STORMINTENSITY : REAL

ADJUSTORBIT(RELATIVEPOS,ORBITM)
PPROCESSDATA(M:MEASURE)::MODEL
PMEASUREX(INPUT)::PMEASURE
AMI INSIDEORBIT(POS,ORBITMODEL)::BO
OL
MEASUREFINISHED(ASTMODEL)::BOOL

ORBITER
1..	 A

ORBITER
1..	 B

SELFPROTECSC

1C

SELFPROTECSC
1.. \J

ORB^IT^E^R
1.. ^J

SELFPROTECSC
1.

1..N ORBITER

/ ADJUSTORBIT

GOAL: DISTRIBUTE RESULTS
PATTERN: SELF-PROCEDURE	 FIG. 47

OUT:
`QRBITM
ORBITER .
	 ASTMODE /	 4504

\	 f /	 4700

U.S. Patent	 Aug. 2, 2011	 Sheet 48 of 51
	

US 7,992,134 B2

4514
MEASURE	 \

/GOAL: MEASURE ASTEROID \
ASTEROID

1..N N:
AORBITER.ASTE-

ROIDRELATIVEPOS
450	 \

OUT:
PMEASSU-

RER.ASTMOf}EL/

<<ENVIRONMENT>>
ASTEROID

1.. N RELATIVEPO
PDATA: DATA

—REPORT
ORBIT

GOAL: REPORT ORBI

1..N
COLLABORATIONv1 IN:	 OUT:	 1..N8 ORBITMO

450 DELLER. ORBITER.I MEASURER
1,RBITM ORBITW

8 4516

SELFPROTECTORBITMO
DELER

ROLE GOAL: CALCULATE
ORBITS AND SELF
PROTECTOR
MRI GOALS: SEND ORBIT
MODELS
ASTDATA:ATE ROI DDATA
ORBITM: ORBITMODEL
CALCULATEORBIT(ASTER
OIDDATA)::ORBITMODEL

SELFPROTECTSC

OFFSUBSYS	 1..N)

PATTERN: SELF-PROCEDURE
IN:

SELFPROTECSC.STORM
-INTENSITY

1.IF

ELFPROTECSC

1..N SELFPROTECSC

F
4800

FIG. 48

SELFPROTECTREC
FIVFP

ROLE GOAL:
KNOW MODEL
MRI GOALS: GET
MODEL
MRI OFFSUBSYS
GOAL: PROTECT
FROM SOLAR
STORM
MRI
TRIMMINGSAILS:
TRIM SAILS
LISTOFMODELS:M
ODEL
LISTOFSENDERS:S
ENDER
STORMVECTOR:
VECTOR3
STORMINTENSITY :
REAL

^_ 4608T^18 i

U.S. Patent	 Aug. 2, 2011	 Sheet 49 of 51	 US 7,992,134 B2

TRIMMINGSAILS	 \

GOAL: TRIM SAILS
G

PATTERN: SELF-PROCEDURE
D

IN:

SELFPROTECSC.STORMVECTOR
SELFPROTECSC.STORM INTENSITY 	 1..N

460
SELFPROTECTSC

/	 1..N
SELFPROTECTSC

4510

ORBITER

FIG.

•
U- J
W

Om
ryw^0

cn
UJ
UJ

W q U
W

mUW
^o Oz

W

W^
Q W

2

ry ry
d U)

(00M

O
ly--
W H
H U)

Q q_Vaw
a a q

^ W Q

H
W

<<2

W W
ly- ry
H q
U) —

LL J
W

r H^Om
ry

CO

Q a
W=U
Fn W
ry^2
Oz

H
m

O

O
a
W	 5000

Z
H
m
O

U.S. Patent	 Aug. 2, 2011	 Sheet 50 of 51	 US 7,992,134 B2

mH

m0OwwW2O
^ q —>-~HO-M^mmw
F-zO-j0O-)
z0 ^—ry Q
^Q

FIG. 50
N
O
M

U.S. Patent	 Aug. 2, 2011	 Sheet 51 of 51	 US 7,992,134 B2

^Ez w^
zQo w q
^^w
0

U)

Ur J_U)

Z Q

~

W 0
U ~ Y0

q ry U)
J
w

0 d ry

w n
2 (q
U) --
U)
Q
J_

Q

	

F--	 LL ry

	

co	
0

	

r

0	
(n 0

	

r_ O	 ry Cf)

Z Q
w U
H U)
z_ w

^0

O~U
^LL
U cn
U)2Uw
^U)

a^J O
W LL

(n
ry
A

Y
^Qcn
w J 75
JU)O

z0U)
Q

0
FIG. 51	 It	 5100

US 7,992,134 B2
1

SYSTEMS, METHODS AND APPARATUS FOR
MODELING, SPECIFYING AND DEPLOYING

POLICIES IN AUTONOMOUS AND
AUTONOMIC SYSTEMS USING
AGENT-ORIENTED SOFTWARE

	
5

ENGINEERING

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional 10

Application Ser. No. 60/789,627 filed Mar. 28, 2006 under 35
U.S.C. 119(e). This application is a continuation-in-part of
co-pending U.S. application Ser. No. 11/532,800 filed Sep.
18, 2006 entitled "Systems, Methods and Apparatus for Gen-
erating a Formal Specification from Informal Requirements 15

via Pattern Matching," which is a continuation-in-part of
co-pending U.S. application Ser. No.11/461,669 filedAug.1,
2006 entitled "Systems, Methods and Apparatus for Proce-
dure Development and Verification," which is a continuation
in-part of co-pending U.S. application Ser. No. 11/203,590 20

filed Aug. 12, 2005 entitled "Systems, Methods & Apparatus
For Implementation Of Formal Specifications Derived From
Informal Requirements," which is a continuation-in-part of
co-pending U.S. application Ser. No. 10/533,376 filed Feb.
25, 2004 entitled "System and Method for Deriving a Pro- 25

cess-based Specification."

ORIGIN OF THE INVENTION

The invention described herein was made by employees of 30

the United States Government and may be manufactured and
used by or for the Government of the United States of
America for governmental purposes without the payment of
any royalties thereon or therefor.

35

FIELD OF THE INVENTION

This invention relates generally to computer software
development processes and more particularly to validating a
system implemented from requirements expressed in poli- 40

cies.

BACKGROUND OF THE INVENTION

High dependability and reliability is a goal of all computer 45

and software systems. Complex systems in general cannot
attain high dependability without addressing crucial remain-
ing open issues of software dependability. The need for ultra-
high dependability systems increases continually, along with
a corresponding increasing need to ensure correctness in sys- 50

tem development. Correctness exists where the implemented
system is equivalent to the requirements, and where equiva-
lence can be mathematically proven.

The development of a system may begin with the develop-
ment of a requirements specification, such as a formal speci- 55

fication or an informal specification. A formal specification
might be encoded in a high-level language, whereas require-
ments in the form of an informal specification can be
expressed in restricted natural language, "if-then" rules,
graphical notations, English language, programming lan- 60

guage representations, flowcharts, scenarios, goal-directed
requirement documents, or even using semi-formal notations
such as unified modeling language (UML) use cases.

Natural language scenarios can be constructed in terms of
individual scenarios written in a structured natural language. 65

Different scenarios can be written by different stakeholders of
the system, corresponding to the different views the stake-

2
holders have of how the system will perform, including alter-
native views corresponding to higher or lower levels of
abstraction. Natural language scenarios can be generated by a
user with or without mechanical or computer aid. The set of
natural language scenarios provides the descriptions of
actions that occur as the software executes. Some of these
actions will be explicit and required, while others can be due
to errors arising, or as a result of adapting to changing con-
ditions as the system executes.

For example, if the system involves commanding space
satellites, scenarios for that system can include sending com-
mands to the satellites and processing data received in
response to the commands. Natural language scenarios might
be specific to the technology or application domain to which
the natural language scenarios can be applied. A fully auto-
mated general purpose approach covering all domains is tech-
nically prohibitive to implement in a way that is both com-
plete and consistent. To ensure consistency, the domain of
application might be specific-purpose. For example, sce-
narios for satellite systems might not be applicable as policies
for systems that manufacture agricultural chemicals.

After completion of an informal specification that repre-
sents domain knowledge, the system is developed. A formal
specification is not necessarily used by the developer in the
development of a system.

In the development of some systems, computer readable
code may be generated. The generated code is typically
encoded in a computer language, such as a high-level com-
puter language. Examples of the languages include Java, C, C
Language Integrated Production System (CLIPS), and Pro-
log.

One step in creating a system with high dependability and
reliability can be verification and validation that the execut-
able system accurately reflects the requirements. Validation
of the generated code is sometimes performed through the use
of a domain simulator, a very elaborate and costly approach
that is computationally intensive. This process of validation
via simulation rarely results in an unambiguous result and
rarely results in uncontested results among systems analysts.
In some examples, a system is validated through parallel
mode, shadow mode operations with a human operated sys-
tem. This approach can be very expensive and exhibit
severely limited effectiveness. In some complex systems, this
approach leaves vast parts of possible executionpaths forever
unexplored and unverified.

During the life cycle of a system, requirements typically
evolve. Manual change to the system creates a risk of intro-
ducing new errors and necessitates retesting and revalidation,
which can greatly increase the cost of the system. Often,
needed changes are not made due to the cost of verifying/
validating consequential changes in the rest of the system.
Sometimes, changes can be simply made in the code and not
reflected in the specification or design, due to the cost or due
to the fact that those who generated the original specification
or design are no longer available.

Procedures, considered as the essential steps or actions to
achieve a result, can be used for the assembly of materials in
factories, for servicing of spacecraft (whether by astronauts,
robots, or a combination), for business operation, and for
experiments in a laboratory, to name but a few. Procedures
can be very complex, involving many interactions, may
involve many actions happening in parallel, and may be sub-
ject to significant constraints such as the ordering in which
activities must happen, the availability of resources, etc. In
many complex procedures, human error commonly results in
the entire procedure needing to be repeated ab initio. In some

US 7,992,134 B2
3

cases, such as servicing a spacecraft, recovery from some of
the more serious errors that may occur may not be possible.

As a rapidly growing field, autonomic systems (autonomic
computing and autonomic communications) is a promising
new approach for developing large-scale complex distrib-
uted' computer-based systems. In autonomic computing, the
needs of large scale systems management has been likened to
that of the human autonomic nervous system (ANS). The
ANS, through the self-regulation, is able to effectively moni-
tor, control and regulate the human body without the need for
conscious thought. The self-regulation and separation of con-
cerns provides human beings with the ability to concentrate
on high level objectives without having to micro-manage the
specific details involved.

The vision and metaphor of autonomic computing is to
apply the same principles of self-regulation and complexity-
hiding to the design of computer-based systems, in the hope
that eventually computer systems can achieve the same level
of self-regulation as the human ANS. The majority of con-
ventional systems address the "how" of autonomic systems
involving the low-level internal implementation, such as
defining autonomic managers that together with the compo-
nent that is to be managed make up an autonomic element to
exist in a collaborative autonomic environment to provide
self-management of the system. However, these efforts do not
directly address the high-level requirements of the systems
that drive autonomic systems.

For the reasons stated above, and for other reasons stated
below which will become apparent to those skilled in the art
upon reading and understanding the present specification,
there is a need in the art to produce a system that is a provably
correct implementation of agent-oriented specification, with
or without autonomic properties, and that assures the consis-
tency of such agent-oriented specifications throughout the
implementation, that precludes major discrepancies, and that
does not require use of a theorem-prover to establish correct-
ness of the implementation. There is a further need for a
convenient way of generating a new system when an agent-
oriented specification changes. There is also a need for an
automated, mathematics-based process for validation of
agent-oriented specification that does not require large com-
putational facilities.

BRIEF DESCRIPTION OF THE INVENTION

The above-mentioned shortcomings, disadvantages and
problems are addressed herein, which will be understood by
reading and studying the following discussion.

The systems, methods and apparatus described herein fol-
low an agent-oriented software-engineering (AOSE)-based
approach for modeling autonomous and autonomic proper-
ties of a system. The systems, methods and apparatus
described herein support models at different levels of abstrac-
tion that composes models to obtain a particular structural
organization. Models involved in a new policy can be com-
posed and deployed. One benefit of the systems, methods and
apparatus described herein may be that, as models can be
developed at different levels of abstraction, policies can be
specified for autonomous and autonomic systems at different
levels of abstraction that provide abstraction of intelligent
behaviors because the procedures performed inside and inter-
action can be described internally by way of neural networks,
fuzzy logic, etc., which in turn provides specification of poli-
cies over implementations.

Systems, methods and apparatus described herein can pro-
vide automated analysis, validation, verification, and genera-
tion of complex procedures, often implemented as policies.

4
The systems, methods and apparatus may include inferring an
equivalent formal model from one or more policies. Such a
model can be analyzed for contradictions, conflicts, use of
resources before the resources are available, competition for

5 resources, and so forth. From such a formal model, an imple-
mentation can be automatically generated in a variety of
notations. An implementation may include traditional pro-
gramming language code, machine language code, scripts,
and/or procedures. The approach can improve the resulting

10 implementation, which may be provably equivalent to the
policies described at the outset. In "reverse engineering"
mode, the systems, methods and apparatus can be used to
retrieve meaningful descriptions (in English, uses cases,

15 graphical notations, or whatever input notations are sup-
ported) of existing policies that implement complex proce-
dures, which may solve the need in the prior art to improve the
policy of autonomic systems. Moreover, two or more policies
can be translated to appropriate formal models, the models

20 can be combined, and the resulting combination checked for
conflicts. Then, the combined, error-free model can be used to
generate a new (single) policy that combines the functionality
of the original separate policies, and may be more likely to be
correct.

25 In other embodiments, a system may include an inference
engine and a translator, the translator being operable to
receive policy information and to generate in reference to an
inference engine, an implementation. The system may also
include an analyzer operable to perform model verification/

30 checking and determine existence of omissions, deadlock,
livelock, and race conditions or other problems and inconsis-
tencies in either the formal specification or the policy infor-
mation.

In yet other embodiments, a method may include translat-
35 ing requirements expressed informally in policy statement to

a formal specification, and analyzing the formal specification
or policy statement.

Systems, clients, servers, methods, and computer-readable
media of varying scope are described herein. In addition to the

40 aspects and advantages described in this summary, further
aspects and advantages will become apparent by reference to
the drawings and by reading the detailed description that
follows.

45	 BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that provides an overview of a
system to engineer and verify an implementation from an
agent-oriented specification modeled with methodology

50 fragment for analyzing complex multiagent systems (MaC-
MAS), according to an embodiment;

FIG. 2 is a flowchart of a method to generate an executable
system from an informal specification, according to an
embodiment;

55 FIG. 3 is a flowchart of a method to translate informal
specifications into process-based specification segments,
according to an embodiment;

FIG. 4 is a flowchart of a method to validate/update sce-
narios of a system, according to an embodiment;

60 FIG. 5 is a flowchart of a method to translate each of a
plurality of scenarios into a script, according to an embodi-
ment;

FIG. 6 is a flowchart of a method to translate domain
knowledge into a script, according to an embodiment;

65 FIG. 7 is a flowchart of a method to translate domain
knowledge into formal specification segments, according to
an embodiment;

US 7,992,134 B2
5

FIG. 8 is a flowchart of a method to generate an executable
system from a policy, according to an embodiment;

FIG. 9 is a flowchart of a method to translate policies into
formal specification segments, according to an embodiment;

FIG. 10 is a flowchart of a method to validate/update poli-
cies of a system, according to an embodiment;

FIG. 11 is a flowchart of a method to translate one or more
policies of a system into an implementation, according to an
embodiment;

FIG. 12 is a flowchart of a method to translate each of a
plurality of policies to an implementation, according to an
embodiment;

FIG. 13 is a flowchart of a method to translate policies into
formal specification segments, according to an embodiment;

FIG. 14 is a flowchart of a method to validate/update an
agent-oriented specification modeled with MaCMAS of a
system, according to an embodiment.

FIG. 15 is a flowchart of a method to generate an executable
system from a policy, using an intermediate agent-oriented
specification, according to an embodiment;

FIG. 16 is a flowchart of a method to translate policies into
agent-oriented specification segments, according to an
embodiment;

FIG. 17 is a flowchart of a method to translate one or more
policies of a system to an implementation, using an interme-
diate agent-oriented specification modeled with MaCMAS
according to an embodiment;

FIG. 18 is a flowchart of a method to validate/update an
agent-oriented specification modeled with MaCMAS,
according to an embodiment;

FIG. 19 is a flowchart of a method to translate each of a
plurality of policy(s) into an implementation, with interme-
diate agent-oriented specification segments modeled with
MaCMAS, according to an embodiment;

FIG. 20 is a flowchart of a method to translate policies into
agent-oriented specification segments, according to an
embodiment;

FIG. 21 is a block diagram of a hardware and operating
environment in which different embodiments can be prac-
ticed;

FIG. 22 is a block diagram of an apparatus to generate a
high-level computer source code program from an informal
specification, according to an embodiment;

FIG. 23 is a block diagram of an apparatus to engineer a
script or procedure from scenarios, according to an embodi-
ment;

FIG. 24 is a block diagram of an apparatus to generate a
high-level computer source code program from a policy,
according to an embodiment;

FIG. 25 is a block diagram of an apparatus to engineer an
implementation from one of more policies, according to an
embodiment;

FIG. 26 is a block diagram of a system to generate a
high-level computer source code program from an agent-
oriented specification modeled with MaCMAS, according to
an embodiment;

FIG. 27 is a block diagram of a system to engineer a script
or procedure from agent-oriented specifications) modeled
with MaCMAS, according to an embodiment;

FIG. 28 is a block diagram of a CSP implementation of an
apparatus to generate a high-level computer source code pro-
gram from an informal specification, according to an embodi-
ment;

FIG. 29 is a block diagram of a hardware and operating
environment in which a particular CSP implementation of
FIG. 28 can be implemented, according to an embodiment;

6
FIG. 30 is a block diagram of a particular implementation

of an apparatus capable of translating scenarios to a formal
specification, according to an embodiment;

FIG. 31 is a block diagram of a hardware and operating
5 environment in which components of FIG. 30 can be imple-

mented, according to an embodiment;
FIG. 32 is a block diagram of a R2D2C implementation of

an apparatus to generate a high-level computer source code
program from a policy, according to an embodiment;

10 FIG. 33 is a block diagram of a hardware and operating
environment in which a particular CSP implementation of
FIG. 32 may be implemented, according to an embodiment;

FIG. 34 is a block diagram of an implementation of an
apparatus capable of translating one or more policies to a

15 formal specification, according to an embodiment;
FIG. 35 is a block diagram of a hardware and operating

environment in which components of FIG. 34 can be imple-
mented, according to an embodiment.

FIG. 36 is a block diagram of a particular implementation
20 of an apparatus to generate a high-level computer source code

program from an agent-oriented specification modeled with
MaCMAS, according to an embodiment;

FIG. 37 is a block diagram of a hardware and operating
environment of a particular implementation of FIG. 36,

25 according to an embodiment;
FIG. 38 is a block diagram of a particular implementation

of an apparatus capable of translating agent-oriented specifi-
cation(s) modeled with MaCMAS to a script, according to an
embodiment;

30 FIG. 39 is a block diagram of a hardware and operating
environment of a particular implementation of FIG. 38,
according to an embodiment;

FIGS. 40 -42 are traceability diagrams of MaCMAS imple-
mentations in autonomous nano-technology swarms, accord-

35 ing to specific embodiments;
FIG. 43 is a diagram of a role model showing the order of

execution of all multi-Role Interactions, according to an
embodiment;

FIG. 44 is a block diagram of an acquaintance sub-organi-
40 zation as a set of roles collaborating by way of several multi-

role interactions, according to an embodiment;
FIG. 45 and FIG. 46 are block diagrams of behavior of

acquaintance organization views, according to embodiments;
and

45	 FIGS. 47-51 are block diagrams of an evolution from one
plan to another plan, according to embodiments.

DETAILED DESCRIPTION OF THE INVENTION

50 In the following detailed description, reference is made to
the accompanying drawings that form a part hereof, and in
which is shown by way of illustration specific embodiments
which can be practiced. These embodiments are described in
sufficient detail to enable those skilled in the art to practice the

55 embodiments, and other embodiments are understood as uti-
lized and that logical, mechanical, electrical and other
changes can be made without departing from the scope of the
embodiments. The following detailed description is, there-
fore, not to be taken in a limiting sense.

60

System Level Overview

FIG. 1 is a block diagram that provides an overview of a
system to engineer and verify an implementation from an

65 agent-oriented specification modeled with methodology
fragment for analyzing complex multiagent systems (MaC-
MAS), according to an embodiment. System 100 may solve

US 7,992,134 B2
7
	

8
the need in the art for an automated, generally applicable way 	 scripts for spacecraft integration and testing, chemical plant
to verify that an implementation is a provably correct imple- 	 operation and control, autonomous systems, electrical engi-
mentation of one of more agent-oriented specifications mod- 	 neering applications such as chip design and other electrical
eled with MaCMAS. 	 circuit design, business management applications in areas

MaCMAS is an agent-oriented software engineering 5 such as workflow analysis, artificial intelligence applications
(AOSE) methodology. MaCMAS is specially tailored to

	
in areas such as knowledge-based systems and agent-based

model complex acquaintance organizations. MaCMAS can	 systems, highly parallel and highly-distributed applications
provide explicit support for Multiagent System Product Lines

	
involving computer command and control and computer-

(MAS-PLs).	 based monitoring, and any other area involving process,
Some embodiments of the system 100 may be a software io sequence or algorithm design. Hence, one skilled in the art

development system that may include a data flow and pro- 	 will recognize that any number of other applications not listed
cessing points for the data. According to the disclosed

	
can fall within the scope of the systems, methods and appa-

embodiments, system 100 can convert one or more agent- 	 ratus described herein.
oriented specifications that can be modeled with MaCMAS

	
Some embodiments of the system 100 can provide

into an implementation on which model checking and other 15 mechanical or automatic generation of the implementation
mathematics-based verifications can then be performed. 	 106, in whichhuman intervention may notrequired. In at least

MaCMAS is a methodology fragment for analyzing com-	 one embodiment of the system 100, all that canbe required to
plex multiagent systems. A software agent is a piece of soft- 	 update the implementation 106 is a change in the agent-
ware that exhibits autonomy, reactivity, pro-activity and

	
oriented specification modeled with MaCMAS 102, in which

social ability. A multi-agent organization can exist where 20 case the changes and validation can ripple through the entire
there is interaction between participants, either through direct 	 system without human intervention when system 100 oper-
communication or through the environment. MaCMAS is 	 ates. Changing and validating systems according to system
described in greater detail below. 	 100 can provide cost effectively development of competing

In system 100, an agent-oriented specification can be mod- 	 designs for a product and implementing each competing
eled with MaCMAS 102 or another AOSE that can be trans- 25 design to determine the best design.
lated by translator 104 into an implementation 106. MaC-	 Thus, in regards to scripts and complex procedures, auto-
MAS andAOSE are described in greater detail below. In some 	 matic code generation of system 100 can generate proce-
embodiments, no manual intervention in the translation may

	
dures/scripts, such as shown in FIG. 27, in suitable scripting

be provided. The implementation 106 can take other forms,	 language or device control language (such as for a robot) that
such as a script, described in FIG. 14 below, or an executable 30 can provide the procedures, once validated, to be automati-
program as described in FIG. 15 below. Those skilled in the 	 cally transformed into an implementation. Additionally, sys-
art will readily understand that other appropriate notations 	 tem 100 can be used to "reverse engineer" existing proce-
and/or languages exist that are within the scope of the sys- 	 dures/scripts so that the existing procedures/scripts can be
tems, method and apparatus described herein. 	 analyzed and corrected and recast in a format and form that

In some embodiments, system 100 can include an analyzer 35 can be more easily understood, such as shown in FIG. 38 and
108 to determine various properties of the agent-oriented

	
FIG. 39. System 100 also can be used to reverse engineer

specification that can be modeled with MaCMAS 102, such
	

multiple existing procedures/scripts (even written in different
as the existence of omissions, deadlock, livelock, and race

	
languages) to a single agent-oriented specifications) mod-

conditions, as well as other conditions, in the agent-oriented
	

eled with MaCMAS by which the procedures/scripts are
specification that can be modeled with MaCMAS 102, 40 combined, analyzed for conflicts, and regenerated as a single
although one skilled in the art will recognize that other addi-	 procedure/script (in the same or a different procedure/script-
tional properties can be determined by the analyzer 108. The

	
ing language) such as shown in FIG. 38.

analyzer 108 may solve the need in the prior art to reduce
	

Some embodiments of system 100 may operate in a multi-
errors.	 processing, multi-threaded operating environment on a com-

In some embodiments, the implementation 106 can be 45 puter, such as the computer 2102 illustrated in FIG. 21. While
mathematically and provably equivalent to the agent-oriented

	
the system 100 is not limited to any particular agent-oriented

specification(s) that can be modeled with MaCMAS 102.	 specification that can be modeled with MaCMAS 102, trans-
Mathematically equivalent does not necessarily mean math-	 lator 104, implementation 106, analyzer 108, for sake of
ematically equal. Mathematical equivalence of A and B

	
clarity, embodiments of simplified particular agent-oriented

means that A implies B and B implies A. Note that the imple- 50 specification that is modeled with MaCMAS 102, translator
mentation 106 of some embodiments can be mathematically

	 104, implementation 106, analyzer 108 are described.
equivalent to, rather than necessarily equal to, the agent- 	 In some embodiments, the system 100 can be a software
oriented specification modeled with MaCMAS 102.	 development system that can include a data flow and process-

In some embodiments, the agent-oriented specification
	

ing points for the data. System 100 can be representative of (i)
that can be modeled with MaCMAS 102 of system 100 can 55 computer applications and electrical engineering applica-
specify allowed situations, events and/or results of a software 	 tions such as chip design and other electrical circuit design,
system. In that sense, the agent-oriented specification mod- 	 (ii) business management applications in areas such as work-
eled with MaCMAS 102 can provide an abstract specification

	
flow analysis, (iii) artificial intelligence applications in areas

of the software system and the agent-oriented specification 	 such as knowledge-based systems and agent-based systems,
modeled with MaCMAS 102 can also provide detailed speci- 60 (iv) highly parallel and highly-distributed applications
fications.	 involving computer command and control and computer-

Some embodiments of system 100 can be operational for a
	

based monitoring, and (v) any other area involving process,
wide variety of rules, computer instructions, computer lan-	 sequence or algorithm design. One skilled in the art, however,
guages and applications; thus, system 100 can be considered

	
will recognize that other applications can exist that are within

generally applicable. Such applications can include, without 65 the purview of the systems, methods and apparatus described
limitation, space satellite control systems, distributed soft- 	 herein. According to the disclosed embodiments, system 100
ware systems, sensor networks, robot operations, complex	 can, without human intervention, convert different types of

US 7,992,134 B2
9

policies into formal specifications on which model checking
and other mathematics-based verifications are performed,
and then optionally convert the specification into code.

System 100 can be operational for a wide variety of lan-
guages for expressing requirements, and thus system 100 can 5

be generally applicable. Such applications may include, with-
out limitation, distributed software systems, sensor networks,
robot operation, complex scripts for spacecraft integration
and testing, chemical plant operation and control, and autono-
mous systems. One skilled in the art will understand that these io
applications are cited by way of example and that other appli-
cations can fall within the scope of the invention.

MaCMAS is one example of agent-oriented software engi-
neering (AOSE). AOSE has arisen to address methodological
aspects and other issues related to the development of com- 15

plex multiagent systems. AOSE is a new software engineer-
ing paradigm that augurs much promise in enabling the suc-
cessful development of more complex systems than is
achievable with current Object-Oriented approaches which
use agents and organizations of agents as the main abstrac- 20

tions. The organizational metaphor has been proven to be one
of the most appropriate tools for engineering multi-agent
systems (MAS). The metaphor can be used by many research-
ers to guide the analysis and design of MAS.

A MAS organization can be observed from two different 25

points of view, namely an acquaintance point of view, which
shows the organization as the set of interaction relationships
between the roles placed by agents, and a structural point of
view, which shows agents as artifacts that belong to sub-
organizations, groups and teams. In the structural point of 30

view, agents can also be structured into hierarchical structures
showing the social structure of the system.

Both the acquaintance point of view and the structural
point of view can be intimately related, but the two views
show the organization from radically different viewpoints. 35

Because any structural organization must include interactions
between agents of the structural organization in order to func-
tion, the acquaintance organization can be commonly con-
tained in the structural organization. Therefore, if first the
acquaintance organization is determined, and then the con- 40

straints required for the structural organization can be
defined, a natural map can be formed between the acquain-
tance organization and the corresponding structural organi-
zation. Thus, roles can be assigned to an agent and, any
acquaintance organization can be modeled orthogonally to 45

the structural organization of the acquaintance organization.
In some embodiments, the separation of the acquaintance

point of view and the structural point of view can specify
policies at the acquaintance organization level, and deploy the
policies over the structural organizational of the running sys- 50

tem. The scope of policies can usually imply features of
several acquaintance sub-organizations. In such cases, first
the acquaintance sub-organizations can be composed, added
ormodified, while being guidedby the policy specification, to
deploy the process later. 	 55

MaCMAS is an AOSE methodology that can be extended
and/or adapted to specify and deploy policies. MaCMAS is
specially tailored to model complex acquaintance organiza-
tions. The main advantages of MaCMAS can be observed
from three aspects: 1) in the modeling aspect, the main advan- 60

tage may be in providing an interaction abstraction to enable
the modeling of unpredictable behaviors, and providing a
notation in a unique UML 2.0-based approach dedicated to
modeling the acquaintance organization abstractly, 2) in the
techniques aspect, semi-automatic techniques can be pro- 65

vided for decomposing and composing models basing on
goal-oriented requirements and on dependencies, which is

10
unique in the field, and 3) in the software process aspect, a
software process can be provided that covers top-down and
bottom-up development approaches, as well as criteria for
deciding between them.

MaCMAS provides UML-based models which can be the
de-facto standard in modeling, and which can decrease the
learning-curve for engineers. MaCMAS also provides mod-
eling at different levels of abstraction, which provides speci-
fication of policies at any level. MaCMAS also provides
techniques to compose acquaintance models, which can be
helpful for policies that imply several system-goals and for
deploying an acquaintance model that specifies a policy over
a structural organization; in other words, composition of
roles.

The MaCMAS/UML modeling process can be focused on
interactions/acquaintance organization which can be the
main source of complexity. Interactions can be represented
abstractly by multi-Role Interactions (mRI). These mRIs can
be helpful modeling elements and can be used as the mini-
mum building block for modeling. Use of mRI s can be helpful
in performing an incremental layered modeling approach
since mRIs can be described internally by use of finer-grain
mRIs, or several mRIs can be abstracted by a coarser-grain
one.

An mRI can be a pattern of interaction that abstractly
represents the fulfillment of a system goal without detailing
how fulfillment can be achieved. Thus, using an mRI as the
minimum modeling element, accounting for all of the details
required to fulfill a complex system goal and the messages
that can be exchanged at stages where these details have not
been identified clearly, are not known, or are not even neces-
sary. Abstract models may be provided where intelligent
behavior can be carried out by use of neural networks, fuzzy
logic, and so forth, without the necessity of dealing with all
the details. In addition, the direct correlation between system
goals and mRIs can provide establishment of a clear trace-
ability between goal-oriented requirement documents and
analysis models. Policies usually verse about system goals,
and thus the MaCMAS can manage the relation between
requirements, analysis models, and policies. The analysis
model can help in simplifying which policies can be speci-
fied, and be deployed in the system at runtime. These mRIs
can be represented with UML 2.0 collaborations extended
with some extra information detailed above. Three views of
acquaintance organization can be implemented: two for rep-
resenting static and dynamic aspects of the organization, and
a third for representing the relation between models in differ-
ent abstraction layers, as follows:

a) Static Acquaintance Organization View can show static
interaction relationships between roles in the system and the
knowledge processed by the roles. The Static Acquaintance
Organization View may include the following UML models:

a) 1) Role Models can show an acquaintance sub-organi-
zation as a set of roles collaborating by use of several mRIs.
As mRIs allow abstract representation of interactions, role
models may represent autonomous and autonomic properties
of the system at any level of abstraction.

a) 2) Ontology can show the ontology shared by roles in a
role model. Ontology can be used to add semantics to the
knowledge owned and exchanged by roles. Ontology can also
be important for deploying policies.

b) Behavior of Acquaintance Organization View can show
the sequencing of mRIs in a particular role model. The
sequencing may be represented by two equivalent models:

b) 1) Plan of a Role separately can represent the plan of
each role in a role model showing how the mRIs of the role
sequence. The Plan of a Role can be represented using UML

US 7,992,134 B2
11
	

12
2.0 ProtocolStateMachines. The Plan of a Role can be used to

	
In some embodiments, the process-based specification can

focus on a certain role, while ignoring others. 	 be process algebra notation. Such embodiments may satisfy
b) 2) Plan of a Role Model can represent the order of mRIs

	 the need in the art for an automated, mathematics-based pro-
in a role model with a centralized description. The Plan of a 	 cess for requirements validation that does not require large
Role Model may be represented using UML 2.0 StateMa- 5 computational facilities.
chines and can be used to facilitate easy understanding of the

	 Thereafter, some embodiments ofinethod200 may include
whole behavior of a sub-organization. 	 aggregating 204 the plurality of process-based specification

c) Traceability View model can show how models in dif- 	 segments into a single process-based specification model.
ferent abstraction layers relate. The Traceability View can

	 Subsequently, method 200 may include translating 206 the
show how mRIs can be abstracted, composed or decomposed io single process-based specification model to instructions
by way of classification, aggregation, generalization or 	 encoded in the Java computer language or some other high-
redefinition. UML packages can also be used to group such

	
level computer programming language. Thereafter, method

mRIs that can be present in the context of a role model. Note
	 200 may include compiling 208 the instructions encoded in

that usually only the relations between interactions are shown
	 the Java computer language into a file of executable instruc-

because the relations can be the focus of modeling, but all the 15 tions.
elements that compose an mRI can also be related. Finally, 	 In some embodiments, method 200 may include invoking
since an mRI presents a direct correlation with system goals, 	 the executable instructions, which can provide a method to
traceability models can clearly show how a certain require- 	 convert informal specifications to an application system with-
ment system goal can be refined and materialized. 	 out involvement from a computer programmer.

According to some embodiments, a policy can describe 20 Some embodiments of method 200 may not include invok-
one or more potential executions of a system, such as describ- 	 ing a theorem-prover to infer the process-based specification
ing what happens in a particular situation and what range of

	 segments from the informal specification.
behaviors can be expected from or omitted by the system

	 FIG. 3 is a flowchart of a method to verify the syntax of a
under various conditions. 	 set of scenarios, translate the set of scenarios to a process-

Different policies can be written by different stakeholders 25 based specification, verify the consistency of the process-
of the system, corresponding to the different views the stake-	 based specification, and verify the absence of other problems
holders can have of how the system will perform, including

	 in the process-based specification, according to an embodi-
alternative views corresponding to higher or lower levels of

	 ment. Method 300 is an example of one embodiment of trans-
abstraction. Policies can be generated by a user with or with- 	 lating 202 in FIG. 2.
out mechanical or computer aid. Policies can provide the 30 Accordingto some embodiments, method 300 may include
descriptions of actions that occur as the software executes. 	 verifying 302 the syntax of the plurality of requirements of
Some of these actions can be explicit and required, while

	 the informal specification. Thereafter, method 300 may
others can be due to errors arising, including those that are as

	 include mapping 304 the plurality of requirements of the
a result of adapting to changing conditions as the system

	 informal specification to a process-based specification.
executes.	 35 In some embodiments, method 300 subsequently may also

include verifying 306 consistency of the process-based speci-
Method Embodiments
	

fication with at least one other process-based specification. In
some embodiments, method 300 may subsequently also

In the previous section, a system level overview of the
	

include verifying 308 lack of other problems in the process-
operation of an embodiment is described. In this section, the 4o based specification. One example of other problems may be
particular methods of such an embodiment are described by 	 unreachable states in the process defined inthe process-based
reference to a series of flowcharts. Describing the methods by	 specification.
reference to a flowchart enables one skilled in the art to

	
FIG. 4 is a flowchart of a method 400 to validate/update

develop such programs, firmware, or hardware, including 	 scenarios of a system, according to an embodiment. Method
such instructions to carry out the methods on suitable com- 45 400 may solve the need in the prior art to reduce errors in
puters, executing the instructions from computer-readable 	 scripts.
media. Similarly, the methods performed by the server com- 	 Method 400 can include analyzing 402 a script or specifi-
puter programs, firmware, or hardware can also be composed

	
cation, such as script 2314, of the system 2300, the script

of computer-executable instructions. Methods 200-2000 can
	

having been previously derived from the rules of the system.
be performed by a program executing on, or performed by, 50 Thereafter, a determination 404 can be made as to whether
firmware or hardware that can be a part of a computer, such as 	 or not the analyzing 402 indicates that the script contains a
computer 2102 in FIG. 21.	 flaw. If a flaw does exist, then the rules can be corrected 406

FIG. 2 is a flowchart of a method 200 to generate an	 accordingly.
executable system from an informal specification, according

	
In some embodiments, the analyzing 402 can include

to an embodiment. Method 200 may solve the need in the art 55 applying mathematical logic to the script in order to identify
to generate executable computer instructions from require-	 a presence or absence of mathematical properties of the
ments with neither the time involved in manually writing the 	 script. Mathematical properties of the script that can be deter-
executable computer instructions, nor the mistakes that may	 mined by applying mathematical logic to the script can
arise in manually writing the executable computer instruc- 	 include, by way of example:
tions, without using a theorem-prover. 	 60	 1) whether or not the script implies a system execution

Method 200 may include translating 202 mechanically	 trace that includes a deadlock condition, and
each of a plurality of requirements of the informal specifica-	 2) whether or not the script implies a system execution
tion to a plurality of process-based specification segments. In 	 trace that includes a livelock condition.
some embodiments, the translating 202 may include inferring

	
In some embodiments, the above two properties may be

the process-based specification segments from the informal 65 domain independent. One skilled in the art will note that there
specification. One embodiment of translating 202 is shown in 	 are many other possible flaws that could be detected through
FIG. 3 below.	 the analysis of the model, many or even most of which might

US 7,992,134 B2
13

be domain dependent. An example of a domain dependent
property would be represented by the operational principle
that "closing a door that is not open is not a valid action." This
example would be applicable in the domain of the Hubble
Space Telescope on-orbit repair.

Because in some embodiments the script can be provably
equivalent to the scenarios by virtue of method 400, if a flaw
is detected in the script, then the flaw could be corrected by
changing (correcting) the scenarios. Once the correction is
made, then the corrected scenarios can be processed by sys-
tem 2300 in FIG. 23 or method 500 in FIG. 5 to derive a new
script from the corrected scenarios. According to at least one
embodiment, the new script can be processed by method 400,
and the iterations of method 500 and method 400 can repeat
until there are no more flaws in the script generated from the
scenarios, at which point the scenarios have no flaws because
the script is provably equivalent to the scenarios from which
it was derived. Thus, iterations of methods 500 and 400 can
provide verification/validation of the scenarios.

Thereafter, the new script can be used to generate an imple-
mentation of the system.

FIG. 5 is a flowchart of a method to translate each of a
plurality of scenarios into a script, according to an embodi-
ment. Embodiments of the method 500 can include translat-
ing 502 scenarios 2302 into a script 2314 without human
intervention.

Thereafter, method 500 can include optionally analyzing
504 the formal model or specification. The analyzing 504 can
be a verification/validation of the scenarios 2302. In some
embodiments, the analyzing 504 may determine various
properties such as existence of omissions, deadlock, livelock,
and race conditions in the script 2314, although one skilled in
the art will know that analyzing the formal specification can
determine other properties not specifically listed, which are
contemplated by this invention. In some embodiments, the
analyzing 504 can provide a mathematically sound analysis
of the scenarios 2302 in a general format that doesn't require
significant understanding of the specific rules of the scenarios
2302. Further, the analyzing 504 can warn developers of
errors in their scenarios 2302, such as contradictions and
inconsistencies, but equally importantly it can highlight rules
or sets of rules that are underspecified or over-specified and
need to be corrected for the scenarios 2302 to operate as
intended. Thus, in some embodiments no knowledge of the
scenarios 2302 is required, but instead significant analysis,
verification, testing, simulation and model checking of the
scenarios 2302 using customized tools or existing tools and
techniques is provided.

Thereafter, in some embodiments, method 500 can include
translating 506 the formal specification to a script 2314. Thus,
in at least one embodiment, the method 500 can provide a
method to convert scenarios to scripts without involvement
from a computer programmer.

Some embodiments of the method 500 may not include
invoking an automated logic engine, such as a theorem-
prover, to infer the script 2314 from the scenarios 2302.

In certain embodiments of method 500, informal represen-
tations of requirements for procedures/scripts that represent
the operation of a system can be mechanically converted to a
mathematically sound specification that can be analyzed for
defects and used for various transformations, including auto-
matic translation into executable form and automatic regen-
eration of procedures/scripts into other notations/representa-
tions. In other embodiments, the method disclosed herein can
be used to automatically reverse engineer existing procedures
and scripts to formal models from which the method can be

14
used to produce customer-readable representations of proce-
dures/scripts or machine-proces sable scripts in any of various
scripting languages.

Mathematically sound techniques can be used to mechani-
5 cally translate an informal procedure/script requirement into

an equivalent formal model. The model may be mechanically
(that is, with no manual intervention) manipulated, examined,
analyzed, verified, and used in a simulation.

FIG. 6 is a flowchart of a method 600 to translate domain
10 knowledge into a script, according to an embodiment.

Method 600 may solve the need in the art to generate scripts
from requirements with neither the time involved in manually
writing the scripts, nor the mistakes that can arise in manually

15 writing the scenarios, without using an automated logic
engine.

Method 600 can include mechanically translating 602 each
of a plurality of scenarios or domain knowledge to a plurality
of formal specification segments. The translation can be done

20 without human intervention. One embodiment of translating
602 is shown in FIG. 7 below.

Thereafter, method 600 can include aggregating 604 the
plurality of formal specification segments into a single formal
model or specification.

25 Subsequently, method 600 can include translating 606 the
single formal specification to multiple scripts as output from
translating 606. Thereafter, method 600 can include generat-
ing 608 a script from the scripts that were accepted from
translating 606. Thus, method 600 may provide an embodi-

30 ment of a method to convert a script to an application system
without involvement from a computer programmer.

Some embodiments of method 600 may not include invok-
ing a theorem-prover or any other automated logic engine to
infer the formal specification segments from the scenarios.

35 FIG. 7 is a flowchart of a method 700 to verify the syntax of
a set of scenarios, translate the set of scenarios to a formal
specification, verify the consistency of the formal specifica-
tion, and verify the absence of other problems in the formal
specification, according to an embodiment. Method 500 is an

40 example of one embodiment of translating 602 in FIG. 6. As
indicated, such translation can be accomplished without
human intervention.

In some embodiments, the method 700 can include verify-
ing 702 the syntax of the plurality of scenarios. Thereafter,

45 method 700 can include mapping 704 the plurality of sce-
narios to a script or specification.

In some embodiments, method 700 can subsequently also
include verifying 706 consistency of the formal specification.
In some embodiments, method 700 may subsequently also

50 include verifying 708 a lack of other problems in the formal
specification. One example of other problems might be
unreachable states in the process defined in the formal speci-
fication, although one skilled in the art will understand that
yet other problems are contemplated.

55 FIG. 8 is a flowchart of a method 800 to generate an
executable system from a policy, according to an embodi-
ment. Method 800 may solve the need in the art to generate
executable computer instructions from policy with neither the
time nor the mistakes involved in manually writing the

60 executable computer instructions, without using a theorem-
prover.

In some embodiments, method 800 may include translat-
ing 802 mechanically each of a plurality of requirements of
the policy to a plurality of formal specification segments. In

65 some embodiments, the translating 802 may include inferring
the formal specification segments from the policy. One
embodiment of translating 802 is shown in FIG. 9 below.

US 7,992,134 B2
15
	

16
In some embodiments, the formal specification may be

process algebra notation. Such embodiments may satisfy the
need in the art for an automated, mathematics-based process
for policy validation that does not require large computational
facilities.

Thereafter, method 800 may include aggregating 804 the
plurality of formal specification segments into a single formal
specification or model.

Subsequently, method 800 may include translating 806 the
single formal specification to instructions encoded in the Java
computer language or some other high-level computer pro-
gramming language. Thereafter, method 800 may include
compiling 808 the instructions encoded in the high-level
computer language into a file of executable instructions or
code.

In some embodiments, method 800 may include invoking
the executable instructions, which provides a method to con-
vert policies to an application system without involvement
from a computer programmer.

Some embodiments of method 800 may not include invok-
ing a theorem-prover to infer the formal specification seg-
ments from the policy.

FIG. 9 is a flowchart of a method 900 to verify the syntax of
a set of policies, translate the set of policies to a formal
specification, verify the consistency of the formal specifica-
tion, and verify the absence of other problems in the formal
specification, according to an embodiment. Method 900 is an
example of an embodiment of translating 802 in FIG. 8.

In some embodiments, method 900 may include verifying
902 the syntax of the plurality of requirements of the policy.
Thereafter, method 900 may include mapping 904 the plural-
ity of requirements of the policy to a formal specification.

In some embodiments, method 900 may subsequently also
include verifying 906 consistency of the formal specification
with at least one other formal specification. In some embodi-
ments, method 900 may subsequently also include verifying
908 a lack of other problems in the formal specification. One
example of other problems can be unreachable states in the
process defined in the formal specification, although one
skilled in the art will recognize that other problems fit within
the scope of this invention.

FIG. 10 is a flowchart of a method 1000 to validate/update
policies of a system, according to an embodiment. Method
1000 may solve the need in the prior art to reduce errors in
implementations.

Method 1000 can include analyzing 1002 a formal speci-
fication, such as formal specification 2406, of the system, the
formal specification 2406 having been previously derived
from the policies of the system.

In some embodiments, the analyzing 1002 can include
applying mathematical logic to the formal specification 2406
in order to identify a presence or absence of mathematical
properties of the formal specification 2406. Mathematical
properties of the formal specification 2406 that can be deter-
mined by applying mathematical logic to the formal specifi-
cation 2406 can include, by way of example:

1) whether or not the formal specification 2406 implies a
system execution trace that includes a deadlock condition,
and

2) whether or not the formal specification 2406 implies a
system execution trace that includes a livelock condition.

The above two properties can be domain independent. One
skilled in the art will note that there are many other possible
flaws that could be detected through the analysis of the model,
many or even most of which might be domain dependent. An
example of a domain dependent property could be repre-
sented by the operational principle that "closing a door that is

not open is not a valid action." This example would be appli-
cable in the domain of the Hubble Space Telescope on-orbit
repair.

Thereafter, a determination 1004 can be made as to
5 whether or not the analyzing 1002 indicates that the formal

specification 2406 contains a flaw. If a flaw does exist, then
the policies can be corrected 1006 accordingly.

Once a correction is made, then the corrected policies can
be processed by system 2500 in FIG. 25 or method 1100 in

10 FIG. 11 to derive a new implementation from the corrected
policies. According to at least one embodiment, the new
policy(s) 2502 can be processed by method 1000, and the
iterations of method 1100 and method 1000 can repeat until

15 there are no more flaws in the implementation 2510 generated
from the policies, at which point the policies have no flaws
because the implementation 2510 is provably equivalent to
the policy from which it was derived. Thus, iterations of
method 1100 and 1000 can provide verification/validation of

20 the policies.
FIG. 11 is a flowchart of a method to translate one or more

policies of a system to an implementation, according to an
embodiment. The method 1100 can include translating 1102
policies 2502 into a formal specification 108 without human

25 intervention.
Thereafter, method 1100 can include optionally analyzing

1104 the formal specification 108. The analyzing 1104 can be
a verification/validation of the policies 2502. In some
embodiments, the analyzing 1104 may determine various

30 properties such as existence of omissions, deadlock, livelock,
and race conditions in the formal specification 2406, although
one skilled in the art will know that analyzing the formal
specification 2406 can determine other properties not specifi-
cally listed, which are contemplated by this invention. In

35 some embodiments, the analyzing 1104 can provide a math-
ematically sound analysis of the policies 2502 in a general
format that doesn't require significant understanding of the
specific rules of the policies 2502. Further, the analyzing
1104 can warn developers of errors in their policies 2502,

40 such as contradictions and inconsistencies, but equally
importantly it can highlight rules or sets of rules that are
underspecified or over-specified and need to be corrected for
the policies 2502 to operate as intended. Thus, no knowledge
of the policies 2502 may be required, but instead significant

45 analysis, verification, testing, simulation and model checking
of the policies 2502 using customized tools or existing tools
and techniques may be provided.

Thereafter, in some embodiments, method 1100 can
include translating 1106 the formal specification to an imple-

50 mentation 2510. Thus, in at least one embodiment, the
method 1100 canprovide a method to convertpolicies 2502 to
an implementation 2510 without involvement from a com-
puter programmer.

Some embodiments of the method 1100 may not include
55 invoking an automated logic engine, such as a theorem-

prover, to infer the implementation 2510 from the policies
2502.

In some embodiments of method 1100, one or more poli-
cies 2502 that represent the operation of a system can be

60 mechanically converted to a mathematically sound formal
2406 specification that can be analyzed for defects and used
for various transformations including automatic translation
into executable form and automatic regeneration of proce-
dures/scripts into other notations/representations. In other

65 embodiments, the method disclosed herein can be used to
automatically reverse engineer existing implementations
2510 to formal specification 2406 from which the method can

US 7,992,134 B2
17
	

18
be used to produce customer-readable representations of poli- 	 sions, deadlock, livelock, and race conditions in the agent-
cy(s) 2502 or machine-processable implementations 2510. 	 oriented specification modeled with MaCMAS 102, although

Mathematically sound techniques may be used to mechani-	 one skilled in the art will know that analyzing the agent-
cally translate one or more policy(s) 2502 into an equivalent 	 oriented specification modeled with MaCMAS 102 can deter-
formal specification 2406. The formal specification 2406 may 5 mine other properties not specifically listed, which are con-
be mechanically (that is, with no manual intervention)

	
templated by the systems, methods and apparatus described

manipulated, examined, analyzed, verified, and used in a
	

herein. In some embodiments, the analyzing 1404 can pro-
simulation.	 vide a mathematically sound analysis of the agent-oriented

FIG. 12 is a flowchart of a method 1200 to translate each of
	

specification modeled with MaCMAS 102 in a general format
a plurality ofpolicy(s) to an implementation, according to an io that doesn't require significant understanding of the specific
embodiment. Method 1200 may solve the need in the art to 	 rules of the agent-oriented specification modeled with
generate implementations from policy with neither the time

	
MaCMAS 102. Further, the analyzing 1404 can warn devel-

involved in manually writing the scripts, nor the mistakes that 	 opers of errors in the agent-oriented specification modeled
can arise in manually writing the implementation, without 	 with MaCMAS 102, such as contradictions and inconsisten-
using an automated logic engine. 	 15 cies, but equally importantly, rules or sets of rules can be

Method 1200 can include mechanically translating 1202
	

highlighted that can be underspecified or over-specified and
each of a plurality of policies 2502 into a plurality of formal

	
need to be corrected for the agent-oriented specification mod-

specification segments. The translation may be done without	 eled with MaCMAS 102 to operate as intended. Thus, no
human intervention. One embodiment of translating 1202 is

	
knowledge of the agent-oriented specification modeled with

shown in FIG. 13 below.	 20 MaCMAS 102 may be required, but instead significant analy-
Thereafter, method 1200 can include aggregating 1204 the	 sis, verification, testing, simulation and model checking of

plurality of formal specification segments into a single formal
	

the agent-oriented specification modeled with MaCMAS 102
model or specification.	 using customized tools or existing tools and techniques is

Subsequently, method 1200 can include translating 1206
	

provided.
the single formal specification or model to multiple imple- 25	 Thereafter, in some embodiments, method 1400 can
mentations. Thereafter, method 1200 can include generating

	
include translating 1406 the agent-oriented specification

1208 a singular implementation from the implementations.	 modeled with MaCMAS 102 to an implementation. Thus, in
Thus, method 1200 may provide at least one embodiment of

	
at least one embodiment, the method 1400 may provide a

a method to convert a policy 2502 to an application system 	 method to convert agent-oriented specification modeled with
without involvement from a computer programmer. 	 30 MaCMAS 102 to an implementation without involvement

Some embodiments of method 1200 may not include
	

from a computer programmer.
invoking a theorem-prover or any other automated logic

	
Some embodiments of the method 1400 may not include

engine to infer the formal specification segments from the
	

invoking an automated logic engine, such as a theorem-
policies.	 prover, to infer the implementation 106 from the agent-ori-

FIG. 13 is a flowchart of a method 1300 to verify the syntax 35 ented specification modeled with MaCMAS 102.
of a set of scenarios, translate the set of scenarios to a formal

	
In method 1400, an agent-oriented specification modeled

specification, verify the consistency of the formal specifica- 	 with MaCMAS 102 that represents the operation of a system
tion, and verify the absence of other problems in the formal

	
can be analyzed for defects and used for various transforma-

specification, according to an embodiment. Method 1300 is	 tions, including automatic translation into executable form
one embodiment of translating 1202 in FIG. 12. As indicated, 4o and automatic regeneration of implementations/procedures/
such translation can be accomplished without human inter- 	 scripts into other notations/representations. In other embodi-
vention.	 ments, the method disclosed herein can be used to automati-

In some embodiments, the method 1300 can include veri-	 cally reverse engineer existing procedures and scripts to
fying 1302 the syntax of the plurality of policies. Thereafter, 	 agent-oriented specifications) modeled with MaCMAS from
method 1300 can include mapping 1304 the plurality of poli- 45 which the method can be used to produce customer-readable
cies to a formal specification. 	 representations of procedures/scripts ormachine-processable

In some embodiments, method 1300 subsequently can also	 scripts in any of various scripting languages as shown in FIG.
include verifying 1306 consistency of the formal specifica-	 38 and FIG. 39.
tion. In some embodiments, method 1300 subsequently can

	
Mathematically sound techniques can be used to mechani-

also include verifying 1308 a lack of other problems in the 50 cally translate an agent-oriented specification modeled with
formal specification. One example of other problems might

	
MaCMAS 102 into an implementation 106. The specification

be unreachable states in the process defined in the formal
	

may be mechanically (that is, with no manual intervention)
specification, although one skilled in the art will understand

	
manipulated, examined, analyzed, verified, and used in a

that yet other problems are contemplated. 	 simulation.
FIG. 14 is a flowchart of a method to validate/update an 55	 The terms "scripts" and "procedures" can be used inter-

agent-oriented specification modeled with methodology 	 changeably. Scripts can encompass not only in instructions
fragment for analyzing complex multiagent systems 	 written programming languages (such as Python, awk, etc., as
(MaCMAS) of a system, according to an embodiment. 	 described) but also languages for physical (electro-mechani-

Method 1400 can include generating 1402 an agent-ori- 	 cal) devices and even in constrained natural language instruc-
ented specification modeled with MaCMAS without human 60 tions or actions or checklists to be carried out by human
intervention.	 beings such as, but not limited to, an astronaut.

Thereafter, method 1400 can include optionally analyzing
	

Scripting languages can be computer programming lan-
1404 the agent-oriented specification modeled with

	
guages initially used only for simple, repeated actions. The

MaCMAS 102. The analyzing 1404 can be a verification/
	

name "scripting languages" comes from a written script such
validation of the agent-oriented specification modeled with 65 as a screenplay, where dialog can be repeated verbatim for
MaCMAS 102. In some embodiments, the analyzing 1404

	
every performance. Early script languages were often called

may determine various properties such as existence of omis- 	 batch languages or job control languages. A script can be

US 7,992,134 B2
19

interpreted rather than compiled, but not always. Scripting
languages are also known as scripting programming lan-
guages or script languages.

Many such languages can be quite sophisticated and have
been used to write elaborate programs, which are often still
called scripts even though the applications of scripts are well
beyond automating simple computer tasks. A script language
can be found at almost every level of a computer system.
Besides being found at the level of the operating system,
scripting languages appear in computer games, web applica-
tions, word processing documents, network software and
more. Scripting languages favor rapid development over effi-
ciency of execution; scripting languages can be implemented
with interpreters rather than compilers; and scripting lan-
guages can be effective in communication with program com-
ponents written in other languages.

Many scripting languages emerged as tools for executing
one-off tasks, particularly in system administration. One way
of looking at scripts can be as "glue" that puts several com-
ponents together, and thus scripts can be widely used for
creating graphical user interfaces or executing a series of
commands that might otherwise have to be entered interac-
tively through a keyboard at the command prompt. The oper-
ating system usually can offer some type of scripting lan-
guage by default, widely known as a shell script language.

Scripts can be stored in plain text form (as ASCII) and
interpreted, or compiled each time prior to being invoked.

Some scripting languages are designed for a specific
domain, but often writing more general programs in that
language is possible. In many large-scale projects, a scripting
language and a lower level programming language can be
used together, each lending particular strengths to solve spe-
cific problems. Scripting languages are often designed for
interactive use, having many commands that can execute
individually, and often have very high level operations (for
example, in the classic UNIX shell (sh), most operations are
programs.

Such high level commands simplify the process of writing
code. Programming features such as automatic memory man-
agement and bounds checking can be taken for granted. In a
`lower level' or non-scripting language, managing memory
and variables and creating data structures tends to consume
more programmer effort and lines of code to complete a given
task. The additional effort is often worth the benefit of the
resulting fine-grained control. The scripter typically has less
flexibility to optimize a program for speed or to conserve
memory.

For the reasons noted above, programming in a scripting
language can be faster, and script files can be typically much
smaller than programs with equivalent functionality in con-
ventional programming languages such as C.

Scripting languages fall into eight primary categories: Job
control languages and shells, macro languages, application-
specific languages, web programming languages, text pro-
cessing languages, general-purpose dynamic languages,
extension/embeddable languages, and extension/embeddable
languages.

In regards to job control scripting languages and shells, a
major class of scripting languages has grown out of the auto-
mation of job control starting and controlling the behavior
of system programs. Many of these languages' interpreters
double as command-line interfaces, such as the Unix shell or
the MS-DOS COMMAND.COM . Others, such as Apple-
Script, add scripting capability to computing environments
lacking a command-line interface. Examples of job control
scripting languages and shells include AppleScript, ARexx

20
(Amiga Rexx), bash, csh, DCL, 4NT, JCL, ksh, MS-DOS
batch, Windows PowerShell, REXX, sh, and Winbatch.

In regards to macro scripting languages, from the advent of
Graphical user interfaces there arose a specialized kind of

5 scripting language for controlling a computer. These lan-
guages, usually called Macro languages, interact with the
same graphic windows, menus, buttons and such that aperson
does. Macro language scripts can be used to automate repeti-
tive actions or configure a standard state. Macro language

io scripts can be used to control any application running on a
GUI-based computer, but in practice the support for such
languages depend on the application and operating system.
Examples of macro scripting languages include AutoHotkey,
AutoIt, and Expect.

15 In regards to application-specific scripting languages,
many large application programs include an idiomatic script-
ing language tailored to the needs of the application user.
Likewise, many computer game systems use a custom script-
ing language to express the programmed actions of non-

20 player characters and the game environment, which can be
designed for a single application and, while application- spe-
cific scripting languages can superficially resemble a specific
general-purpose language (e.g. QuakeC, modeled after C),
application-specific scripting languages have custom features

25 which distinguish the application-specific scripting lan-
guages. Examples of application-specific scripting languages
include, Action Code Script, ActionScript, AutoLISP, Blob-
bieScript, Emacs Lisp, HyperTalk, IRC script, Lingo, Cana
Embedded Language, mIRC script, NWscript, QuakeC,

so UnrealScript, Visual Basic for Applications, VBScript, and
ZZT-oop.

In regards to web programming scripting languages, an
important type of application-specific scripting language can
be one used to provide custom functionality to internet web

35 pages. Web programming scripting languages can be special-
ized for Internet communication and use web browsers as a
user interface. However, most modern web programming
scripting languages are powerful enough for general-purpose
programming. Examples of web programming scripting lan-

40 guage include ColdFusion (Application Server), Lasso,
Miva, and SMX.

In regards to text processing scripting languages, the pro-
cessing of text-based records is one of the oldest uses of
scripting languages. Many text processing languages, such as

45 Unix's awk and, later, PERL, were originally designed to aid
system administrators in automating tasks that involved Unix
text-based configuration and log files. PERL is a special
case originally intended as a report-generation language,
PERL has grown into a full-fledged applications language.

5o Examples of text processing scripting languages include awk,
PERL, sed and XSLT.

In regards to general-purpose dynamic scripting lan-
guages, some languages, such as PERL, began as scripting
languages but developed into programming languages suit-

55 able for broader purposes. Other similar languages fre-
quently interpreted, memory-managed, dynamic have been
described as "scripting languages" for these similarities, even
if general-purpose dynamic scripting languages are more
commonly used for applications programming. Examples of

60 general-purpose dynamic scripting languages include APL,
Dylan, Groovy, MUMPS (M), newLISP, PERL, PHP, Python,
Ruby, Scheme, Smalltalk, SuperCard, and Tool Command
Language (TCL). TCL was created as an extension language
but has come to be used more frequently as a general purpose

65 language in roles similar to Python, PERL, and Ruby.
In regards to extension/embeddable languages, a small

number of languages have been designed for the purpose of

US 7,992,134 B2
21
	

22
	replacing application-specific scripting languages, by being 	 segments modeled with MaCMAS, according to an embodi-

	

embeddable in application programs. The application pro- 	 ment. Method 1600 is one embodiment of translating 1502 in

	

grammer (working in C or another systems language)
	

FIG. 15.
	includes "hooks" where the scripting language can control

	
Method 1600 may include verifying 1602 the syntax of the

the application. These languages serve the same purpose as 5 plurality of requirements of the policy. Thereafter, method

	

application-specific extension languages, but with the advan-	 1600 may include mapping 1604 the plurality of require-

	

tage of allowing some transfer of skills from application to	 ments of the policy to an agent-oriented specification mod-

	

application. Examples of extension/embeddable script lan- 	 eled with MaCMAS 102.
	guages include Ch (C/C++interpreter), ECMAScript a.k.a. 	 In some embodiments, method 1600 subsequently may

DMDScript, JavaScript, JScript, GameMonkeyScript, Guile, io also include verifying 1606 consistency of the agent-oriented

	

ICI, Squirrel, Lua, TCT, and REALbasic Script (RBScript). 	 specification modeled with MaCMAS 102 with at least one

	

JavaScript began as and primarily still is a language for 	 other agent-oriented specification modeled with MaCMAS

	

scripting inside of web browsers, however, the standardiza- 	 102. In some embodiments, method 1600 may subsequently

	

tion of the language as ECMAScript has made JavaScript 	 also include verifying 1608 lack of other problems in the
widely adopted as a general purpose embeddable language. 15 agent-oriented specification modeled with MaCMAS 102.

	Other scripting languages include BeanShell (scripting for
	

One example of other problems might be unreachable states

	

Java), CobolScript, Escapade (server side scripting), Eupho- 	 in the process defined in the agent-oriented specification

	

ria, F-Script, Ferite, Groovy, Gui4CIi, To, KiXtart, Mondrian, 	 modeled with MaCMAS 102.
	Object REXX, Pike, Pliant, REBOL, ScriptBasic, Shorthand

	
FIG. 17 is a flowchart of a method to translate one or more

Language, Simkin, Sleep, StepTalk, and Visual DialogScript. 20 policies of a system to an implementation, using an interme-

	

FIG. 15 is a flowchart of a method 1500 to generate an
	

diate agent-oriented specification modeled with MaCMAS,

	

executable system from a policy, using an intermediate agent- 	 according to an embodiment. The method 1700 can include

	

oriented specification modeled with MaCMAS, according to	 translating 1702 policies into an agent-oriented specification

	

an embodiment. Method 1500 may solve the need in the art to 	 modeled with MaCMAS 102 without human intervention.

	

generate executable computer instructions from policy with
	

25	 Thereafter, method 1700 can include optionally analyzing

	

neither the time nor the mistakes involved in manually writing
	

1704 the agent-oriented specification modeled with

	

the executable computer instructions, without using a theo- 	 MaCMAS 102. The analyzing 1704 can be a verification/
rem-prover.	 validation of the policies. In some embodiments, the analyz-

	

Method 1500 may include translating 1502 mechanically
	

ing 1704 can determine various properties such as existence
each of a plurality of requirements of the policy to a plurality 30 of omissions, deadlock, livelock, and race conditions in the

	

of agent-oriented specification segments that can be modeled
	

agent-oriented specification modeled with MaCMAS,

	

with MaCMAS 102. In some embodiments, the translating 	 although one skilled in the art will know that analyzing the

	

1502 can include inferring the agent-oriented specification 	 agent-oriented specification modeled with MaCMAS can

	

segments modeled with MaCMAS 102 from the policy. One
	

determine other properties not specifically listed, which are
embodiment of translating 1502 is shown in FIG. 16 below. 35 contemplated by the systems, methods and apparatus

	

In some embodiments, the agent-oriented specification
	

described herein. In some embodiments, the analyzing 1704

	

modeled with MaCMAS 102 can be translated in a process 	 can provide a mathematically sound analysis of the policies in

	

algebra notation. Those embodiments may satisfy the need in 	 a general format that doesn't require significant understand-

	

the art for an automated, mathematics-based process for
	

ing of the specific rules of the policies. Further, the analyzing
policy validation that does not require large computational 40 1704 can warn developers of errors in the policies, such as
facilities.	 contradictions and inconsistencies, but equally importantly

	

Thereafter, method 1500 may include aggregating 1504
	

the warning can highlight rules or sets of rules that can be

	

the plurality of agent-oriented specification segments mod- 	 underspecified or over-specified and need to be corrected for

	

eled with MaCMAS 102 into a single agent-oriented specifi- 	 the policies to operate as intended. Thus, no knowledge of the
cation modeled with MaCMAS.	 45 policies may be required, but instead significant analysis,

	

Subsequently, method 1500 may include translating 1506
	

verification, testing, simulation and model checking of the

	

the single agent-oriented specification modeled with
	

policies using customized tools or existing tools and tech-

	

MaCMAS to instructions encoded in the Java computer lan- 	 niques can be provided.

	

guage or some other high-level computer programming lan- 	 Thereafter, in some embodiments, method 1700 can
guage, or some other implementation. Thereafter, method 50 include translating 1706 the formal specification to an imple-

	

1500 may include compiling 1508 the instructions encoded in	 mentation 106. Thus, in at least one embodiment, the method

	

the Java computer language into a file of executable instruc- 	 1700 can provide a method to convert policies to an imple-
tions.	 mentation 106 without involvement from a computer pro-

	

In some embodiments, method 1500 may include deploy-	 grammer.

	

ing and invoking the executable instructions, which can pro- 	 55	 Some embodiments of the method 1700 may not include

	

vide a method to convert policies to an application system
	

invoking an automated logic engine, such as a theorem-
without involvement from a computer programmer. 	 prover, to infer the implementation 106 from the policies.

	

In some embodiments, method 1500 may not include
	

In method 1700, one or more policies that represent the

	

invoking a theorem-prover to infer the agent-oriented speci- 	 operation of a system can be mechanically converted to a
fication segments modeled with MaCMAS 102 from the 60 mathematically sound agent-oriented specification modeled
policy.	 with MaCMAS 102 that can be analyzed for defects and used

	

FIG. 16 is a flowchart of a method 1600 to verify the syntax
	

for various transformations including automatic translation

	

of a set of scenarios, translate the set of scenarios to an
	

into executable form and automatic regeneration of proce-

	

agent-oriented specification segments modeled with
	

dures/scripts into other notations/representations. In other
MaCMAS, verify the consistency of the agent-oriented speci- 65 embodiments, the method disclosed herein can be used to

	

fication segments modeled with MaCMAS, and verify the 	 automatically reverse engineer existing implementations 106

	

absence of other problems in the agent-oriented specification 	 to policies from which the method can be used to produce

US 7,992,134 B2
23

customer-readable representations of policy(s) or machine-
processable implementations 106.

Mathematically sound techniques can be used to mechani-
cally translate one or more policy(s) into an equivalent imple-
mentation 106, using an intermediate agent-oriented specifi-
cation modeled with MaCMAS. The agent-oriented
specification modeled with MaCMAS may be mechanically
(that is, with no manual intervention) manipulated, examined,
analyzed, verified, and used in a simulation.

FIG. 18 is a flowchart of a method 1800 to validate/update
an agent-oriented specification modeled with MaCMAS,
according to an embodiment. Method 1800 may solve the
need in the prior art to reduce errors in implementations.

Method 1800 can include analyzing 1802 an agent-ori-
ented specification modeled with MaCMAS, such as
MaCMAS 102, in which the agent-oriented specification
modeled with MaCMAS has been previously derived from
the policies of the system.

In some embodiments, the analyzing 1802 can include
applying mathematical logic to the agent-oriented specifica-
tion modeled with MaCMAS in order to identify a presence or
absence of mathematical properties of the agent-oriented
specification modeled with MaCMAS. Mathematical proper-
ties of the agent-oriented specification modeled with
MaCMAS that can be determined by applying mathematical
logic to the agent-oriented specification modeled with
MaCMAS can include, by way of example:

1)whether or not the agent-oriented specification modeled
with MaCMAS implies a system execution trace that includes
a deadlock condition, and

2) whether or not the agent-oriented specification modeled
with MaCMAS implies a system execution trace that includes
a livelock condition.

The above two properties can be domain independent. One
skilled in the art will note, however, that there can be many
other possible flaws that could be detected through the analy-
sis of the agent-oriented specification modeled with MaC-
MAS, many or even most of which might be domain depen-
dent. An example of a domain dependent property can be
represented by the operational principle that "closing a door
that is not open is not a valid action." The domain dependent
property example can be applicable in the domain of the
Hubble Space Telescope on-orbit repair.

Thereafter, a determination 1804 can be made as to
whether or not the analyzing 1802 indicates that the agent-
oriented specification modeled with MaCMAS contains a
flaw. If a flaw does exist, then the policies can be corrected
1806 accordingly.

Once a correction is made, then the corrected policies can
be processed by method 1500 in FIG. 15, method 1800 in
FIG. 18 or method 1900 in FIG. 19 to derive a new imple-
mentation from the corrected policies. According to at least
one embodiment, the new policy(s) can be processed by
method 1700, and the iterations of method 1700 and method
1800 can repeat until no more flaws exist in the implementa-
tion 106 generated from the policies, at which point the poli-
cies have no flaws because the implementation 106 can be
provably equivalent to the policy from which the implemen-
tation 106 was derived. Thus, iterations of method 1700 and
1800 can provide verification/validation of the policies.

FIG. 19 is a flowchart of a method 1900 to translate each of
a plurality of policy(s) into an implementation, with interme-
diate agent-oriented specification segments modeled with
MaCMAS, according to an embodiment. Method 1900 may
solve the need in the art to generate implementations from
policy with neither the time nor the mistakes involved in

24
manually writing the agent-oriented specification modeled
with MaCMAS, without using an automated logic engine.

Method 1900 can include mechanically translating 1902
each of a plurality of policies to a plurality of segments of

5 agent-oriented specification modeled with MaCMAS. The
translation can be done without human intervention. One
embodiment of translating 1902 is shown in FIG. 20 below.

Thereafter, method 1900 can include aggregating 1904 the
plurality of agent-oriented specification segments modeled

10 with MaCMAS into a single agent-oriented specification
modeled with MaCMAS.

Subsequently, method 1900 can include translating 1906
the single agent-oriented specification modeled with
MaCMAS to multiple implementations. Thereafter, method

15 1900 can include generating 1908 a singular implementation
from the implementations. Thus, method 1900 can provide an
embodiment of a method to convert a policy 102 to an appli-
cation system without involvement from a computer pro-
grammer.

20 In some embodiments, method 1900 may not include
invoking a theorem-prover or any other automated logic
engine to infer the agent-oriented specification segments
modeled with MaCMAS from the policies.

FIG. 20 is a flowchart of a method 2000 to verify syntax of
25 a set of policies, translate the set of policies to an agent-

oriented specification modeled with MaCMAS, verify the
consistency of the agent-oriented specification modeled with
MaCMAS, and verify the absence of other problems in the
agent-oriented specification modeled with MaCMAS,

30 according to an embodiment. Method 2000 can be one
embodiment of translating 1802 in FIG. 18 and translating
1902 in FIG. 19. As indicated, such translation can be accom-
plished without human intervention.

In some embodiments, the method 2000 can include veri-
35 fying 2002 the syntax of the plurality of policies. Thereafter,

method 2000 can include mapping 2004 the plurality of poli-
cies to an agent-oriented specification modeled with
MaCMAS.

In some embodiments, method 2000 subsequently can also
40 include verifying 2006 consistency of the agent-oriented

specification modeled with MaCMAS. In some embodi-
ments, method 2000 subsequently may also include verifying
2008 a lack of other problems in the agent-oriented specifi-
cation modeled with MaCMAS. One example of other prob-

45 lems can be unreachable states in the process defined in the
formal specification, although one skilled in the art will
understand that yet other problems are contemplated.

Hardware and Operating Environment
50

FIG. 21 is a block diagram of a hardware and operating
environment 2100 in which different embodiments can be
practiced. The description of FIG. 21 can provide an overview
of computer hardware and a suitable computing environment

55 in conjunction with which some embodiments can be imple-
mented. Embodiments are described in terms of a computer
executing computer-executable instructions. However, some
embodiments can be implemented entirely in computer hard-
ware in which the computer-executable instructions are

60 implemented in read-only memory. Some embodiments can
also be implemented in client/server computing environ-
ments where remote devices that perform tasks can be linked
through a communications network. Program modules can be
located in both local and remote memory storage devices in a

65 distributed computing environment. Some embodiments can
also be at least partially implemented in a quantum mechani-
cal computing and communications environment.

US 7,992,134 B2
25
	

26
Computer 2102 may include a processor 2104, commer-

cially available from Intel, Motorola, Cyrix and others. Com-
puter 2102 may also include random-access memory (RAM)
2106, read-only memory (ROM) 2108, and one or more mass
storage devices 2110, and a system bus 2112, that operatively
couples various system components to the processing unit
2104. The memory 2106, 2108, and mass storage devices,
2110, are types of computer-accessible media. Mass storage
devices 2110 can be more specifically types of nonvolatile
computer-accessible media and can include one or more hard
disk drives, floppy disk drives, optical disk drives, and tape
cartridge drives. The processor 2104 can execute computer
programs stored on the computer-accessible media.

Computer 2102 can be communicatively connected to the
Internet 2114 (or any communications network) via a com-
munication device 2116. Internet 2114 connectivity is well
known within the art. In one embodiment, a communication
device 2116 can be a modem that responds to communication
drivers to connect to the Internet via what is known in the art
as a "dial-up connection." In another embodiment, a commu-
nication device 2116 canbe an Ethernet® or similar hardware
network card connected to a local-area network (LAN) that
can be connected to the Internet via what is known in the art
as a "direct connection" (e.g., TI line, etc.).

A user can enter commands and information into the com-
puter 2102 through input devices such as a keyboard 2118 or
a pointing device 2120. The keyboard 2118 can permit entry
of textual information into computer 2102, as known within
the art, and embodiments are not limited to any particular type
of keyboard. Pointing device 2120 can permit the control of
the screen pointer provided by a graphical user interface
(GUI) of operating systems such as versions of Microsoft
Windows®. Embodiments are not limited to any particular
pointing device 2120. Such pointing devices may include
mice, touch pads, trackballs, remote controls and point sticks.
Other input devices (not shown) can include a microphone,
joystick, game pad, gesture-recognition or expression recog-
nition devices, or the like.

In some embodiments, computer 2102 can be operatively
coupled to a display device 2122. Display device 2122 can be
connected to the system bus 2112. Display device 2122 can
permit the display of information, including computer, video
and other information, for viewing by a user of the computer.
Embodiments are not limited to any particular display device
2122. Such display devices may include cathode ray tube
(CRT) displays (monitors), as well as flat panel displays such
as liquid crystal displays (LCD's) or image and/or text pro-
jection systems or even holographic image generation
devices. In addition to a monitor, computers may typically
include other peripheral input/output devices such as printers
(not shown). Speakers 2124 and 2126 (or other audio device)
can provide audio output of signals. Speakers 2124 and 2126
can also be connected to the system bus 2112.

Computer 2102 may also include an operating system (not
shown) that can be stored on the computer-accessible media
RAM 2106, ROM 2108, and mass storage device 2110, and
can be executed by the processor 2104. Examples of operat-
ing systems may include Microsoft Windows®, Apple
MacOS®, Linux®, UNIX®. Examples are not limited to any
particular operating system, however, and the construction
and use of such operating systems are well known within the
art.

Embodiments of computer 2102 are not limited to any type
of computer 2102. In varying embodiments, computer 2102
may comprise a PC-compatible computer, a MacOSO-com-
patible computer, a Linux®-compatible computer, or a

UNIX®-compatible computer. The construction and opera-
tion of such computers are well known within the art.

Computer 2102 can be operated using at least one operat-
ing system to provide a graphical user interface (GUI) includ-

5 ing a user-controllable pointer. Computer 2102 can have at
least one web browser application program executing within
at least one operating system, to permit users of computer
2102 to access an intranet, extranet or Internet world-wide-
web pages as addressed by Universal Resource Locator

io (URL) addresses. Examples of browser application programs
include Netscape Navigator® and Microsoft Internet
Explorer®.

The computer 2102 can operate in a networked environ-
ment using logical connections to one or more remote com-

15 puters, such as remote computer 2128. These logical connec-
tions can be achieved by a communication device coupled to,
or a part of, the computer 2102. Embodiments are not limited
to a particular type of communications device. The remote
computer 2128 can be another computer, a server, a router, a

20 network PC, a client, a peer device or other common network
node. The logical connections depicted in FIG. 21 may
include a local-area network (LAN) 2130 and a wide-area
network (WAN) 2132. Such networking environments are
commonplace in offices, enterprise-wide computer networks,

25 intranets, extranets and the Internet.
When used in a LAN-networking environment, the com-

puter 2102 and remote computer 2128 can be connected to the
local network 2130 through network interfaces or adapters
2134, which can be one type of communications device 2116.

3o Remote computer 2128 may also include a network device
2136. When used in a conventional WAN-networking envi-
ronment, the computer 2102 and remote computer 2128 can
communicate with a WAN 2132 through modems (not
shown). The modem, which can be internal or external, may

35 be connected to the system bus 2112. In a networked envi-
ronment, program modules depicted relative to the computer
2102, or portions thereof, can be stored in the remote com-
puter 2128.

Computer 2102 may also includes power supply 2138.
4o Each power supply can be a battery.

FIG. 22 is a block diagram of an apparatus 2200 to generate
a high-level computer source code program from an informal
specification, according to an embodiment. FIG. 23 is a block
diagram of an apparatus 2300 to generate a formal specifica-

45 tion and an implementation from descriptions of a system,
according to an embodiment. FIG. 24 is a block diagram of an
apparatus to generate a high-level computer source code pro-
gram from a policy, according to an embodiment. FIG. 25 is
a block diagram of an apparatus to engineer a script or pro-

50 cedure from one or more policies, according to an embodi-
ment.

FIG. 22 is a block diagram of an apparatus 2200 to generate
a high-level computer source code program from an informal
specification. System 2200 may solve the need in the art for an

55 automated, generally applicable way to produce a system that
can be a provably correct implementation of an informal
design specification that does not require, in applying the
system to any particular problem or application, the use of a
theorem-prover.

60 According to an embodiment, system 2200 may be a soft-
ware development system that includes a data flow and pro-
cessing points for the data. System 2200 may be representa-
tive of (i) computer applications and electrical engineering
applications such as chip design and other electrical circuit

65 design, (ii) business management applications in areas such
as workflow analysis, (iii) artificial intelligence applications
in areas such as knowledge-based systems and agent-based

US 7,992,134 B2
27
	

28
systems, (iv) highly parallel and highly-distributed applica-	 original informal specification 2208. This indicates that the
tions involving computer command and control and com- 	 process may be reversed, allowing for reverse engineering of
puter-based monitoring, and (v) any other area involving	 existing systems, or for iterative development of more com-
process, sequence or algorithm design. According to the dis- 	 plex systems.
closed embodiments, system 2200 can mechanically convert 5	 In some embodiments, the system may include an analyzer
different types of specifications (either natural language sce- 	 2210 to determine various properties such as existence of
narios or descriptions which are effectively pre-processed

	
omissions, deadlock, livelock, and race conditions in the pro-

scenarios) into process-based formal specifications on which
	

cess-based specification 2208.
model checking and other mathematics-based verifications

	
According to some embodiments, system 2200 may also

are performed, and then optionally convert the formal speci- io include a code translator 2212 to translate the plurality of
fication into code.	 process-based specification segments 2208 to a set of instruc-

In some embodiments, system 2200 may include an infor- 	 tions in a high-level computer language program 2214, such
mal specification 2202 having a plurality of rules or require- 	 as the Java language.
ments. The informal specification can be expressed in

	
System 2200 may be operational for a wide variety of

restricted natural language, graphical notations, English lan- 15 informal specification languages and applications, and thus
guage, programming language representations, scenarios or	 system 2200 can be considered generally applicable. Such
even using semi-formal notations such as unified modeling	 applications will be apparent to one skilled in the art and may
language (UML) use cases. One skilled in the art will recog- 	 include distributed software systems, sensor networks, robot
nize that other languages and graphic indicators may exist 	 operation, complex scripts for spacecraft integration and test-
that fall within the scope of this invention. 	 20 ing, chemical plant operation and control, and autonomous

A scenario may be natural language text (or a combination 	 systems.
of any (possibly graphical) representations of sequential steps

	
Some embodiments indicate that system 2200 can provide

or events) that describes the software's actions in response to 	 mechanical regeneration of the executable system when
incoming data and the internal goals of the software. Sce-	 requirements dictate a change in the high level specification.
narios also may describe communication protocols between 25 In system 2200, all that may be required to update the gener-
systems and between the components within the systems. 	 ated application may be a change in the informal specification
Scenarios also may be known as use-cases. A scenario typi- 	 2202, and then the changes and validation can ripple through
cally describes one or more potential executions of a system, 	 in a mechanical process when system 2200 operates. This
describing what happens in a particular situation, and what 	 also can allow the possibility of cost effectively developing
range of behaviors is expected from or omitted by the system 30 competing designs for a product and implementing each to
under various conditions. 	 determine the best one.

According to some embodiments, system 2200 may also
	

In some embodiments, system 2200 may not include a
include a set of laws of concurrency 2204. Laws of concur-	 theorem-prover to infer the process-based specification seg-
rency 2204 are rules detailing equivalences between sets of

	
ments from the informal specification. However, the plurality

processes combined in various ways, and/or relating process- 35 of process-based specification segments 2208 may be prov-
based descriptions of systems or system components to 	 ably correct implementations of the informal specification
equivalent sets of traces. An example of the laws of concur-	 2202, provided the developer of an instance of system 2200
rency 2204 is given in "Concurrent Systems: Formal Devel- 	 has properly used a theorem-prover (not shown) to prove that
opment in CS by M. G. Hinchey, an S. A. Jarvis, McGraw-Hill

	
the mechanical translator 2206 correctly translates informal

International Series in Software Engineering, New York and 40 specifications into formal specifications.
London, 1995, which is herein incorporated by reference in

	
Some embodiments of system 2200 can operate in a multi-

its entirety. Laws of concurrency 2204 may be expressed in	 processing, multi-threaded operating environment on a com-
any suitable language for describing concurrency. These lan- 	 puter, such as computer 2102 in FIG. 21. While the system
guages may include, but are not limited to, CSP (Communi-	 2200 is not limited to any particular informal specification
cating Sequential Processes), CCS (Calculus of Communi- 45 2202, plurality of rules or requirements, set of laws of con-
cating Systems) and variants of these languages. 	 currency 2204, mechanical translator 2206, process-based

The informal specification 2202 and a set of laws of con- 	 specification 2208, analyzer 2210, code translator 2212 and
currency 2204 can be received by a mechanical translator

	
high-level computer language program 2214, for sake of clar-

2206. The plurality of rules or requirements of the informal
	

ity a simplified informal specification 2202, plurality of rules
specification 2202 may be translated mechanically to a pro- 50 or requirements, set of laws of concurrency 2204, mechanical
cess-based specification 2208 or other formal specification	 translator 2206, process-based specification 2208, analyzer
language representation. The mechanical designation can

	
2210, code translator 2212, and high-level computer lan-

mean that no manual intervention in the direct translation is 	 guage program 2214 are described.
provided. In some embodiments, the process-based specifi- 	 System 2200 may relate to the fields of chemical or bio-
cation 2208 may be an intermediate notation or language of 55 logical process design or mechanical system design, and,
sequential process algebra such as Hoare's language of Com- 	 generally to any field where the behaviors exhibited by a
municating Sequential Processes (CSP). 	 process to be designed is described by a set of scenarios

The process-based specification 2208 may be mathemati- 	 expressed in natural language, or some appropriate graphical
cally and provably equivalent to the informal specification 	 notation or textual notation.
2202. Mathematically equivalent does not necessarily mean 60	 FIG. 23 is ablockdiagram of an apparatus 2300 to engineer
mathematically equal. Mathematical equivalence of A and B

	
a script or procedure from scenarios, according to an embodi-

means that A implies B and B implies A. Note that applying	 ment. System 2300 may solve the need in the art for an
the laws of concurrency 2204 to the process-based specifica- 	 automated, generally applicable way to verify that an imple-
tion 2208 would allow for the retrieval of a trace-based speci-	 mented script is a provably correct implementation of a set of
fication that may be equivalent to the informal specification 65 scenarios.
2202. Note that the process-based specification may be math- 	 One embodiment of the system 2300 may be a software
ematically equivalent to rather than necessarily equal to the

	
development system that includes a data flow and processing

US 7,992,134 B2
29

points for the data. According to some of the disclosed
embodiments, system 2300 can convert scenarios into a script
on which model checking and other mathematics-based veri-
fications can then be performed.

The system 2300 can include a plurality of scenarios 2302. 5

The scenarios 2302 can be written in a particular syntax, such
as constrained natural language or graphical representations.
The scenarios 2302 can embody software applications,
although one skilled in the art will recognize that other sys-
tems fall within the purview of this invention. 	 10

In some embodiments, the scenarios 2302 may be received
by a translator 2306. The optional inference engine 2304
might bereferencedby the translator 2306 when the scenarios
2302 are translated by the translator 2306 into a formal speci-
fication 2308. Subsequently, the formal specification 2308 15

can be translated by script translator 2312 into a script 2314 in
some appropriate scripting language. In some embodiments
no manual intervention in the translation is provided. Those
skilled in the art will readily understand that other appropriate
notations and/or languages exist that are within the scope of 20

this invention.
In some embodiments, system 2300 can include an ana-

lyzer 2310 to determine various properties of the formal
specification, such as the existence of omissions, deadlock,
livelock, and race conditions, as well as other conditions, in 25

the formal specification 2308, although one skilled in the art
will recognize that other additional properties can be deter-
mined by the analyzer 2310. The analyzer 2310 may solve the
need in the prior art to reduce errors.

In some embodiments, the script 2314 can be mathemati- 30

cally and provably equivalent to the scenarios 2302. Math-
ematically equivalent does not necessarily mean mathemati-
cally equal. Mathematical equivalence ofA and B means that
A implies B and B implies A. Note that the script 2314 of
some embodiments can be mathematically equivalent to, 35

rather than necessarily equal to, the scenarios 2302.
In some embodiments, the formal specification 2308 can

be a process-based specification, such as process algebra
encoded notation. The process algebra encoded notation can
be a mathematically notated form. This embodiment may 40

satisfy the need in the art for an automated, mathematics-
based process for requirements validation that does not
require large computational facilities.

In some embodiments, the scenarios 2302 of system 2300
can specify allowed situations, events and/or results of a 45

software system. In that sense, the scenarios 2302 canprovide
an abstract specification of the software system.

Some embodiments of system 2300 can be operational for
a wide variety of rules, computer instructions, computer lan-
guages and applications; thus, system 2300 may be generally 50

applicable. Such applications can include, without limitation,
space satellite control systems, distributed software systems,
sensor networks, robot operations, complex scripts for space-
craft integration and testing, chemical plant operation and
control, autonomous systems, electrical engineering applica- 55

tions such as chip design and other electrical circuit design,
business management applications in areas such as workflow
analysis, artificial intelligence applications in areas such as
knowledge-based systems and agent-based systems, highly
parallel and highly-distributed applications involving com- 60

puter command and control and computer-based monitoring,
and any other area involving process, sequence or algorithm
design. Hence, one skilled in the art will recognize that any
number of other applications not listed can fall within the
scope of this invention. 	 65

Some embodiments of the system 2300 can provide
mechanical or automatic generation of the script 2314, in

30
which human intervention is not required. In at least one
embodiment of the system 2300, all that may be required to
update the generated application is a change in the scenarios
2302, in which case the changes and validation can ripple
through the entire system without human intervention when
system 2300 operates. This may also allow the possibility of
cost effectively developing competing designs for a product
and implementing each to determine the best one.

Some embodiments of the system 2300 may not include an
automated logic engine, such as a theorem-prover or an auto-
mated deduction engine, to infer the script 2314 from the
scenarios 2302. However, the script 2314 can be a provably
correct version of the scenarios 2302.

Thus, in regards to scripts and complex procedures, auto-
matic code generation of system 2300 can generate proce-
dures/scripts in suitable scripting language or device control
language (such as for a robot) that would provide the proce-
dures, once validated, to be automatically transformed into an
implementation. Additionally, system 2300 can be used to
"reverse engineer" existing procedures/scripts so that the
existing procedures/scripts can be analyzed and corrected and
recast in a format and form that can be more easily under-
stood. System 2300 also can be used to reverse engineer
multiple existing procedures/scripts (even written in different
languages) to a single formal model by which the procedures/
scripts are combined, analyzed for conflicts, and regenerated
as a single procedure/script (in the same or a different proce-
dure/scripting language).

Some embodiments of system 2300 may operate in a multi-
processing, multi-threaded operating environment on a com-
puter, such as the computer 2102 illustrated in FIG. 21. While
the system 2300 is not limited to any particular scenarios
2302, inference engine 2304, translator 2306, formal speci-
fication 2308, analyzer 2310, script translator 2312 and script
2314, for sake of clarity, embodiments of simplified scenarios
2302, inference engine 2304, translator 2306, formal speci-
fication 2308, analyzer 2310, script translator 2312 and script
2314 are described.

In some embodiments, the system 2300 may be a software
development system that can include a data flow and process-
ing points for the data. System 2300 can be representative of
(i) computer applications and electrical engineering applica-
tions such as chip design and other electrical circuit design,
(ii)business management applications in areas such as work-
flow analysis, (iii) artificial intelligence applications in areas
such as knowledge-based systems and agent-based systems,
(iv) highly parallel and highly-distributed applications
involving computer command and control and computer-
based monitoring, and (v) any other area involving process,
sequence or algorithm design. One skilled in the art, however,
will recognize that other applications can exist that are within
the purview of this invention. According to the disclosed
embodiments, system 2300 can, without human intervention,
convert different types of specifications (such as natural lan-
guage scenarios or descriptions which are effectively pre-
processed scenarios) into process-based scripts on which
model checking and other mathematics-based verifications
are performed, and then optionally convert the script into
code.

System 2300 can be operational for a wide variety of lan-
guages for expressing requirements, and thus system 2300
may be considered generally applicable. Such applications
may include, without limitation, distributed software sys-
tems, sensor networks, robot operation, complex scripts for
spacecraft integration and testing, chemical plant operation
and control, and autonomous systems. One skilled in the art

US 7,992,134 B2
31

will understand that these applications are cited by way of
example and that other applications can fall within the scope
of the invention.

According to some embodiments, a scenario is natural
language text (or a combination of any, such as possibly 5

graphical, representations of sequential steps or events) that
describes the software's actions in response to incoming data
and the internal goals of the software. Scenarios also can
describe communication protocols between systems and
between the components within the systems. Scenarios also i0

can be known as use cases. A scenario can describe one or
more potential executions of a system, such as describing
what happens in a particular situation and what range of
behaviors is expected from or omitted by the system under 15

various conditions.
Natural language scenarios can be constructed in terms of

individual scenarios written in a structured natural language.
Different scenarios can be written by different stakeholders of
the system, corresponding to the different views the stake- 20
holders can have of how the system will perform, including
alternative views corresponding to higher or lower levels of
abstraction. Natural language scenarios can be generated by a
user with or without mechanical or computer aid. Such a set
of natural language scenarios can provide the descriptions of 25

actions that occur as the software executes. Some of these
actions can be explicit and required, while others can be due
to errors arising or as a result of adapting to changing condi-
tions as the system executes.

For example, if the system involves commanding space 30

satellites, scenarios for that system can include sending com-
mands to the satellites and processing data received in
response to the commands. Natural language scenarios may
be specific to the technology or application domain to which
the natural language scenarios are applied. A fully automated 35

general purpose approach covering all domains can be tech-
nically prohibitive to implement in a way that is both com-
plete and consistent.

To ensure consistency, the domain of application can often
be purpose-specific. For example, scenarios for satellite Sys- 40

terns may not be applicable as scenarios for systems that
manufacture agricultural chemicals.

System 2400 may solve the need in the art for an auto-
mated, generally applicable way to produce a system that is a
provably correct implementation of one or more policies that 45

does not require, in applying the system to any particular
problem or application, the use of a theorem-prover.

In some embodiments, system 2400 may be a software
development system that includes a data flow and processing
points for the data. System 2400 thus may be representative of 50

(i) computer applications and electrical engineering applica-
tions such as chip design and other electrical circuit design (ii)
business management applications in areas such as workflow
analysis, (iii) artificial intelligence applications in areas such
as knowledge-based systems and agent-based systems, (iv) 55

highly parallel and highly-distributed applications involving
computer command and control and computer-based moni-
toring, (v) any other area involving process, sequence or
algorithm design, (vi) remote space vehicles such as autono-
mous nanotechnology swarm (ANTS) and moon and Mars 60

exploration vehicles. According to some of the disclosed
embodiments, system 2400 can mechanically convert differ-
ent types of specifications (either natural language scenarios
or descriptions which are effectively pre-processed sce-
narios) into formal specifications on which model checking 65

and other mathematics-based verifications are performed,
and then optionally convert the formal specification into code.

32
System 2400 may include one or more policies 2402 hav-

ing a plurality of rules or requirements. The policy 2402 can
be an informal specification that can be expressed in restricted
natural language, graphical notations, English language, pro-
gramming language representations, or even using semi-for-
mal notations such as unified modeling language (UML) use
cases.

In some embodiments, policies may be a set of business
considerations or a business policy that is designed to guide
decisions of courses of action, and policy-based management
may be viewed as an administrative approach to systems
management that establishes rules in advance to deal with
situations that are likely to occur. From this perspective,
policy-based management can work by controlling access to,
and setting priorities for, the use of information and commu-
nications technology (ICT) resources, for instance, where a
(human) manager can simply specify the business objectives
and the system will make it so in terms of the needed ICT. For
example:

1. "The customer database must be backed up nightly
between I a.m. and 4 a.m."

2. "Platinum customers are to receive no worse than I-sec-
ond average response time on all purchase transactions."

3. "Only management and the HR senior staff can access
personnel records." and

4. "The number of connections requestedby the Web appli-
cation server cannot exceed the number of connections sup-
ported by the associated database."

These examples highlight the wide range and multiple
levels of policies available, the first being concerned with
system protection through backup, the second being con-
cerned with system optimization to achieve and maintain a
level of quality of service for key customers; while the third
and forth examples are concerned with system configuration
and protection. If one definition of autonomic computing
could be self-management based on high level guidance from
humans, and considering IBM's high-level set of self-prop-
erties (self-CHOP: configuration, healing, optimization and
protection) against the types of typical policies mentioned
previously (optimization, configuration and protection), the
importance and relevance of polices for achieving autono-
micity become clear.

Some application areas of policy-based management
(PBM) may include networking as a way of managing IP-
based multi-service networks with quality of service guaran-
tees, the telecom industry for next generation networking
which is driven by the fact that policy has been recognized as
a solution to manage complexity and to guide the behavior of
a network or distributed system through high-level user-ori-
ented abstractions, and product and system management by
providing uniform cross-product policy definition and man-
agement infrastructure.

System 2400 may also include a set of laws of concurrency
2204. According to some embodiments, the policy 2402 and
a set of laws of concurrency 2204 may be received by a
mechanical translator 2404. The plurality of rules or require-
ments of the policy 2402 may be translated mechanically to a
formal specification 2406 or other formal specification lan-
guage representation, such as a process-based specification.
The mechanical characterization means that no manual inter-
vention in the direct translation is provided. In some embodi-
ments, the formal specification 2406 may be an intermediate
notation or language of sequential process algebra such as
Hoare's language of Communicating Sequential Processes
(CSP).

The formal specification 2406 can be mathematically and
provably equivalent to the policy 2402. Mathematically

US 7,992,134 B2
33

equivalent does not necessarily mean mathematically equal.
Mathematical equivalence ofA and B means that implies B
and B implies A. Note that applying the laws of concurrency
2204 to the formal specification 2406 would allow for the
retrieval of a trace-based specification that is equivalent to the
policy 2402. Note that the formal specification 2406 could be
mathematically equivalent to rather than necessarily equal to
the original policy 2402. Thus, in some embodiments, the
process may be reversed, allowing for reverse engineering of
existing systems, or for iterative development of more com-
plex systems.

In some embodiments, the system may include an analyzer
2408 to determine various properties such as existence of
omissions, deadlock, livelock, and race conditions in the for-
mal specification 2406.

System 2400 may also include a code translator 2410 to
translate the plurality of formal specification segments 2406
to a set of instructions in a high-level computer language
program 2414, such as the Java language.

System 2400 canbe operational for a wide variety of policy
languages and applications, and thus system 2400 can be
considered generally applicable. Such applications may
include distributed software systems, sensor networks, robot
operation, complex scripts for spacecraft integration and test-
ing, chemical plant operation and control, and autonomous
systems.

In some embodiments, system 2400 may provide mechani-
cal regeneration of the executable system when requirements
dictate a change in the high level specification. In system
2400, updating the generated application may require a
change in the policy 2402, and then the changes and valida-
tion can ripple through in a mechanical process when system
2400 operates. This also allows the possibility of cost effec-
tively developing competing designs for a product and imple-
menting each to determine the best one.

Some embodiments of system 2400 may not include a
theorem-prover to infer the formal specification 2406 seg-
ments from the policy 2402. However, the plurality of formal
specification segments 2406 can be provably correct imple-
mentations of the policy 2402, provided the developer of an
instance of system 2400 has properly used a theorem-prover
(not shown) to prove that the mechanical translator 2404
correctly translates policies into formal specifications.

Some embodiments of system 2400 can operate in a multi-
processing, multi-threaded operating environment on a com-
puter, such as computer 2102 in FIG. 21. While the system
2400 may not be limited to any particular policy 2402, plu-
rality of rules or requirements, set of laws of concurrency
2204, mechanical translator 2404, formal specification 2406,
analyzer 2408, code translator 2410 and high-level computer
language program 2414, for sake of clarity a simplified policy
2402, plurality of rules or requirements, set of laws of con-
currency 2204, mechanical translator 2404, formal specifica-
tion 2406, analyzer 2408, code translator 2410, and high-
level computer language program 2414 are described by way
of example.

According to some embodiments, system 2400 can relate
to the fields of chemical or biological process design or
mechanical system design, and, generally to any field where
the behaviors exhibited by a process to be designed are
described or constrained by a set of policies expressed in
natural language, or some appropriate graphical notation or
textual notation.

FIG. 25 is a block diagram of an apparatus to generate or
engineer a script or procedure from policies, according to an
embodiment. System 2500 can alleviate a need in the art for

34
an automated, generally applicable way to verify that an
implementation is a provably correct implementation of one
of more policies.

At least one embodiment of the system 2500 may be a
5 software development system that includes a data flow and

processing points for the data. According to the disclosed
embodiments, system 2500 can convert one or more policies
into a script on which model checking and other mathemat-
ics-based verifications can then be performed.

io The system 2500 can include one or more policies 2502.
The policies 2502 can be written in a particular syntax, such
as constrained natural language, graphical representations,
etc. The policies 2502 can embody software applications,
although one skilled in the art will recognize that other sys-

15 tems fall within the purview of this invention.
In some embodiments, the policies 2502 may be received

by a translator 2504. The optional inference engine 2304
might be referenced by the translator 2504 when the policies
2502 are translated by the translator 2504 into a formal speci-

20 fication 2406. Subsequently, the formal specification 2406
can be translated by translator 2508 into a script in some
appropriate scripting language. In some embodiments, no
manual intervention in the translation is provided. Those
skilled in the art readily will understand that other appropriate

25 notations and/or languages exist that are within the scope of
this invention.

In some embodiments, system 2500 can include an ana-
lyzer 2506 to determine various properties of the formal
specification, such as the existence of omissions, deadlock,

30 livelock, and race conditions, as well as other conditions, in
the formal specification 2406, although one skilled in the art
will recognize that other additional properties can be deter-
mined by the analyzer 2506. The analyzer 2506 may solve the
need in the prior art to reduce errors.

35 In some embodiments, the implementation 2510 can be
mathematically and provably equivalent to the policies 2502.
Mathematically equivalent does not necessarily mean math-
ematically equal. Mathematical equivalence of A and B
means that A implies B and B implies A. Note that the imple-

40 mentation 2312 of some embodiments may be mathemati-
cally equivalent to, rather than necessarily equal to, the poli-
cies 2502.

In some embodiments, the formal specification 2406 can
be a process-based specification, such as process algebra

45 encoded notation. The process algebra encoded notation can
be a mathematically notated form. This embodiment may
satisfy the need in the art for an automated, mathematics-
based process for policy validation that does not require large
computational facilities.

50 In some embodiments, the policies 2502 of system 2500
can specify allowed situations, events and/or results of a
software system. In that sense, the policies 2502 can provide
an abstract specification of the software system.

Some embodiments of system 2500 can be operational for
55 a wide variety of rules, computer instructions, computer lan-

guages and applications; thus, system 2500 can be generally
applicable. Such applications can include, without limitation,
space satellite control systems, distributed software systems,
sensor networks, robot operations, complex scripts for space-

60 craft integration and testing, chemical plant operation and
control, autonomous systems, electrical engineering applica-
tions such as chip design and other electrical circuit design,
business management applications in areas such as workflow
analysis, artificial intelligence applications in areas such as

65 knowledge-based systems and agent-based systems, highly
parallel and highly-distributed applications involving com-
puter command and control and computer-based monitoring,

US 7,992,134 B2
35

and any other area involving process, sequence or algorithm
design. Hence, one skilled in the art will recognize that any
number of other applications not listed can fall within the
scope of this invention.

Some embodiments of the system 2500 can provide
mechanical or automatic generation of the implementation
2510, in which human intervention is not required. In at least
one embodiment of the system 2500, all that may be required
to update the generated application is a change in the policies
2502, in which case the changes and validation can ripple
through the entire system without human intervention when
system 2500 operates. This also allows the possibility of cost
effectively developing competing designs for a product and
implementing each to determine the best one.

Some embodiments of the system 2500 may not include an
automated logic engine, such as a theorem-prover or an auto-
mated deduction engine, to infer the script implementation
from the policies 2502. However, the script implementation
can be a provably correct version of the policies 2502 pro-
vided the developer of an instance of system 2500 has prop-
erly used a theorem-prover (not shown) to prove that the
mechanical translator 2504 correctly translates policies into
formal specifications.

Thus, in regards to scripts and complex procedures, auto-
matic code generation of system 2500 can generate proce-
dures/scripts in suitable scripting language or device control
language (such as for a robot) that would provide the proce-
dures, once validated, to be automatically transformed into an
implementation. Additionally, system 2500 can be used to
"reverse engineer" existing procedures/scripts so that the
existing procedures/scripts can be analyzed and corrected and
recast in a format and form that can be more easily under-
stood. System 2500 also can be used to reverse engineer
multiple existing procedures/scripts (even written in different
languages) to a single formal model by which the procedures/
scripts are combined, analyzed for conflicts, and regenerated
as a single procedure/script (in the same or a different proce-
dure/scripting language).

Some embodiments of system 2500 may operate in a multi-
processing, multi-threaded operating environment on a com-
puter, such as the computer 2102 illustrated in FIG. 21. While
the system 2500 is not limited to any particular policies 2502,
inference engine 2304, translator 2504, formal specification
2406, analyzer 2506, translator 2508 and implementation
2312, for sake of clarity, embodiments of simplified policies
2502, inference engine 2304, translator 2504, formal speci-
fication 2406, analyzer 2506, translator 2508 and implemen-
tation 2312 are described by way of example.

In some embodiments, the system 2500 may be a software
development system that can include a data flow and process-
ing points for the data. System 2500 can be representative of
(i) computer applications and electrical engineering applica-
tions such as chip design and other electrical circuit design,
(ii)business management applications in areas such as work-
flow analysis, (iii) artificial intelligence applications in areas
such as knowledge-based systems and agent-based systems,
(iv) highly parallel and highly-distributed applications
involving computer command and control and computer-
based monitoring, and (v) any other area involving process,
sequence or algorithm design. One skilled in the art, however,
will recognize that other applications can exist that are within
the purview of this invention. According to the some of the
disclosed embodiments, system 2500 can, without human
intervention, convert different types of policies into formal
specifications on which model checking and other mathemat-
ics-based verifications are performed, and then optionally
convert the specification into code.

36
System 2500 can be operational for a wide variety of lan-

guages for expressing requirements, and thus system 2500
can be considered generally applicable. Such applications
may include, without limitation, distributed software sys-

5 tems, sensor networks, robot operation, complex scripts for
spacecraft integration and testing, chemical plant operation
and control, and autonomous systems. One skilled in the art
will understand that these applications are cited by way of

to example and that other applications can fall within the scope
of the invention.

According to some embodiments, a policy can describe
one or more potential executions of a system, such as describ-
ing what happens in a particular situation and what range of

15 behaviors is expected from or omitted by the system under
various conditions.

Different policies can be written by different stakeholders
of the system, corresponding to the different views the stake-
holders can have of how the system will perform, including

20 alternative views corresponding to higher or lower levels of
abstraction. Policies can be generated by a user with or with-
out mechanical or computer aid. Policies can provide the
descriptions of actions that occur as the software executes.
Some of these actions can be explicit and required, while

25 others can be due to errors arising, including those that are as
a result of adapting to changing conditions as the system
executes.

FIG. 26 is a block diagram of a system 2600 to generate a
high-level computer source code program from an agent-

30 oriented specification modeled with MaCMAS, according to
an embodiment. System 2600 may solve the need in the art for
an automated, generally applicable way to produce a system
that can be a provably correct implementation of an agent-

35 oriented specification modeled with MaCMAS that does not
require, in applying the system to any particular problem or
application, the use of a theorem-prover.

System 2600 can be a software development system that
includes a data flow and processing points for the data. Sys-

40 tem 2600 can be representative of (i) computer applications
and electrical engineering applications such as chip design
and other electrical circuit design (ii) business management
applications in areas such as workflow analysis, (iii) artificial
intelligence applications in areas such as knowledge-based

45 systems and agent-based systems, (iv) highly parallel and
highly-distributed applications involving computer com-
mand and control and computer-based monitoring, and (v)
any other area involving process, sequence or algorithm
design. According to the disclosed embodiments, system

50 2600 can mechanically convert different types of agent-ori-
ented specifications modeled with MaCMAS into high-level
computer language code.

System 2600 may include one or more agent-oriented
specifications modeled with MaCMAS 102.

55 In some embodiments, the system can include an analyzer
108 to determine various properties such as existence of
omissions, deadlock, livelock, and race conditions in the
agent-oriented specifications) modeled with MaCMAS 102.

System 2600 can also include a code translator 2602 to
60 translate the agent-oriented specifications) modeled with

MaCMAS 102 to a set of instructions in a high-level com-
puter language program 2604, such as the Java language.

System 2600 can be operational for a wide variety of lan-
guages and applications for agent-oriented specifications)

65 modeled with MaCMAS, and thus system 2600 may be con-
sidered generally applicable. Such applications may include
distributed software systems, sensor networks, robot opera-

US 7,992,134 B2
37

tion, complex scripts for spacecraft integration and testing,
chemical plant operation and control, and autonomous sys-
tems.

System 2600 may provide mechanical regeneration of the
executable system when requirements dictate a change in the
agent-oriented specifications) modeled with MaCMAS. In
system 2600, the generated application can be regenerated by
changing the agent-oriented specification modeled with
MaCMAS 102, and then the changes and validation can
ripple through in a mechanical process when system 2600
operates to regenerate the application. Thus, competing
designs of the application can be cost effectively developed
for a product and implemented to determine the best design.

Some embodiments of system 2600 can operate in a multi-
processing, multi-threaded operating environment on a com-
puter, such as computer 2102 in FIG. 21. While the system
2600 is not limited to any particular agent-oriented specifi-
cation modeled with MaCMAS 102, analyzer 108, code
translator 2602 and high-level computer language program
2604, for sake of clarity a simplified agent-oriented specifi-
cation modeled with MaCMAS 102, analyzer 108, code
translator 2602, and high-level computer language program
2604 are described.

System 2600 may relate to the fields of chemical or bio-
logical process design or mechanical system design, and,
generally to any field where the behaviors exhibited by a
process to be designed can be described by means of agent-
oriented specification(s) modeled with MaCMAS.

FIG. 27 is a block diagram of a system 2700 to engineer a
script or procedure from agent-oriented specifications) mod-
eled with MaCMAS, according to an embodiment. System
2700 may solve the need in the art for an automated, generally
applicable way to verify that an implemented script can be a
provably correct implementation of a set of agent-oriented
specifications modeled with MaCMAS.

One embodiment of the system 2700 can be a software
development system that includes a data flow and processing
points for the data. According to the disclosed embodiments,
system 2700 can convert agent-oriented specifications mod-
eled with MaCMAS into a script and perform model checking
and other mathematics-based verifications on the agent-ori-
ented specifications modeled with MaCMAS.

In some embodiments, system 2700 can include an ana-
lyzer 108 to determine various properties of the agent-ori-
ented specifications modeled with MaCMAS 102, such as the
existence of omissions, deadlock, livelock, and race condi-
tions, as well as other conditions, in the agent-oriented speci-
fication(s) modeled with MaCMAS 102, although one skilled
in the art will recognize that other additional properties can be
determined by the analyzer 108. The analyzer 108 may solve
the need in the prior art to reduce errors.

Subsequently, the agent-oriented specifications) modeled
with MaCMAS 102 can be translated by script translator
2702 into a script 2704 in some appropriate scripting lan-
guage. In some embodiments, no manual intervention in the
translation may be provided. Those skilled in the art will
readily understand that other appropriate notations and/or
languages exist that are within the scope of the systems,
methods and apparatus described herein.

In some embodiments, the script 2704 can be mathemati-
cally and provably equivalent to the agent-oriented specifica-
tion(s) modeled with MaCMAS 102. Mathematically equiva-
lent does not necessarily mean mathematically equal.
Mathematical equivalence ofA and B means that implies B
and B implies A. Note that the script 2704 of some embodi-

38
ments can be mathematically equivalent to, rather than nec-
essarily equal to, the agent-oriented specifications modeled
with MaCMAS 102.

In some embodiments, the agent-oriented specifications)
5 modeled with MaCMAS 102 can be a process-based specifi-

cation, such as process algebra encoded notation. The process
algebra encoded notation can be a mathematically notated
form. System 100 may satisfy the need in the art for an
automated, mathematics-based process for requirements

to validation that does not require large computational facilities.
In some embodiments, the agent-oriented specifications)

modeled with MaCMAS 102 of system 2700 can specify
allowed situations, events and/or results of a software system.

15 In that sense, the agent-oriented specifications) modeled
with MaCMAS 102 can provide an abstract specification of
the software system.

Some embodiments of system 2700 can be operational for
a wide variety of rules, computer instructions, computer lan-

20 guages and applications; thus, system 2700 can be generally
applicable. Such applications can include, without limitation,
space satellite control systems, distributed software systems,
sensor networks, robot operations, complex scripts for space-
craft integration and testing, chemical plant operation and

25 control, autonomous systems, electrical engineering applica-
tions such as chip design and other electrical circuit design,
business management applications in areas such as workflow
analysis, artificial intelligence applications in areas such as
knowledge-based systems and agent-based systems, highly

so parallel and highly-distributed applications involving com-
puter command and control and computer-based monitoring,
and any other area involving process, sequence or algorithm
design. Hence, one skilled in the art will recognize that any
number of other applications not listed can fall within the

35 scope of the systems, methods and apparatus described
herein.

Some embodiments of the system 2700 can provide
mechanical or automatic generation of the script 2704, in
which human intervention is not required. In at least one

40 embodiment of the system 2700, the generated application
can be regenerated by changing the agent-oriented specifica-
tions) modeled with MaCMAS 102, and then the changes
and validation will ripple through the entire system without
human intervention which system 2700 operates to regener-

45 ate the application. Thus, competing designs of the applica-
tion for a product can be cost effectively developed and imple-
mented to determine the best design.

Some embodiments of the system 2700 may not include an
automated logic engine, such as a theorem-prover or an auto-

50 mated deduction engine, to infer the script 2704 from the
agent-oriented specifications) modeled with MaCMAS 102.

Thus, in regards to scripts and complex procedures, auto-
matic code generation of system 2700 can generate proce-
dures/scripts in suitable scripting language or device control

55 language (such as for a robot) that provides the procedures,
once validated, to be automatically transformed into an
implementation. Additionally, system 2700 can be used to
"reverse engineer" existing procedures/scripts so that the
existing procedures/scripts can be analyzed and corrected and

6o recast in a format and form that can be more easily under-
stood. System 2700 also can be used to reverse engineer
multiple existing procedures/scripts (even written in different
languages) to a single agent-oriented specification modeled
with MaCMAS 102 by which the procedures/scripts can be

65 combined, analyzed for conflicts, and regenerated as a single
procedure/script (in the same or a different procedure/script-
ing language).

US 7,992,134 B2
39

Some embodiments of system 2700 can operate in a multi-
processing, multi-threaded operating environment on a com-
puter, such as the computer 2102 illustrated in FIG. 21. While
the system 2700 is not limited to any particular agent-oriented
specification(s) modeled with MaCMAS 102, analyzer 108,
script translator 2702 and script 2704, for sake of clarity,
embodiments of simplified s agent-oriented specifications)
modeled with MaCMAS 102, analyzer 108, script translator
2702 and script 2704 are described.

In some embodiments, the system 2700 can be a software
development system that can include a data flow and process-
ing points for the data. System 2700 can be representative of
(i) computer applications and electrical engineering applica-
tions such as chip design and other electrical circuit design,
(ii)business management applications in areas such as work-
flow analysis, (iii) artificial intelligence applications in areas
such as knowledge-based systems and agent-based systems,
(iv) highly parallel and highly-distributed applications
involving computer command and control and computer-
based monitoring, and (v) any other area involving process,
sequence or algorithm design. One skilled in the art, however,
will recognize that other applications can exist that are within
the purview of system 2700. According to the disclosed
embodiments, system 2700 can, without human intervention,
convert different types of agent-oriented specifications)
modeled with MaCMAS 102 into scripts on which model
checking and other mathematics-based verifications can be
performed, and then optionally convert the script into code.

System 2700 can be operational for a wide variety of lan-
guages for expressing requirements, and thus system 2700
can be considered generally applicable. Such applications
may include, without limitation, distributed software sys-
tems, sensor networks, robot operation, complex scripts for
spacecraft integration and testing, chemical plant operation
and control, and autonomous systems. One skilled in the art
will understand that these applications are cited by way of
example and that other applications can fall within the scope
of the invention.

For example, if the system involves commanding space
satellites, agent-oriented specifications) modeled with MaC-
MAS 102 for that system can include sending commands to
the satellites and processing data received in response to the
commands. Agent-oriented specification(s) modeled with
MaCMAS 102 may be specific to the technology or applica-
tion domain to which the agent-oriented specifications)
modeled with MaCMAS 102 can be applied. A fully auto-
mated general purpose approach covering all domains may be
technically prohibitive to implement in a way that can be both
complete and consistent.

To ensure consistency, the domain of application can be
often purpose-specific. For example, agent-oriented specifi-
cations) modeled with MaCMAS 102 for satellite systems
may not be applicable as scenarios for systems that manufac-
ture agricultural chemicals.

CSP Implementation

Referring to FIG. 28, a particular CSP implementation
2800 is described in conjunction with the apparatus in FIG. 22
and the methods described in conjunction with FIG. 2 and
FIG. 3, according to an embodiment.

FIG. 28 is a block diagram of a particular CSP implemen-
tation of an apparatus 2800 to generate a high-level computer
source code program from an informal specification, accord-
ing to an embodiment. Apparatus 2800 may solve the need in
the art for an automated, generally applicable way to produce

40
a system that is a provably correct implementation of an
informal design specification that does not require use of a
theorem-prover.

Apparatus 2800 may include an informal specification
5 2202 having a plurality of rules or requirements. The informal

specification 2202 can be expressed in restricted natural lan-
guage, graphical notations, or even using semi-formal nota-
tions such as unified modeling language (UML) use cases.
Apparatus 2800 may also include a set of laws of concurrency

10 2204.
The informal specification 2202 and a set of laws of con-

currency 2204 may be received by a mechanical CSP trans-
lator 2802. The plurality of rules or requirements of the infor-

15 mal specification 2202 can be translated mechanically to a
specification 2804 encoded in Hoare's language of Commu-
nicating Sequential Processes (CSP). In some embodiments,
the mechanical CSP translator 2802 can perform actions 202
and 204 in FIG. 2.

20 In some embodiments, the system may include a formal
specification analyzer 2806 to perform model verification/
checking and determine existence of omissions, deadlock,
livelock and race conditions in the CSP specification 2804. In
some embodiments, the formal specification analyzer 2806

25 may receive and transmit information from and to a visual-
ization tool 2808 that provides a way to modify the CSP
specification 2804. In some embodiments, the formal speci-
fication analyzer 2806 can receive and transmit information
from and to a tool 2810 designed for CSP that provides a way

30 to modify the CSP specification 2804.
The formal specification analyzer 2806 can generate a

modified CSP specification 2804 that may in turn be received
by a code translator 2212 or compiler to translate the plurality

35 of process-based specification segments 2208 to a set of
instructions in a high-level computer language program 2214,
such as Java language.

Formal specification analyzer 2806 may allow the user to
manipulate the formal specification 2804 in various ways.

40 The formal specification analyzer 2806 may allow the user to
examine the system described by the informal specification
2202, and to manipulate it. The CSP specification 2804 may
be analyzed to highlight undesirable behavior, such as race
conditions, and equally important, to point out errors of omis-

45 sion in the informal specification 2202. The formal specifi-
cation analyzer 2806 may be an optional but useful stage in
the disclosed embodiments of the present invention. If the
formal specification analyzer 2806 is not used, then the pro-
cess-based specification 2208 and the modified CSP specifi-

50 cation 2804 can be identical. Hence, if the formal specifica-
tion analyzer 2806 is not used, then all references to the
modified CSP specification 2804 disclosed below may also
apply to the CSP specification 2804.

Some embodiments of apparatus 2800 may not include a
55 theorem-prover to infer the process-based specification seg-

ments from the informal specification.
Apparatus 2800 can be operational for a wide variety of

informal specification languages and applications, and thus
apparatus 2800 can be generally applicable. Such applica-

60 tions may include distributed software systems, sensor net-
works, robot operation, complex scripts for spacecraft inte-
gration and testing, and autonomous systems.

Apparatus 2800 components of the mechanical CSP trans-
lator 2802, the formal specification analyzer 2806, visualiza-

65 tion tool 2808, CSP tool 2810 and the code translator 2212
can be embodied as computer hardware circuitry or as a
computer-readable program, or a combination of both, such

US 7,992,134 B2
41

as shown in FIG. 28. In another embodiment, apparatus 2800
may be implemented in an application service provider (ASP)
system.

FIG. 29 is a block diagram of a hardware and operating
environment 2900 in which a particular CSP implementation
of FIG. 28 is implemented, according to an embodiment.

Script Implementation

Referring to FIGS. 30 and 31, a particular scripting lan-
guage implementation 3000 is described in conjunction with
the apparatus in FIG. 23 and the methods described in con-
junction with FIGS. 2-20, according to embodiments.

FIG. 30 is a block diagram of a particular implementation
of an apparatus capable of translating scenarios to a formal
specification, according to an embodiment. Apparatus 3000
may solve the need in the art for an automated, generally
applicable way to verify that implemented scripts are a prov-
ably correct implementation of a scenario(s).

Apparatus 3000 can include a translator 2306 that gener-
ates a formal specification 2308 from the laws of concurrency
2204 and the scenario(s) 2302 in reference to the optional
inference engine 2304.

Subsequently, the formal specification 2308 may be trans-
lated by script translator 2312 into a script 2314 in some
appropriate scripting language. In some embodiments, no
manual intervention in the translation may be provided.
Those skilled in the art will readily understand that other
appropriate notations and/or languages exist that are within
the scope of this invention.

In some embodiments, apparatus 3000 can include an ana-
lyzer 2310 to determine various properties of the formal
specification, such as the existence of omissions, deadlock,
livelock, and race conditions, as well as other conditions, in
the formal specification 2308, although one skilled in the art
will recognize that other additional properties can be deter-
mined by the analyzer 2310. The analyzer 2310 may solve the
need in the prior art to reduce errors.

In some embodiments, a reverse script translator 3002
receives the script 2314 and generates a formal specification
2308. The output of the reverse script translator 3002 can be
a different formal specification than formal specification
2308. In some embodiments, there can be some small differ-
ences between the formal specification generated by reverse
script translator 3002 and formal specification 2308, but the
formal specifications generated by the reverse script transla-
tor 3002 can be substantially functionally equivalent to the
formal specification 2308.

Apparatus 3000 can operate fora wide variety of languages
and applications, and thus apparatus 3000 can be generally
applicable. Such applications can include, without limitation,
distributed software systems, sensor networks, robot opera-
tion, complex scripts for spacecraft integration and testing,
and autonomous systems, but those skilled in the art will
understand that other applications are contemplated.

Apparatus 3000 components such as the translator 2306,
script translator 2312, the analyzer 2310, and the reverse
script translator 3002 can be embodied as computer hardware
circuitry or as a computer-readable program, or a combina-
tion of both, such as shown in FIG. 31. In other embodiments,
apparatus 3000 can be implemented in an application service
provider (ASP) system.

FIG. 31 illustrates an environment 3100 similar to that of
FIG. 21, but with the addition of the script translator 2312, the

42
analyzer 2310 and the reverse script translator 3002 that cor-
respond to some of apparatus 3100.

R2D2C Implementation
5

Referring to FIG. 32, a particular R2D2C implementation
3200 is described in conjunction with the apparatus in FIG. 24
and the methods described in conjunction with FIG. 8 and
FIG. 9.

10 FIG. 32 is a block diagram of a particular R2D2C imple-
mentation of an apparatus 3200 to generate a high-level com-
puter source code program from a policy, according to an
embodiment. Apparatus 3200 may solve the need in the art for
an auto-mated, generally applicable way to produce a system

15 that is a provably correct implementation of one or more
policies that does not require use of a theorem-prover.

Apparatus 3200 may include a policy 2402 having a plu-
rality of rules or requirements. The policy 2402 can be
expressed in restricted natural language, graphical notations,

20 or even using semi-formal notations such as unified modeling
language (UML) use cases. Apparatus 3200 may also include
a set of laws of concurrency 2204.

The policy 2402 and a set of laws of concurrency 2204 can
be received by a mechanical CSP translator 3202. The plu-

25 rality of rules or requirements of the policy 2402 can be
translated mechanically to a specification 3204 encoded in
Hoare's language of Communicating Sequential Processes
(CSP). In some embodiments, the mechanical CSP translator
3202 can perform actions 802 and 804 in FIG. 8.

30 In some embodiments, the system may include a formal
specification analyzer 3206 to perform model verification/
checking and determine existence of omissions, deadlock,
livelock and race conditions in the CSP specification 3204. In
some embodiments, the formal specification analyzer 3206

35 can receive and transmit information from and to a visualiza-
tion tool 3208 that can provide a way to modify the CSP
specification 3204. In some embodiments, the formal speci-
fication analyzer 3206 can receive and transmit information
from and to a tool 3210 designed for CSP that provides a way

40 to modify the CSP specification 3204.
The formal specification analyzer 3206 may generate a

modified CSP specification 3204 that is in turn received by a
code translator 2410 or compiler to translate the plurality of
formal specification segments 2406 to a set of instructions in

45 a high-level computer language program 2414, such as Java
language.

In some embodiments, formal specification analyzer 3206
may allow the user to manipulate the formal specification
3204 in various ways. The formal specification analyzer 3206

50 may allow the user to examine the system described by the
policy 2402, and to manipulate it. The CSP specification 3204
may be analyzed to highlight undesirable behavior, such as
race conditions, and equally important, to point out errors of
omission in the policy 2402. The formal specification ana-

55 lyzer 3206 may be an optional but useful stage in the dis-
closed embodiments of the present invention. If the formal
specification analyzer 3206 is notused, then the formal speci-
fication 2406 and the modified CSP specification 3204 can be
identical. Hence, if the formal specification analyzer 3206 is

6o not used, then all references to the modified CSP specification
3204 disclosed below may also apply to the CSP specification
3204.

In some embodiments, apparatus 3200 may not include a
theorem-prover to infer the formal specification segments

65 from the policy.
Apparatus 3200 can be operational for a wide variety of

policy languages and applications, and thus apparatus 3200

US 7,992,134 B2
43
	

44
can be generally applicable. Such applications may include
distributed software systems, sensor networks, robot opera-
tion, complex scripts for spacecraft integration and testing,
and autonomous systems.

Apparatus 3200 components of the mechanical CSP trans-
lator 3202, the formal specification analyzer 3206, visualiza-
tion tool 3208, CSP tool 3210 and the code translator 2410
can be embodied as computer hardware circuitry or as a
computer-readable program, or a combination of both, such
as shown in FIG. 33. In another embodiment, apparatus 3200
may be implemented in an application service provider (ASP)
system.

One approach to requirements-based programming may be
requirements-to-design-to-code (R2D2C), which provides a
mathematically tractable round-trip engineering approach to
system development. In R2D2C, engineers (or others) write
specifications as scenarios in constrained (domain-specific)
natural language, or in a range of other notations (including
UML use cases), which is integrated to derive a formal model
that can be guaranteed to be equivalent to the requirements
stated at the outset, and which might subsequently be used as
a basis for code generation. The formal model can be
expressed using a variety of formal methods such as CSP. The
R2D2C approach can generate a formal model with auto-
matic reverse engineering.

R2D2C may be unique in that the methodology allows for
full formal development from the outset, and maintains math-
ematical soundness through all phases of the development
process, from requirements through to automatic code gen-
eration. The approach may also be used for reverse engineer-
ing, that is, in retrieving models and formal specifications
from existing code. R2D2C can also be used to "paraphrase"
(in natural language, etc.) formal descriptions of existing
systems. This approach is not limited to generating high-level
code. R2D2C can also be used to generate business processes
and procedures, and to generate instructions for robotic
devices such as those used on the Hubble Robotic Servicing
Mission (HRSM). R2D2C can also be used as a basis for an
expert system verification tool, and as a way of capturing
domain knowledge for expert systems, and for generating
policies from requirements.

The R2D2C approach can involve a number of phases. The
following describes each of these phases as understood in the
prior art. The entire process, with DI thru D5 illustrating the
development approach, is suitable for various types of analy-
sis and investigation, and as the basis for fully formal imple-
mentations as well as for use in automated test case genera-
tion and so forth.

DI Scenarios Capture: Engineers, end users, and others
write scenarios describing intended system operation. The
input scenarios may be represented in a constrained natural
language using a syntax-directed editor, or may be repre-
sented in other textual or graphical forms.

D2 Traces Generation: Traces and sequences of atomic
events are derived from the scenarios defined in phase DI.

D3 Model Inference: A formal model, or formal specifica-
tion, expressed in CSP is inferred by an automatic theorem-
prover, in this case using the traces derived in phase D2. A
deep embedding of the laws of concurrency in the theorem-
prover gives it sufficient knowledge of concurrency and of
CSP to perform the inference.

D4 Analysis: Based on the formal model, various analyses
can be performed, using currently available commercial or
public domain tools, and specialized tools that are planned for
development. Because of the nature of CSP, the model may be
analyzed at different levels of abstraction using a variety of
possible implementation environments.

D5 Code Generation: The techniques of automatic code
generation from a suitable model are reasonably well under-
stood. The present modeling approach may be suitable for the
application of existing code generation techniques, whether

5 using a tool specifically developed for the purpose, or existing
tools such as FDR, or converting to other notations suitable
for code generation (e.g., converting CSP to B and then using
the code generating capabilities of the B Toolkit).

In some embodiments, an exemplary system for automatic
10 control of ground stations of overhead satellites may include

both autonomous and autonomic properties and operate by
having a community of distributed autonomous software
modules work cooperatively based on policies to perform the
functions previously undertaken by human operators using

15 traditional software tools, such as orbit generators and com-
mand sequence planners. In an example, a pager agent and a
mapping from natural language descriptions through to the
CSP model can be used to generate code.

Based on defined policies, the pager agent can send pages
20 to engineers and controllers when there is a spacecraft

anomaly. For example, the pager agent receives requests from
a user interface agent that no analyst is logged on, so it gets
paging information from a database agent and pages an
appropriate analyst, and, when instructed by the user inter-

25 face agent stops paging the analyst. These policies can be
stated as follows:

When the pager agent receives a request from the user
interface agent, the pager agent sends a request to the data-
base agent for an analyst's pager information and puts the

30 message in a list of requests to the database agent. When the
pager agent receives a pager number from the database agent,
then the pager agent removes the message from the paging
queue and sends a message to the analyst's pager and adds the
analyst to the list of paged people. When the pager agent

35 receives a message from the user interface agent to stop
paging a particular analyst, the pager agent sends a stop-
paging command to the analyst's pager and removes the
analyst from the paged list. When the pager agent receives
another kind of message, it replies to the sender that the

40 message was not recognized.
The above policies could then be translated into CSP. The

following could be a partial CSP description of the pager
agent:

45

PAGER_ BUSdbwaiting,paged = pager. Iin?msg-
case

GET USER INFOdbwaiting,paged,pagee,text
if msg = (STARTPAGING, specialist, text)

50	 BEGIN PAGING& waiting,paged,in reply to id(msg),
pager-num

if msg = (RETURN DATA.pager num)
STOPCONTACTdbwaiting,paged,pagee
if msg = (STOP PAGING, pagee)

pager.Iout!(head(msg), UNRECOGNIZED)

55	 —PAGER_BUSdb_waiting,paged
otherwise

The above pseudo-language description states that the pro-
cess PAGER _BUS receives a message on its "Iin" channel

6o and stores it in a variable called "msg". Depending on the
contents of the message, one of four different processes is
executed based on the policies. If the message is of type
START _PAGING, then the GET _USER—INFO process is
called with parameters of the specialist to page (pagee) and

65 the text to send. If the message is of type RETURN _DATA
with a pagee's pager number, then the database has returned
a pager number and the BEGIN_PAGING process is executed

US 7,992,134 B2
45

with a parameter containing the original message id (used as
a key to the db-waiting set) and the passed pager number. The
third type of message that the pager agent might receive is one
of type STOP_PAGING. This message contains a request to
stop paging a particular specialist (stored in the pagee param-
eter). When this message is received, the STOP_PAGING
process is executed with the parameter of the specialist type.
If the pager agent receives any other message than the above
three messages, an error message is returned to the sender of
the message (which is the first item of the list) stating that the
message is "UNRECOGNIZED". After this, the PAGER_
BUS process is again executed.

Some of the benefits of using R2D2C, and hence of using
Formal Requirements-Based Programming in system devel-
opment may include increasing assurance of system success
by ensuring completeness and consistency of requirements,
by ensuring that implementations are true to the require-
ments, by ensuring that automatically coded systems are bug-
free; and by ensuring that implementation behavior is as
expected. Another benefit may be decreased costs and sched-
ule impacts of ultra-high dependability systems through auto-
mated development and yet another benefit could be
decreased re-engineering costs and delays.

FIG. 33 is a block diagram of a hardware and operating
environment 3300 in which a particular CSP implementation
of FIG. 32 is implemented.

Policy Implementation

Referring to FIGS. 34 and 35, a particular scripting lan-
guage implementation 3400 is described in conjunction with
the apparatus in FIG. 23 and the methods described in con-
junction with FIGS. 2-20.

FIG. 34 is a block diagram of a particular implementation
of an apparatus 3400 capable of translating policies to a
formal specification, according to an embodiment. Apparatus
3400 may solve the need in the art for an automated, generally
applicable way to verify that implementations are a provably
correct implementation of a policy.

Apparatus 3400 can include a translator 2504 that gener-
ates a formal specification 2406 from the laws of concurrency
2204 and the policy(s) 2502 in reference to the optional
inference engine 2304.

Subsequently, the formal specification 2406 may be trans-
lated by translator 2508 into an implementation 2510, such as
some appropriate scripting language. In some embodiments,
no manual intervention in the translation is provided. Those
skilled in the art will readily understand that other appropriate
notations and/or languages exist that are within the scope of
this invention.

In some embodiments, apparatus 3400 can include an ana-
lyzer 2506 to determine various properties of the formal
specification, such as the existence of omissions, deadlock,
livelock, and race conditions, as well as other conditions, in
the formal specification 2406, although one skilled in the art
will recognize that other additional properties can be deter-
mined by the analyzer 2506. The analyzer 2506 may solve the
need in the prior art to reduce errors.

In some embodiments, a reverse translator 3402 receives
the implementation 2510 and generates a formal specifica-
tion. The output of the reverse translator 3402 is a different
formal specification than formal specification 2406. There
can be some small differences between the formal specifica-
tion generated by reverse translator 3402 and formal specifi-
cation 2406, but the formal specifications generated by the
reverse translator 3402 can be substantially functionally
equivalent to the formal specification 2406.

46
Apparatus 3400 can operate for a wide variety of languages

and applications, and thus apparatus 3400 can be generally
applicable. Such applications can include, without limitation,
distributed software systems, sensor networks, robot opera-

s tion, complex scripts for spacecraft integration and testing,
and autonomous systems, but those skilled in the art will
understand that other applications are contemplated.

Apparatus 3400 components such as the translator 2504,
translator 2508, the analyzer 2506, and the reverse translator

10 3402 can be embodied as computer hardware circuitry or as a
computer-readable program, or a combination of both, such
as shown in FIG. 35. In another embodiment, apparatus 3400
can be implemented in an application service provider (ASP)

15 system.
FIG. 35 illustrates an environment 3500 similar to that of

FIG. 21, but with the addition of the translator 2508, the
analyzer 2506 and the reverse translator 3402 that correspond
to some of apparatus 3400.

20 FIG. 36 is a block diagram of a particular implementation
of an apparatus 3600 to generate a high-level computer source
code program from an agent-oriented specifications) mod-
eled with MaCMAS, according to an embodiment. Apparatus
3 600 may solve the need in the art for an automated, generally

25 applicable way to produce a system that can be a provably
correct implementation of an agent-oriented specifications)
modeled with MaCMAS 102 that does not require use of a
theorem-prover.

Apparatus 3600 may include an analyzer 108 of agent-
so oriented specifications) modeled with MaCMAS 102 that

can receive and transmit information from and to a visualiza-
tion tool 3602 that can provide a way to generate a modified
agent-oriented specification modeled with MaCMAS 3604.
In some embodiments, the analyzer 108 can receive and trans-

s5 mit information from and to a tool designed for agent-ori-
ented specifications) modeled with MaCMAS 102 that can
provide a way to modify the agent-oriented specifications)
modeled with MaCMAS 102.

The analyzer 108 can generate a modified agent-oriented
40 specification(s) modeled with MaCMAS 3604 that can be in

turn be received by a code translator 2602 or other compiler to
translate the plurality of modified agent-oriented specifica-
tion segment(s) modeled with MaCMAS 3604 to a set of
instructions in a high-level computer language program 2604,

45 such as Java language.
Analyzer 108 may provide a way to the user to manipulate

the agent-oriented specifications) modeled with MaCMAS
102 in various ways. The agent-oriented specifications)
modeled with MaCMAS 102 can be analyzed to highlight

50 undesirable behavior, such as race conditions and to point out
errors of omission in the agent-oriented specification mod-
eled with MaCMAS 102. The analyzer 108 can be an optional
but useful stage in the disclosed embodiments of the present
invention. If the analyzer 108 is not used, then the modified

55 agent-oriented specifications) modeled with MaCMAS
3604 can be identical. Hence, if the analyzer 108 is not used
then all references to the modified agent-oriented specifica-
tions) modeled with MaCMAS 3604 disclosed below can
also apply to the agent-oriented specifications) modeled with

60 MaCMAS 102.
Apparatus 3600 can be operational for a wide variety of

agent-oriented specifications) modeled with MaCMAS lan-
guages and applications, thus apparatus 3600 can be gener-
ally applicable. Such applications may include distributed

65 software systems, sensor networks, robot operation, complex
scripts for spacecraft integration and testing, and autonomous
systems.

US 7,992,134 B2
47
	

48
Apparatus 3600 components of the analyzer 108, visual-	 Apparatus 3800 components such as the script translator

ization tool 3602, and the code translator 2602 can be embod-	 2702, the analyzer 108, and the reverse script translator 3802
ied as computer hardware circuitry or as a computer-readable 	 can be embodied as computer hardware circuitry or as a
program, or a combination of both, such as shown in FIG. 37. 	 computer-readable program, or a combination of both, such
In another embodiment, apparatus 3600 may be implemented 5 as shown in FIG. 39. In another embodiment, apparatus 3800
in an application service provider (ASP) system. In some 	 can be implemented in an application service provider (ASP)
embodiments, apparatus 3600 may not include a theorem-	 system.
prover to infer the process-based specification segments from

	 FIG. 39 illustrates an environment 3900 similar to that of
the informal specification.	 FIG. 21, but with the addition of the script translator 2702, the

FIG. 37 is a block diagram of a hardware and operating io analyzer 108 and the reverse script translator 3802 that cor-
environment of a particular implementation of FIG. 36.	 respond to some of apparatus 3800.

In a computer-readable program embodiment, the pro-
Script Implementation 	 grams can be structured in an object-orientation using an

obj ect-oriented language such as Java, Smalltalk or C++, and
Referring to FIGS. 38 and 39, a particular scripting lan- 15 the programs can be structured in a procedural-orientation

guage implementation 3800 is described in conjunction with
	

using a procedural language such as COBOL or C. The soft-
the system overview in FIG. 27 and the methods described in 	 ware components can communicate in any of a number of
conjunction with FIGS. 2-20. 	 ways that are well-known to those skilled in the art, such as

FIG. 38 is a block diagram of a particular implementation 	 application program interfaces (API) orinterprocess commu-
of an apparatus capable to translate agent-oriented specifica- 2o nication techniques such as remote procedure call (RPC),
tion(s) modeled with MaCMAS to a script and reverse engi- 	 common object request broker architecture (CORBA), Com-
neer (translate) a script into an agent-oriented specification(s)

	
ponent Object Model (COM), Distributed Component Object

modeled with MaCMAS (and optionally analyze the agent- 	 Model (DCOM), Distributed System Object Model (DSOM)
oriented specifications) modeled with MaCMAS), accord-	 and Remote Method Invocation (RMI). The components can
ing to an embodiment. Apparatus 3800 may solve the need in 25 execute on as few as one computer as in computer 2102 in
the art for an automated, generally applicable way to verify

	
FIG. 21, or on at least as many computers as there are com-

that implemented scripts can be a provably correct implemen-	 ponents.
tation of agent-oriented specifications) modeled with

	
FIGS. 40 -42 are traceability diagrams of MaCMAS imple-

MaCMAS.	 mentations in autonomous nano-technology (ANT) swarms,
Apparatus 3800 can include an agent-oriented specifica- so according to specific embodiments. After applying MaC-

tion modeled with MaCMAS 2708 that can be translated by
	

MAS to an ANTS system, the traceability diagram of FIGS.
script translator 2702 into a script 2704 in some appropriate

	
40-42 can be obtained. The diagrams of FIGS. 40 -42 can

scripting language. In some embodiments, no manual inter- 	 summarize the mRIs in the system structured by layers of
vention in the translation may be provided. Those skilled in 	 abstraction. In the diagrams of FIGS. 40-42, the top layer
the art will readily understand that other appropriate notations 35 4002 (abstraction layer 4) may be the most abstract. As each
and/or languages exist that can be within the scope of appa- 	 node can represent a system-goal also, the division of tasks
ratus 3800.	 that can be undertaken to develop the system are shown in

In some embodiments, apparatus 3800 can include an ana-	 FIGS. 40 -42. As each mRI can be inside a role model, which
lyzer 108 to determine various properties of the agent-ori- 	 roles determined to carry out by observing the role models
ented specifications) modeled with MaCMAS 102, such as 40 may be evident. In the model shown, several sub-regions are
the existence of omissions, deadlock, livelock, and race con-	 depicted. Horizontal subdivisions are shown to depict layers
ditions, as well as other conditions, in the agent-oriented

	
of abstraction 4002, 4004, 4006 and 4008. In addition to

specification(s) modeled with MaCMAS 102, although one	 mRIs, MaCMAS also can use UML packages to represent
skilled in the art will recognize that other additional proper- 	 role models that contain several mRIs. Diagrams of FIGS.
ties can be determined by the analyzer 108. The analyzer 108 45 40-42 identify two of these packages, which group the mRIs
may solve the need in the prior art to reduce errors. 	 used in the example that follows.

In some embodiments, a reverse script translator 3802 can
	

To foster reuse, to model an autonomous or an autonomic
receive the script 2704 and generate an agent-oriented speci- 	 property in a sufficiently generic and generalized way, and to
fication(s) modeled with MaCMAS. The output of the reverse 	 enable a policy to be deployed at runtime, properties can be
script translator 3802 can be a different agent-oriented speci- 50 independent of the concrete agents over which the properties
fication(s) modeled with MaCMAS than agent-oriented

	
will be deployed. The features required to have an appropriate

specification(s) modeled with MaCMAS 102. There can be
	

description may correlate with the features of an acquain-
some small differences between the agent-oriented specifica-	 tance sub-organization. To represent organization, MaCMAS
tion(s) modeled with MaCMAS generated by reverse script 	 can propose two kinds of models—one for showing the rela-
translator 3802 and agent-oriented specifications) modeled 55 tionships between roles, that is, role models, and another to
with MaCMAS 102, but the agent-oriented specifications)

	
show how these relationships evolve over time, in other

modeled with MaCMAS generated by the reverse script 	 words, plan models.
translator 3802 can be a substantially functionally equivalent

	
For example, showing the autonomous process of orbiting

to the agent-oriented specifications) modeled with
	

an asteroid to take a measurement can require at least two
MaCMAS 102.	 60 models its role model and its plan model. FIG. 45 below

Apparatus 3800 can operate fora wide variety of languages	 shows the role model for the autonomous process of orbiting
and applications, and thus apparatus 3800 can be generally	 an asteroid to take a measurement case. The models form the
applicable. Such applications can include, without limitation, 	 third layer 4004 of abstraction of FIGS. 40 -42. The model can
distributed software systems, sensor networks, robot opera- 	 include two kinds of elements: roles, which are represented
tion, complex scripts for spacecraft integration and testing, 65 using interface-like icons, and mRIs, which are represented as
and autonomous systems, but those skilled in the art will

	
collaboration-like icons. Roles in the model show which can

understand that other applications are contemplated. 	 be a general goal and particular goals of the roles when

US 7,992,134 B2
49
	

50
participating in a certain interaction with other roles or with
some part of the environment (represented using interfaces
with the <<environment>> stereotype). Roles can also repre-
sent the knowledge (middle compartment) and services (bot-
tom compartment). For example, the goal of the orbiter role
can be "maintain the orbit and measure [the asteroid]", while
its goal when participating in the Report Orbit interaction can
be to obtain a model of the orbit it must follow. In addition to
roles, mRIs can also present some important information. The
mRIs can also show the system-goal achieved by the mRIs
when executed, the kind of coordination that can be carried
out when executed, the knowledge used as input to achieve
the goal, and the knowledge produced. For example, the goal
of the mRI Report Orbit can be to "Report the Orbit." The goal
can be achieved by taking as input the knowledge of the
OrbitModeler regarding the orbit; and producing as output
the model for the orbit (orbitM) in the Orbiter role.

Continuing with the example, FIG. 43 shows a plan model
of a role model where the order of execution of all its mRIs is
illustrated. The Orbiter, while in orbit, can adjust its orbit and
measuring and reporting measures. And when the Orbiter has
completed constructing a model of the asteroid, the Orbiter
can escape the orbit using knowledge of the orbit model
(orbitM).

Autonomic properties can be similarly modeled. Because
role models can be used at any level of abstraction, the role
models can specify autonomic properties that concern a
single agent, or even a group of agents when dealing with
autonomic properties at the swarm level. Thus, as shown in
the traceability model, a role model at abstraction layer 2
4006 can show the swarm autonomic behavior, while at
abstraction layer 4 4002, an autonomic property may be at the
level of individual spacecraft.

FIG. 46 illustrates a model at abstraction layer 4 4002 for
self-protection autonomic properties protecting from solar
storms. The role model for the self-protection autonomic
properties is shown in FIG. 46. Because the role model can be
a property at the individual level, a single role is shown
(SelfProtectSpaceCraft). A plan model is shown in FIG. 45.
As all the spacecraft can be affected by solar storms, the role
model can be applied to all the spacecraft in the swarm, thus
adding the self-protection autonomic properties to all of
spacecraft in the swarm.

In building and structural organization used at runtime,
role models can be composed. Since the MaCMAS method-
ology proposes several methods for composition, the meth-
ods can be used to modify the policies taken into account in
the system at runtime or at design time. Policies can be added
to a system as follows:

1. Specifying the policy using a sub-set of a natural lan-
guage.

2. Analyzing the policy to find out which role models or
interactions and consequently which autonomic and autono-
mous properties can be involved in the policy.

3. Composing the role models, both static and dynamic
aspects of the role model.

4. Deploying the changes in the system using role model
composition. The running system can have a set of role mod-
els mapped over structural organization of the running sys-
tem. Thus, adding a new policy can include composing the
role models involved in the new policy following its prescrip-
tions.

FIGS. 43-51 are diagrams of MaCMAS implementations
in autonomous nano-technology (ANT) swarms, according
to specific embodiments. FIGS. 43-51 use the MaCMAS
extension of the Unified Modeling Language (UML) 2.0,
which is the industry-standard language to specify, visualize,

construct, and document the object-oriented artifacts of soft-
ware systems. In the figures, traceability diagrams are shown.
The diagrams are based on a modification of UML class
diagrams. In the diagrams, classes can represent system goals

5 (requirements of the system). As shown, each class may be
related with a set of classes. This may represent that a system
goal can be decomposed into several system goals. Thus, an
aggregation or composition association between system
goals can be used to indicate that a system goal, represented

to by class, may be composed of the lower depicted classes.
Composition defines the attributes of an instance of a class/
role, in other words, an agent, as containing an instance of one
or more existing instances of other classes/roles in which the

15 composing object/agents does not inherit from the object(s)/
agent(s) it can be composed of.

In FIGS. 40-51, an embodiment of an evolutionary MAS is
modeled. As discussed above, each product in a MAS-PL can
be defined as a set of features. Given that all the products

20 present a set of features that remain unchanged, the core
architecture can be defined as the part of all of the products
that implement these common features. Thus, a system can
evolve by changing, or evolving, the set of non-core features.

A product or a state in an evolutionary system can be
25 defined as a set of features. Let F={fl ... fn} be the set of all

features of a MAS-PL. Let cF - F be the set of core features
and ncF=F\CF be the set of non-core features. A valid state of
the system can be defined as the set of core features and a set
of non-core features, in other words, S-cFUSF, where

30 sF - ncF can be a subset of non-core features.
Given that, the evolution from one state S z_ 1 to another S

can be defined as: S Sz_ 1 UnF ,z _ 1 \dF,z_ 1 where nF ,z_ 1 - ncF
can be the set of new features and dF ,z_ 1 - ncF can be the set
of deleted features. A, ,,- , describes the variation between the

35 product of the state i-1 and the product of the state i, that can
be to say, nF,,z_1\dF,,z_1.

In some embodiments, a feature can correlate with a role
model. Thus, for a system to evolve from one state to another,
the role models in nF and dF can be composed or decom-

40 posed. Specifically, the role models can be composed corre-
sponding to the features in nF with the role models corre-
sponding to the features that remain unchanged from the
initial state S z_ 1 , in other words, S,\dF,,,_1. Decomposition
can be used for role models that must be eliminated. In FIGS.

45 43-51, role models, and the operations for composition and
decomposition can be described.

In FIGS. 43-51, role models, and the operations for com-
position and decomposition are described. In the illustrated
embodiments, the Methodology for Analyzing Complex

50 Multiagent Systems (MaCMAS) can be implemented.
A static acquaintance organization view can show static

interaction relationships between roles in the system and
knowledge processed by the roles. The static acquaintance
organization may include models for representing the ontol-

55 ogy managed by agents, models for representing dependen-
cies, and role models of the agents.

FIGS. 43-51 can be used to describe a swarm of pico-
spacecrafts that can be used to prospect the asteroid belt. The
enterprise architecture of the system can change at run-time

6o depending on the environment and the state of the swarm.
From all the possible evolutions, only two states of the system
are shown in FIGS. 43-51.

FIG. 43 is a state diagram that describes a plan 4300 of a
role model, the role model described in FIG. 45. Plan 4300

65 shows an order of execution of a multi-Role Interaction
(mRI). In FIG. 43, a first state 4302 can depict the swarm
orbiting an asteroid in order to analyze the asteroid. In the

US 7,992,134 B2
51

second state 4304, a solar storm can occur in the environment
and the system can change 4306 the state of the system to
protect the system.

FIG. 44 is a state diagram that describes a plan 4400 of a
role model, the role model described in FIG. 46. Plan 4400
shows an order of execution of a mRI. In FIG. 44, examples of
role models for both states are shown and an example of
composition of both states, since both features of the system
may not be completely orthogonal. To protect from a solar
storm the spacecraft can take two basic actions: (a) measure
4402 risk of solar storms and (b) power-off 4404 all possible
electronic components. Action (a) can minimize the forces
from impinging solar-storm particles, which could affect the
spacecraft's orbit. Both actions 4402 and 4404 can minimize
potential damage from the charged particles in the storm,
which can degrade sensors, detectors, electronic circuits, and
solar energy collectors.

FIG. 45 and FIG. 46 are block diagrams of a static acquain-
tance sub-organization as a set of static roles 4500 and 4600,
respectively. Roles 4500 and 4600 can collaborate by use of
several multi-Role Interactions (mRI), according to embodi-
ments. Roles 1800 and 1900 can show all roles, in comparison
to plans 4300 and 4400 that can show the order of execution
of multi-Role Interactions (mRI). Such mRIs can be used to
abstract the acquaintance relationships among roles in the
system. As mRIs allow abstract representation of interac-
tions, these models can be implemented at one or more levels.

In FIG. 45, a static role model represents how a swarm of
spacecraft orbits an asteroid and measures the asteroid,
according to an embodiment. In FIG. 46, static role model
4600 represents how a swarm of spacecraft protects from a
solar storm while the swarm spacecraft continues in orbit,
according to an embodiment. In FIG. 45 and FIG. 46, inter-
faces, represented as boxes, can represent the static features
of roles showing goals, the knowledge managed, and services
provided by the roles. The mRIs, represented as dashed
ellipses in FIG. 45 and FIG. 46, can represent the interactions
between the roles linked to the roles, showing the goal when
collaborating, the pattern of collaboration, and the knowledge
consumed, used, and obtained from the collaboration. Static
role model 4500 may include mRIs EscapeOrbit 4502, Adjus-
tOrbit 4504, Measure 4506, ReportOrbit 4508 and Report-
Measures 4510. Static role model 4500 may also include role
Orbiter 4512 and Environment«Asteroid»4514 Orbit-
Modeler 4516. Static role model 4600 may include mRIs
OffSubsys 4602, TrimmingSails 4604 and SolarStormRisk
4606. Static role model 4600 may also include role SelfPro-
tectSC 4608 and EnvironmentSpace 4610. These roles can be
part of an object.

FIG. 45 and FIG. 46 are block diagrams of behavior of
acquaintance organization view. The behavioral aspect of an
organization can show the sequencing of mRIs in a particular
role model. The role model may be represented by two
equivalent models:

A plan of a role can separately represent the plan of each
role in a role model, showing how the mRIs of the role
sequence. The plan is represented using UML 2.0 Protocol-
StateMachines. Protocol StateMachines can be used to focus
on a certain role, while ignoring others.

In FIGS. 45 and 46, a plan of a role model can represent the
order of mRIs in a role model with a centralized description.
The plan of the role model is herein represented using UML
2.0 StateMachines. StateMachines can be used to facilitate
easy understanding of the whole behavior of a sub-organiza-
tion.

52
Adding a new model to MaCMAS can represent the evo-

lutions of the system. This new model can be called the
evolution plan.

FIG. 46 is a block diagram of an evolution plan, according
5 to an embodiment. The evolution plan can be represented by

a UML state machine where each state can represent a prod-
uct, and each transition can represent the addition or elimi-
nation of a set of features, in other words, A. In addition, the
conditions in the transitions can represent the properties that

10 must hold in the environment and in the system in order to
evolve to the new product. In FIG. 46, the risk of a solar storm
can also be measured.

FIGS. 47-51 are block diagrams of an evolution from one
15 plan to another plan, according to an embodiment. Evolution

from one plan to another plan can involve two general actions,
composing role models and decomposing role models. FIGS.
47-51 depict the roles and plans of FIGS. 43-46.

The composition of role models may be used to map an
20 acquaintance organization onto a set of agents; or in other

words, a structural organization. The mapping may not
always be orthogonal between all role models applying two
or more related features to a product may require integration
of the related features. Composition of role model can be the

25 process required to perform integration of the related fea-
tures. In the case of having orthogonal features, and thus
orthogonal role models, only the prescribed roles can be
assigned to the corresponding agents.

When composing several role models that are not indepen-
so dent, artifacts such as emergent roles and mRIs, can appear in

the composition that do not belong to any of the initial role
models. Composed roles and mRIs, the roles and mRIs in the
resultant models that represent several initial roles or mRIs as
a single element, and unchanged roles and mRIs can be left

35 unchanged and imported directly from the initial role models.
Once the role models to be used for the core architecture

have been determined, the core architecture can be completed
by composing role models. Composing role models may also
be performed to obtain a certain product. Importing an mRI or

4o a role may require only its addition to the composite role
model. The following can show by way of example how to
compose roles and plans.

In some embodiments, when several roles are merged in a
composite role model, elements of the role can be merged as

45 follOWS:
GOAL OF THE ROLE: The new goal of the role may

abstract all the goals of the role to be composed. The goals of
the role can be found in requirements hierarchical goal dia-
grams or the goals of the role can be added as the `and'

50 (conjunction) of the goals to be composed. In addition, the
role goal for each mRI can be obtained from the goal of the
initial roles for that mRI.

CARDINALITY OF THE ROLE: The cardinality of the
role can be the same as in the initial role for the corresponding

55 mRI.
INITIATOR(S) ROLE(S): If mRI composition is not per-

formed, as in the instant case, initiators of the roles may not
change.

INTERFACE OF A ROLE: All elements in the interfaces
60 of roles to be merged can be added to the composite interface.

Notice that there may be common services and knowledge in
these interfaces. When common services and knowledge
exists in the interfaces, the common services and knowledge
can be included in the composite interface, or renamed,

65 depending on the composition of the ontologies.
GUARD OF A ROLE/MRI: The new guards can be the

`and' (conjunction) of the corresponding guards in initial role

US 7,992,134 B2
53
	

54
models if roles composed participate in the same mRI. Oth- 	 agents that can be playing the roles. In the case where the role
erwise, guards may remain unchanged. 	 model is dependent with others, the elements of role models

Evolution from the product orbiting, that also has the fea- 	 can be deleted and all the interactions that refer to the role
ture measure storms, to the product protecting from solar 	 models can be eliminated. Given that, in the software archi-
storms, can require the addition of the feature to protect from 5 tecture described herein, the system can support the role
a solar storm. This may be true for two reasons: first, the 	 concept and its changes at run-time, the above-mentioned
features orbiting and measure asteroid and measure storms	 changes can be made easily with a lower impact on the sys-
may belong to the core architecture, and second, the protec- 	 tem.
tion from solar storms can happen in whichever moment, and

	
However, features may appear whose role models involve

the last-made measurements of the asteroid must, in some 10 a dependency. In these cases, some roles may have to be
embodiments, be reported before powering-off subsystems. 	 decomposed. These roles can be those whose mRIs belong to
Thus, as these role models may not be orthogonal, a compo- 	 the scope of the role model(s) that may be eliminated. In these
sition of the roles models can be performed. This composi- 	 cases, the role can be decomposed into several roles in order
tion, represented in FIG. 47, can be done following the rule 	 to isolate the part of the role to be deleted.
prescribed above. As can be observed, all the mRIs and most 15	 In addition, the mRI(s) of the role models) can be elimi-
roles can be imported. In addition, a composition of roles	 nated from the role model plan or the role plans. This may be
Self-ProtecSC and the rest in the role models Orbit and mea- 	 done starting from the plan of the initial dependent role mod-
sure asteroids have been performed.	 els. Each separate role model usually can maintain the order

The composition of plans may include setting the order of 	 of execution of mRIs determined in the initial model, but
execution of mRIs in the composite model and using the role 20 executes only a subset of mRIs of the initial role models. The
model plan or role plans. One of several algorithms can be	 behavior of the role model to be deleted can be extracted
implemented to assist in this task, for example, extraction of	 automatically. This algorithm may allow the extraction of the
a role plan from the role model plan and vice versa, and 	 plan of remaining role models from the initial ones constrain-
aggregation of several role plans.	 ing this to the set of mRIs that remains in the model.

Because of these algorithms, both plan views maybe main- 25	 In FIGS. 50-51, the following circumstances can be
tained as consistent without any prompting. Depending on the 	 involved: Several spacecraft have collided with an asteroid as
number of roles that have to be merged, the composition of	 a result of self-protection from a solar storm. As a result,
the plan of the composite role model can be based on the plan 	 protection from solar storms can be disabled while orbiting. If
of roles or on the plan of the role model. Several types of plan	 a spacecraft is orbiting and measuring an asteroid and the
composition can be used for role plans and for role model 30 spacecraft determines a risk of a solar storm, the spacecraft
plans, for example:	 may first escape the orbit and later power down subsystems

SEQUENTIAL: The plan can be executed atomically in 	 and use the sail of the spacecraft as a shield. The policy can be
sequence with others. The .nal state of each state machine can 	 limited to two role models to simplify, but in other circum-
be superimposed withthe initial state of the state machine that 	 stances, other autonomic properties and associated role
represents the plan that is to be executed, except the initial 35 model involved in orbiting an asteroid can be accounted.
plan that maintains the initial state unchanged and the final

	
The first part of the policy shows the context where the

plan that maintains the final state unchanged. 	 policy can be applied, determining the role models that
INTERLEAVING: To interleave several plans, a new state 	 should be taken into account. Note that although the second

machine can be built where all mRIs in all plans can be taken 	 element denotes an interaction, the traceability diagram indi-
into account. Notice that usually the order of execution of 40 cates the role model that the second element belongs to,
each plan to be composed can be preserved. Algorithms can 	 namely ProtectfromSolar Storms, the second part shows a
be implemented to check behavior inheritance to ensure that 	 modification of the plans where a new order for the interac-
this constraint can be preserved, since to ensure this property, 	 tion can be specified.
the composed plan may inherit from all the initial plans 	 As a result, both models and plans can be composed fol-

The composition of role model plans can be performed 45 lowing the constraints imposed by the policy. The composi-
following one of the plan composition techniques described

	
tion ofbothrole models is shown in FIG. 47. Theroles Orbiter

previously. Later, if the plan of one of the composed roles, as	 and SelfPotectSC are shown to have been composed into a
it may be needed to assign the new plan to the composedroles, 	 single role called SelfProtectingOrbiter. The remainder of
may be of interest, the plan can be extracted using the algo- 	 roles are shown to have been left unchanged and all mRIs
rithms mentioned previously.	 50 have also been added without changes.

A composition of role plans can be performed following 	 In addition, as the self protection is taken into account
one of the techniques to compose plans described previously. 	 during the whole process orbiting and measuring, and not in
Later, if there is interest in the plan of the composite role 	 a concrete state, we can perform a parallel composition, as it
model, for example for testing, the plan can be obtained using 	 is shown in FIGS. 50-51. The policy indicates the order of
the algorithms mentioned previously. 	 55 mRIs for selfprotection, adding the Escape Orbit mRI before

In FIG. 48, a composed plan is shown, according to an	 protection, which results in the new state machine shown.
embodiment. The composed plan of FIG. 48 follows an inter-
leaving composition in which the mRI report can measure

	
CONCLUSION

before starting the protection from the solar storm. Notice that
when finishing the solar storm, the system can evolve to the 60 In autonomic computing, self-managed systems based on
other product deleting the feature solar storm protection. 	 high level guidance from humans, has been gaining ground as
Then, the plan of the feature orbiting and measure can start 	 a significant new paradigm to facilitate the creation of self-
from its initial state, thus restarting the exploration of the 	 managing systems to deal with the ever increasing complex-
asteroid.	 ity and costs inherent in today's (and tomorrow's) systems.

Decomposing role models can be simpler than composi- 65 Policies and policy based management can be a key enabling
tion. When the role model to be eliminated is orthogonal to 	 technology for achieving autonomicity. Described herein are
the rest, only the corresponding roles may be deleted from the	 systems, method and apparatus that produce fully (math-

US 7,992,134 B2
55

ematically) tractable development of agent-oriented specifi-
cations) modeled with methodology fragment for analyzing
complex multiagent systems (MACMAS) and policies for
autonomic systems from requirements through to code gen-
eration. The systems, method and apparatus described herein 5

are illustrated through an example showing how user formu-
lated policies can be translated into a formal mode which can
then be converted to code. The requirements -based program-
ming systems, method and apparatus described herein pro-
vide faster, higher quality development and maintenance of l0

autonomic systems based on user formulation of policies.
The systems, method and apparatus described herein can

provide a way of analyzing agent-oriented specifications)
modeled with MaCMAS for autonomic systems and facilitate 15

the generation of provably correct implementations automati-
cally, which in turn can provide reduced development time,
reduced testing requirements, guarantees of correctness of
the implementation with respect to the policies specified at
the outset, and can provide a higher degree of confidence that 20

the policies can be both complete and reasonable. The ability
to specify the policy for the management of a system and then
automatically generate an equivalent implementation can
greatly improve the quality of software, the survivability of
future missions, in particular when the system operates 25

untended in very remote environments, and greatly reduce
development lead times and costs.

A system and method for generating scripts from require-
ments expressed as policies, is described according to an
embodiment. In some embodiments, the system and method 30

also provide for "reverse engineering," analysis, and correc-
tion of errors found in existing implementations. In some
embodiments, the method provides multiple existing imple-
mentations to be combined, discrepancies resolved and re-
generatedas a single implementation in which confidence can 35

be placed in a correct implementation of the state require-
ments (which can be "captured" from the existing implemen-
tation). Although specific embodiments have been illustrated
and described herein, those of ordinary skill in the art will
appreciate that any arrangement which is calculated to 40

achieve the same purpose can be substituted for the specific
embodiments shown. The systems, method and apparatus
described herein are intended to cover any adaptations or
variations. For example, although described in procedural
terms, one of ordinary skill in the art will appreciate that 45

implementations can be made in an object-oriented design
environment or any other design environment that provides
the required relationships.

Existing agent-oriented specifications) modeled with
MaCMAS 102 can be combined, analyzed, and regenerated 50

as a single agent-oriented specification modeled with
MaCMAS in the same language, or another language, that
increases accuracy and reduces common errors.

In particular, one of skill in the art will readily appreciate
that the names of the methods and apparatus are not intended 55

to limit embodiments. Furthermore, additional methods and
apparatus can be added to the components, functions can be
rearranged among the components, and new components to
correspondto future enhancements and physical devices used
in embodiments canbe introduced without departing from the 60

scope of embodiments. One of skill in the art will readily
recognize that embodiments are applicable to future commu-
nication devices, different file systems, and new data types.

The terminology used in this application is meant to
include all object-oriented, database and communication 65

environments and alternate technologies which provide the
same functionality as described herein.

56
We claim:
1. A tangible computer-accessible medium having execut-

able instructions to generate a system, the executable instruc-
tions capable of directing a processor to perform: receiving at
least one agent-oriented specification modeled with
MaCMAS; and translating the at least one agent-oriented
specification modeled with MaCMAS of the system to an
implementation.

2. The computer-accessible medium of claim 1, wherein
the executable instructions capable of directing the processor
to perform translating the at least one agent-oriented specifi-
cation modeled with MaCMAS of the system to the imple-
mentation further comprises:

translating the at least one agent-oriented specification
modeled with MaCMAS of the system to the implemen-
tation, without the use of an automated inference engine.

3. The computer-accessible medium of claim 1, wherein
the executable instructions capable of directing the processor
to perform translating the at least one agent-oriented specifi-
cation modeled with MaCMAS of the system to the imple-
mentation further comprises:

translating the at least one agent-oriented specification
modeled with MaCMAS of the system to the implemen-
tation, in reference to an inference engine.

4. The computer-accessible medium of claim 1, the
medium further comprising executable instructions capable
of directing the processor to perform:

analyzing the agent-oriented specification modeled with
MaCMAS.

5. The computer-accessible medium of claim 4, wherein
the executable instructions capable of directing the processor
to perform analyzing the agent-oriented specification mod-
eled with MaCMAS further comprises:

applying mathematical logic to the agent-oriented specifi-
cation modeled with MaCMAS in order to identify a
presence or absence of mathematical properties of the
agent-oriented specification modeled with MaCMAS.

6. The computer-accessible medium of claim 5, the
medium further comprising executable instructions capable
of directing the processor to perform:

correcting the absence of the mathematical properties in
the agent-oriented specification modeled with
MaCMAS if the mathematical properties are identified
as absent in the agent-oriented specification modeled
with MaCMAS.

7. The computer-accessible medium of claim 5, wherein
the mathematical properties of the agent-oriented specifica-
tion modeled with MaCMAS further comprise:

whether the agent-oriented specification modeled with
MaCMAS implies a system execution trace that
includes a deadlock condition;

whether the agent-oriented specification modeled with
MaCMAS implies a system execution trace that
includes a livelock condition; and

whether the agent-oriented specification modeled with
MaCMAS implies a system execution trace that exhibits
or does not exhibit a plurality of other behaviors.

8. The computer-accessible medium of claim 1, wherein
the implementation further comprises:

a script encoded in PERL language.
9. The computer-accessible medium of claim 1, wherein

the implementation further comprises:
a script encoded in BIOPERL language.
10. The computer-accessible medium of claim 1, wherein

the implementation further comprises:
a script encoded in PYTHON language.

US 7,992,134 B2
57

11. The computer-accessible medium of claim 1, wherein
the implementation further comprises:

a script encoded in awk language.
12. A tangible computer-accessible medium having

executable instructions to generate a system from at least one
agent-oriented specification modeled with MaCMAS, the
executable instructions capable of directing a processor to
perform: translating the at least one agent-oriented specifica-
tion modeled with MaCMAS to a formal specification; and
translating the formal specification to scripts implementing
the system.

13. The computer-accessible medium of claim 12, wherein
the executable instructions capable of directing the processor
to perform translating the at least one agent-oriented specifi-
cation modeled with MaCMAS to the formal specification
further comprise:

verifying the syntax of the at least one agent-oriented
specification modeled with MaCMAS; and

mapping the at least one agent-oriented specification mod-
eled with MaCMAS to a plurality of agent-oriented
specification segments modeled with MaCMAS.

14. The computer-accessible medium of claim 12, wherein
the executable instructions capable of directing the processor
to perform translating at least one agent-oriented specifica-
tion modeled with MaCMAS to the formal specification fur-
ther comprise:

verifying consistency of the formal specification.
15. The computer-accessible medium of claim 12, the

medium further comprising executable instructions capable
of directing the processor to perform:

analyzing the agent-oriented specification modeled with
MaCMAS.

16. The computer-accessible medium of claim 12, the
medium further comprising executable instructions capable
of directing the processor to perform:

determining mathematical and logical properties of the
agent-oriented specification modeled with MaCMAS by
an automated inference engine.

17. The computer-accessible medium of claim 12, wherein
the executable instructions capable of directing the processor
to perform translating each of a plurality of at least one
agent-oriented specification modeled with MaCMAS further
comprises:

translating the at least one agent-oriented specification
modeled with MaCMAS to a separate formal specifica-
tion without the use of an automated inference engine.

18. The computer-accessible medium of claim 12, wherein
the script further comprises:

a script encoded in PERL language.
19. The computer-accessible medium of claim 12, wherein

the script further comprises:
a script encoded in awk language.
20. The computer-accessible medium of claim 12, wherein

the script further comprises:
a script encoded in PYTHON language.
21. A system including a processor and a memory storing

software to validate a software system, the system compris-
ing: an inference engine; a translator, operable to receive at
least one agent-oriented specification modeled with
MaCMAS of the software system and to generate in reference
to the inference engine an implementation; and an analyzer
operable to perform model verification/checking and deter-
mine existence of omissions, deadlock, livelock, and race

58
conditions or other problems and inconsistencies in the agent-
oriented specification modeled with MaCMAS.

22. The system of claim 21, wherein the translation of the
at least one agent-oriented specification modeled with

5 MaCMAS into an implementation is carried out without
human intervention.

23. A computer-accessible medium having executable
instructions to validate a system, the executable instructions
capable of directing a processor to perform:

io	 translating a plurality of policies to a plurality of agent-
oriented specifications modeled with MaCMAS;

combining the plurality of agent-oriented specifications
modeled with MaCMAS to a singular agent-oriented
specification modeled with MaCMAS;

analyzing the singular agent-oriented specification mod-
15	 eled with MaCMAS;

correcting absence of the mathematical properties in the
singular agent-oriented specification modeled with
MaCMAS; and

translating the corrected agent-oriented specification mod-
20	

eled with MaCMAS to a policy.
24. The computer-accessible medium of claim 23, wherein

the executable instructions capable of directing the processor
to perform analyzing the singular agent-oriented specifica-

25 tion modeled with MaCMAS further comprise:
applying mathematical logic to the singular agent-oriented

specification modeled with MaCMAS in order to iden-
tify a presence or absence of mathematical properties of
the singular agent-oriented specification modeled with

so	 MaCMAS.
25. The computer-accessible medium of claim 24, wherein

the mathematical properties of the singular agent-oriented
specification modeled with MaCMAS further comprise:

whether the singular agent-oriented specification modeled
35	 with MaCMAS implies a system execution trace that

includes a deadlock condition;
whether the singular agent-oriented specification modeled

with MaCMAS implies a system execution trace that
includes a livelock condition; and

whether the singular agent-oriented specification modeled
4o

with MaCMAS implies a system execution trace that
exhibits or does not exhibit a plurality of other behav-
iors.

26. A method of generating an executable system from an
45 informal specification, the method comprising:

translating an informal specification into process-based
specification segments;

aggregating the process-based specification segments into
a single process-based specification;

translating the single process-based specification into high
So	

level computer language instructions; and
compiling the high level language instructions into an

executable system.
27. The method of claim 26, wherein translating informal

55
specifications into process-based specification segments fur-
ther comprises:

verifying the syntax of a set of scenarios;
mapping the set of scenarios to a process-based specifica-

tion;

60
verifying the consistency of the process-based specifica-

tion; and
verifying a lack of other problems in the process-based

specification.

	7992134-p0001.pdf
	7992134-p0002.pdf
	7992134-p0003.pdf
	7992134-p0004.pdf
	7992134-p0005.pdf
	7992134-p0006.pdf
	7992134-p0007.pdf
	7992134-p0008.pdf
	7992134-p0009.pdf
	7992134-p0010.pdf
	7992134-p0011.pdf
	7992134-p0012.pdf
	7992134-p0013.pdf
	7992134-p0014.pdf
	7992134-p0015.pdf
	7992134-p0016.pdf
	7992134-p0017.pdf
	7992134-p0018.pdf
	7992134-p0019.pdf
	7992134-p0020.pdf
	7992134-p0021.pdf
	7992134-p0022.pdf
	7992134-p0023.pdf
	7992134-p0024.pdf
	7992134-p0025.pdf
	7992134-p0026.pdf
	7992134-p0027.pdf
	7992134-p0028.pdf
	7992134-p0029.pdf
	7992134-p0030.pdf
	7992134-p0031.pdf
	7992134-p0032.pdf
	7992134-p0033.pdf
	7992134-p0034.pdf
	7992134-p0035.pdf
	7992134-p0036.pdf
	7992134-p0037.pdf
	7992134-p0038.pdf
	7992134-p0039.pdf
	7992134-p0040.pdf
	7992134-p0041.pdf
	7992134-p0042.pdf
	7992134-p0043.pdf
	7992134-p0044.pdf
	7992134-p0045.pdf
	7992134-p0046.pdf
	7992134-p0047.pdf
	7992134-p0048.pdf
	7992134-p0049.pdf
	7992134-p0050.pdf
	7992134-p0051.pdf
	7992134-p0052.pdf
	7992134-p0053.pdf
	7992134-p0054.pdf
	7992134-p0055.pdf
	7992134-p0056.pdf
	7992134-p0057.pdf
	7992134-p0058.pdf
	7992134-p0059.pdf
	7992134-p0060.pdf
	7992134-p0061.pdf
	7992134-p0062.pdf
	7992134-p0063.pdf
	7992134-p0064.pdf
	7992134-p0065.pdf
	7992134-p0066.pdf
	7992134-p0067.pdf
	7992134-p0068.pdf
	7992134-p0069.pdf
	7992134-p0070.pdf
	7992134-p0071.pdf
	7992134-p0072.pdf
	7992134-p0073.pdf
	7992134-p0074.pdf
	7992134-p0075.pdf
	7992134-p0076.pdf
	7992134-p0077.pdf
	7992134-p0078.pdf
	7992134-p0079.pdf
	7992134-p0080.pdf
	7992134-p0081.pdf

