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The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large 
fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for 
space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). 
LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, 
etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data 
- including instrumental noise over approximately two decades in frequency. The catalogue of 
detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, 
to maximize the scientific return from the mission, the data must be "cleansed" of the galactic 
foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these 
sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the 
time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered 
binaries and show how LISA will sample the entire compact binary population in the Galaxy. 

I. INTRODUCTION 

Just as traditional photon astronomy has profited 
from accessing the entire electromagnetic spectrum, so 
to would gravitational wave (GW) astronomy benefit 
from detectors covering many decades in frequency. \Vith 
existing GW observatories, high-frequency gravitational 
waves are the target of ground based interferometers, and 
the LIGO /Virgo collaboration [1, 2] have developed as
tonishingly sensitive observatories which are poised to 
bring GW astronomy out of its infancy. 

While small wavelength gravitational waves are, obser
vationally, the most readily accessible, the richest signal 
space in the G\V universe is at frequencies far too low for 
Earth-based instruments. A space-borne interferometer 
is the only foreseeable way of reaping the bounty of infor
mation transmitted at longer wavelengths, and allowing 
gravitational wave astronomy to reach its full potential. 

Gnique to the mHz frequency range is the existence of 
known sources, comprised of close binary star systems in 
the Galaxy. mostly the AM CVn-type binary stars [3]. 
These individual objects, discovered electromagnetically, 
are the near-by representatives of a much larger popula
tion of low frequency gravitational wave sources on our 
cosmic doorstep. Population synthesis models for the 
galaxy predict some 60 million binary star systems emit
ting gravitational radiation at frequencies between 0.1 
and 10 mHz [4-6]. Because gravitational waves interact 
very weakly with intervening matter, a staggeringly 
number of these objects, distributed throughout the en
tire Galaxy. are within reach. 

Maximizing what can be from mHz GW data 
,,;ill require solving unique problems in 
tational wave astronomy. In particular. the ~H'Ckmcui',C" 
posed by these binaries are the sheer number 
of sources, and the degree with which they overlap one 
another in signal space. smearing together to form a con
fused blend of gravitational wave power which, depend-

ing on details of the detector, can be orders of magnitude 
larger than the instrumental noise floor. The total num
ber of binaries which are individually resolvable out of 
this population is unknown and poses a very large dimen
sion model selection problem. The harm in over-fitting 
the data, (i.e, tolerating large false alarm probabilities) 
or under-fitting the data (i.e., accepting large false dis
missal rates) not only affects the science that can be done 
with the catalogue of resolved signals, but can also im
pact the data analysis efIorts for more distant sources of 
gravitational radiation which share the same bandwidth. 

To prepare for this challenge, we have set out to build a 
"detection pipeline" which can automatically solve every 
facet of this problem. To wit, we need to locate can
didate sources in the data, select for the most parsimo
nious number, accurately estimate the physical param
eters that describe the system, and cleanly regress the 
sources from the data. 'While the analysis software we 
have built is flexible with regards to the details of the in
strument, we use the NASA/ESA LISA mission [7] with 
the intention of participating in round four of the J\Jock 
LISA Data Challenges (MLDC) [8]. MLDC datasets are 
released in pairs: one coming with the list of signal pa
rameters within the data, and one without (henceforth, 
the "training data" and "blind data", respectively). For 
this study. we will focus on analyzing the training data in 
which all other types of sources have been removed, leav
ing behind only the galactic binaries and the instrument 
noise. The capabilities of the algorithm on this reduced 
dataset will serve as a realistic demonstration of what we 
could achieve on the blind data, as the only cosmolog
ical sources which can impact the number of resolvable 
binaries are the brightest of the binary black hole merg
ers and cosmic strings. neither of which pose a serious 
Lll':L11t'11~;e to existing search 

Li1(111t;Hl'~e presented by the foreground has 
been addressed with iteratively more sophistication in 
past MLDCs Challenge 2 was the first to simu-
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late a complete galaxy and in response to this, Crowder 
and Cornish developed the BAM algorithm [10] which, to 
date, has been the most successful attempt at solving 
the entire problem. The BAM codes themselves have been 
lost to the sands of time, and did not model the evolu
tion of the binary's orbital period (nor did Challenge 2). 
Other existing algorithms which have worn their teeth 
on the MLDC data sets include an F-statistic maximiza
tion scheme using a Neider-Mead simplex algorithm [11], 
a hierarchical cleaning algorithm (also employing the F
statistic) [12] and an MCMC search algorithm featuring 
a Markovian delayed rejection proposal distribution [13]. 
Beyond MLDC entries there have been numerous proof of 
principal studies including (but not limited to), Refs. [14~ 
16]. 

Our goal for this paper is to build a new analysis 
pipeline to handle the signal from the population of galac
tic binaries. We are, in effect, attempting to extend the 
BAM algorithm by including frequency evolution in our 
model of the waveforms. and technical advancements in 
GW data analysis made since 2006. 

The paper is organized as follows: §IIAnalysis 
§IIIModel §IV Algorithm §VCatalogue §VIDiscussion 

II. DATA ANALYSIS BASICS 

There are two desired products of the data analysis 
procedure. For each model of the data (M) under con
sideration. we need to find the "best fit" model param
eters and have some sense of how well these parameters 
are constrained, as well as determine which model is most 
strongly supported by the data. 

The fundamental piece of math at work here is Bayes' 
theorem which, when cast as an inference problem, takes 
the form 

p(8IB. M)p(BIM) 
p(8IM) 

(1) 

The left hand side of equation 1 is the posterior distri
bution function for parameters B given the data 8, from 
which parameter estimation conclusions can be drawn 
within model .1\..1 (see, for instance, [17] for a thorough 
introduction). The numerator of the right hand side con
tains the product of the likelihood - our "goodness of fit" 
measure - and the prior, encoding our knowledge before 
the new data were collected. The denominator is the ev
idence, or marginalized likelihood for M. Comparisons 
of p(8!.1\..1) between different models reveal which is most 

supported by the data and. assuming uninfor-
mative priors on the models should be taken 
as the preferred representation. 

In the Bayesian framework. one needs only to define 
the likelihood and prior distributions. and the rest of 
the is reduced to an oft time-consuming calcu
lation. vVe prefer the Markov Chain :0.Ionte Carlo fam-

of algorithms to perform the computation, although 
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Nested Sampling, and its offspring MultiNest, have been 
used to similar affect (Rcf.XXX,XXX). There is no short
age of data analysis literature describing the concept of 
MCMCs. However, for the sake of introducing vocabu
lary and notation, we briefly sketch the algorithm. 

We begin with some random position in parameter 
space iir as the first "link" ill the chain by evaluating 
its likelihood M) and prior probability p(ffrIM) . 
Next, we suggest a trial position, ~j' from a proposal dis

tribution q(~liir). The new likelihood and prior proba
bility are evaluated and ~ is adopted as the next sample 
in the chain with probability 0i1T~iJy min[I,IIiJx +->iJy] 
where HiJr~iJy is the Hastings ratio 

p(81~, M)p(~IM)q(iirl~) 
p(8Iiir, M)p(iirIM)q(~liir)' 

(2) 

This process of stochastically stepping through parame
ter space repeats until some convergence criteria are sat
isfied. Equation 2 is derived from the detailed balance 
condition, which requires that the probability of being 
at state iir and transitioning to state ~ is the same as 

being at ~ and moving to iir. If satisfying this condition 
when adopting new solutions in the chain, the number 
of iterations spent in a particular region of parameter 
space, normalized by the total number of steps in the 
chain, yields the probability that the model parameters 
have values within that region. 

The choice of q(BlJliir), by construction, does not al
ter the recovered posterior distribution function. The 
proposal distribution does, however, dramatically affect 
the acceptance rate of trial locations in parameter space 
and, therefore. the number of iterations required to sat
isfactorily sample the posterior. To help mitigate the 
multi-modal structure of the target distributions, we in
clude parallel tempering [18] a set of chains, running 
simultaneously, each at a higher ·'temperature" - as is 
becoming standard in GW applications of MC:0.ICs [? ? 
? ]. 

We use a trans-dimensional (or "reverse jump") 
NIarkov Chain ::\Ionte Carlo (RJMCMC) [19. 20] as the 
tool for sampling the target posterior distribution func
tion in model space. The RJMCMC is novel in its ability 
to move between models. with the number of iterations 
the chain spends in a particular model proportional to 
the marginalized likelihood for that model. This class of 
MCMC algorithm has previously been used to study the 

binary detection problem on toy problems 
and smaller data sets 16]. but has been turned 
loose on the full 



III. THE DATA MODEL 

We model the data s as having two contributions: 

M 

s"n,,(i),,) + L h~(Xi). (3) 

The instrument noise, n, is assumed to be stationary and 
gaussian with colored spectral density parameterized by 
ilK' The gravitational wave component of the data is 
the superposition of M gravitational wave templates in, 
each parameterized by X which will be described in de
tail later. The subscript K denotes the different interfer
ometer channels synthesized from the LISA phase-meter 
data. We use the usual noise orthogonal AET chan
nels [22]. Because we expect all of the galactic binaries 
to be well below the LISA transfer frequency f* c/2r. L 
we can neglect the T channel which is, in effect, GW-free 
for f < f.· 

1. The waveform model 

Galactic binaries in the LISA band are expected to 
exhibit relatively little frequency evolution during the 
lifetime of the mission. Thus, the phase of the GWs 
emitted from the binary can be safely approximated as 
<J>(t) CPo + 2r. fot + r. iot2 + ... where higher order deriva
tives of f can be neglected for binaries below ~ 9 mHz 
during a five-year-Iong missioll [23]. For this work we 
fix fo 0, as is the case in the MLDC data simulations. 

Given these assumptions about the phase evolution of 
the binary, as well as restricting the templates to circular 
orbits (perhaps a dubious constraint Ref.XXX), vVe can 
fully describe a GB waveform with eight parameters: 

(4) 

where the subscript ° indicates the value taken at the 
first time-sample in the data. Parameters {tI, 0} describe 
the sky-location of the binary in ecliptic coordinates, and 
{Ih ;j), CPo} are angles that fix the orientation of the binary. 
The amplitude 

Ao 

couples the chirp mass Ai and luminosity distance DL 
preventing the independent measurement of either quan-

If the binary orbital evolution is driven by 
the emission of gravitational waves opposed to, for in
stance, mass transfer between the individual stars in the 

then the linear term in the frequency evolution 
depends on the frequency and chirp mass via: 

i (6) 
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Sources which satisfy this condition will henceforth be 
referred to as detached binaries. For this data set, we 
have the advantage of knowing that any binaries with 
io > 0 are detached, allowing us to make a determination 
of D L . When analyzing data from the Galaxy itself, we 
will not have this foresight. For the rare cases where 
fo can also be measured, systems being driven only by 
the emission of gravitational radiation must satisfy the 
braking index condition Ref.XXX 

n (7) 

LISA's ability to measure j~, and how ignoring this pa
rameter impacts the data analysis, has been preliminarily 
explored in [23] and [24]. We will address this important 
detail in a follow-on study [25]. 

To compute the instrument response to a particular 
galactic binary signal we use the fast-slow decomposition 
as detailed in [26]. 

We utilize a prior on the location of any given bi
nary constructed from the number density of stars in the 
galaxy. Our model for the galactic distribution is simi
lar to that from which the MLDC datasets were drawn 
Ref.XXX. The density profile has two components, one 
from the disk and one from the bulge: 

Pbulgc 

Pdisk 

Pgalaxy (8) 

1 2 2222 2+2 d W1ere Tgc Xgc + Ygc + ZgC' Ugc Xgc Ygc' an 
{XgC' Ygc' Zgc} are the cartesian galactic coordinates of 
the source. For our purposes, the parameters of the 
galaxy distribution used are [27] 

{Rb' Rd,Zd,A} {690 pc, 2520 pc, 302 pc,0.24} (9) 

Using this distribution we build a joint prior 

pUo, io, tI, ¢, Ao) CPgalaxy (10) 

with a complicated normalization constant C that we 
approximate by ~fonte Carlo integration over the prior 
volume. The quantities not constrained by this prior are 
the orientation parameters, which we take as having uni
form a distributions over [0, 2r.] for 1:) and 'Po, and 

1, 1] for cos~. 
For templates of detached systems \ye determine the 

distance to the binary using equations 5 and 6. For mass
transferring binaries we have no way of such a 
determination without better understanding of the or
bital vVe construct a separate prior for such 
systems, marginalizing Eq. 10 over io, and Ao 
behind a prior on {ti. ¢} and uniform distributions 
on the marginalized parameters. 



2. The noise model 

Given nominal levels for the shot- and acceleration
noise (Ss and Sa), the baseline noise power spectral den
sity for the LISA A and E channels is 

Sn(l) ~sin2f.[(2+COSf.)ss 

( 2/) Sa. ] + 2 3 + 2 cos 1* + cos 1* (2r.f)4 . (ll) 

To this we must add an estimate of the confusion noise 
Se which is derived from data simulations 

{ 

1O-44.8r-24 10-4 < 1 < 4.5 X 10-4 

1O-~7.15f-3.1 4.5 X 10-4 < 1 < 1.1 X 10-3 

10- 01 /-44 1.1 X 10-3 < 1 < 1.7 X 10-3 

10-74.7/-13 1.7 X 10-3 < 1 < 2.5 X 10-3 

10-59.15/-7 2.5 X 10-3 < f < 4 X 10-3 

(12) 
To allow for modeling error in the noise levels. and the 

vagaries of the particular noise realization in the data, we 
include parameters which characterize departures from 
this theoretical noise power spectral density as described 
in [15]. A separate noise level is defined for each of several 
narrow bandwidth segments of data, each of length NNB 
frequency bins. The ith segment is rescaled as Sn (I) --+ 

"f/iSn(f). For Gaussian noise, the expectation value for 
7) when measured over NNB bins is ()~ 1/ y!Nr:m. We 
accommodate for additional ignorance with respect to 
the noise level by using a normal distribution N[l, 4()~1 
as the prior on each rli. 

3. The likelihood function 

With the noise and signal models now declared, the 
likelihood p(s!O) is computed over N Fourier bins, built 
from the assumption of colored Gaussian noise where 
the noise power spectral density is being fit over 
lV/l'V"NB narrowband segments of data, via: 

(13) 

The residual 

appears in equation 13 inside of the noise-weighted inner 
defined as 

~ L ---'-'--'---'-';--':-:--::,~'----C:.'-'-
f 

where. as described above. 17 takes the same value over 
Fourier bins. 
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IV. THE ALGORITHM 

A. Overview 

In this section we will describe each phase in the 
pipeline. Following a coarse overview of the entire proce
dure, a detailed, step-by-step description of the algorithm 
can be found in the subsections. 

The data are first divided into small bandwidth sub
sets, each of which is independently analyzed. Each data 
window is studied iteratively. At each iteration, we in
clude an additional template in the model until we reach 
the maximum evidence. For each iteration, we apply a 
variety of tricks to increase the efficiency of the search, 
many of which spoil the statistical properties of the chain. 
After the "illegal" chains have located the modes of the 
target posterior distribution function they are used to 
produce proposal distributions for the subsequent steps 
in the search where we take care to satisfy detailed bal
ance. The evidence is determined by including the num
ber of templates in the model as a parameter. For ex
ample, during iteration I the RJMCMC is allowed to 
move between models containing 0 S; i S; I templates. 
The model in which the RJMCMC spends the most it
erations, M;"ax) is the one with the highest evidence. If 
i max < I then that window is finished being analyzed, 
and the MAP parameters from model M:Uax < I are 
stored in the master list for the full dataset. 

B. Preparing the Data 

The bandwidth of a typical galactic binary waveform 
is sufficiently small that the data can be divided into 
small subsets, or windows, each of which spans a rel
atively small range in frequency, and each window can 
be analyzed independently. For practical purposes, this 
makes it simple to scale the analysis code from a test
ing platform to running on the full dataset. While many 
CPUs are required to process all of the data, they do not 
need to talk to one another while doing so. 

The galactic binary search will be hindered at low fre
quency by power from high SNR black hole binaries in 
the data, as well as bursts from cosmic strings. Both 
the black hole binaries and the cosmic strings have very 
unique time-frequency characteristics. This means the 
brightest sources can be cleanly removed from the data 
without marring the signal from the galaxy. The accu
rate detection of black holes has been a main theme of 
LISA science studies and is definitely a manageable task, 
while the high-accuracy detection of the cosmic strings 
has been demonstrated in the previous round 
of the MLDC [? ;. We do not see the removal of black 
hole or cosmic sources as a substantial technical 
challenge. and so have focused the efforts in this paper 
on data with only instrument noise and the 
nal from the For the blind data analysis to follow 
this work. a collaborative effort will be needed to perform 



this first cleaning step. 
In each window. care needs to be taken at the edges 

as templates will try to fit sigllals from adjacent data 
segments which have power "leaking" into that which is 
being analyzed. Thankfully this was addressed in the BAM 
algorithm by having a smaller acceptance region within 
each window where the initial frequency must fall if the 
source is going to be taken as a true detection. Bordering 
this acceptance region to the edges of the window are 
the "wings" of the data segment where templates are 
included in the model but the sources they recover are 
not stored as detections. Adjacent windows are tiled so 
that the end of one acceptance region is the beginning of 
another. Thus we have full coverage of the data without 
any overlap between acceptance regions, and without the 
risk of double-counting sources that happen to lie at the 
interface of two data segments. Figure 1 shows a cartoon 
depiction of a data window. 

The size of the windows is not something that can 
be fixed for all signals. The amplitude of a galactic 
binary waveform scales as J2/3, meaning the discrete 
Fourier transform of a signal typically has significant 
power across a larger bandwidth as we move to higher fre
quency data. Furthermore, for detached binaries J which 
make up the bulk of the galactic population) f scales 
as f11/3 so signals with high initial-frequency typically 
spread their power over more bins during the course of 
the observation. 

Because of this frequency-dependent bandwidth, the 
size of the wings and, for efficiency's sake, the size of the 
windows. is frequency dependent. 

C. The Search Phase 

The purpose of the search phase is to rapidly locate 
the sources in the data (i.e., the modes of the posterior 
distribution function). Here we are not concerned with 
satisfying detailed balance, or producing samples which 
represent the posterior, bnt instead are focused on effi
ciency. The two most substantial cost saving enhance
ments come from reducing the dimension of the search 
by maximizing the likelihood over "extrinsic parameters" 
(orientation and distance) using the F -statistic [28, 29], 
and by making the signals a bigger target in the search 
space through simulated annealing. 

Simulated annealing is another common trick per
formed when using Markov Chain Monte Carlo-like 
methods to rapidly locate the modes of the distribution. 
It works by initially suppressing the influence of the like
lihood terms in the Hasting's ratio (Eq 2) by "heating" 
the distribution being searched 

with the exponent playing the role of an inverse "tem
perature" 3 with 0 ::; (J ::; 1. Early iterations of 
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1+---------- Data Window ----------+1 

------ Acceptance Region -----+ 

Signal Block 

- Noise Block -

FIG. 1: A cartoon depiction of a data window to be 
independently searched. The shaded portions are where 
detected binaries will be excluded from the master list. 
All templates within the same Signal Block are updated 
simultaneously. One parameter TJ is used to measure the 

noise PSD over each Noise Block. This concept was 
derived for the BAM algorithm and adapted from 

Ref. [10] 

the chain are run at high temperature (small 3) forcing 
the likelihood ratio term to '" 1. The influence of the 
likelihood is gradually increased as the search space is 
gradually "cooled" at each iteration i via 

(3 
{ 

(
_1 ) Ti/T 0 < i < T 
T max_ 

lllax 

1 i ? T 
(17) 

until f3 goes to 1 and the chains are sampling the target 
distribution. 

Simulated annealing requires some tuning in order for 
it to actually improve the search's efficiency. The ad
justable parameters to the annealing scheme, the maxi
mum temperature Tmax and the cooling time T, need to 
be custom suited for each problem. Conceptually, what 
we want is for to be high enough that chains are 
able to freely explore the full prior range, while not being 
so absurdly hot that we spend many iterations with no 
hope of locking on to any of the signal. A reasonable rule 
of thumb is that the effective SNR of the signals as seen 
by the tempered chain is reduced from the true SNR by 
a factor of '" 1/ VT. To this end, we want Tmax to be 
'" SNR2

, and can reasonably determine it based on the 
excess Fourier power in the data: 

4N. (18) 

Setting the rate T is an exercise in trial and error, 
and depends on the bandwidth of the data window. with 
higher frequencies warranting cooling times. 



In addition to simulated annealing, and in all other 
phases of the analysis, we use the now commonplace 
method of "parallel tempering" where multiple chains 
are run simultaneously at different temperatures, \vith 
exchanges of parameters between chains subject to the 
detailed balance condition. 

To further increase the efficiency of the search, we wish 
to reduce the volume of the search space. For this pur
pose, the F-statistic is a tool which has proven extremely 
useful in LIGO /Virgo searches [30], black hole searches 
for LISA [31]' and galactic binaries [10, 297 ]. Because 
of it's frequent use in the GW data analysis literature, 
we leave the details to the aforementioned references. 

While the speed-up in the search time when using the 
F-statistic is substantial, once the (approximately) best
fit frequency and sky location for each source in the 
model have been located, it becomes a liability. For a 
model containing N 5 sources, a single F -statistic eval
uation involves 4N 5 calls to the waveform generator as 
well as a 4N 5 x 4N 5 matrix inversion, ultimately costing 
more than 4N 5 likelihood evaluations. Therefore, once 
the F-statistic has done its job and found the modes, the 
chains are much more efficient reverting to the Gaussian 
likelihood as described in §II. The points of the chain 
from the F -statistic search are discarded as the "burn 
in" samples. 

At this point we are interested in producing an en
semble of samples that approximate the target posterior 
distribution function. However, we are not yet ready to 
abandon some of our cost saving measures in favor of de
tailed balance. The posteriors for these signals are mul
timodal and in a few percent of trial runs, the burn-in 
phase ends on a secondary maximum of the distribution. 
The nature of these near-degeneracies was explored with 
detail in [10]. To summarize, the orbital motion of the 
LISA constellation, as well as the finite number of data 
points, imparts a harmonic structure to the waveforms 
on either side of the initial frequency of the binary. The 
templates can fix themselves to a sub-dominant harmonic 
while still achieving overlaps with the injected signals of 
,2: 70%. 

Such features in the posterior expose the weaknesses 
of an "out of the box" ]\1C]\IC. \Vhile the chain is guar
anteed to eventually converge, in most cases we are not 
willing to wait long enough. \Vhile there are certainly 
more elegant ways of overcoming these types of chal
lenges, we offer a brute-force approach inspired by de
layed rejection [32, 33]. We propose some position in pa
rameter space if" and, without asking the Hastings ratio 
for any input, temporarily adopt this position and evolve 
the chains from there. After some number of updates 

We then look back and calculate 
. This transition prob-

balance condition, 
and so the samples from the chain will be biased in some 
way. For a lot of effort, delayed rejection performs this 
type of exploration while preserving detailed balance as 
described in detail within a wave data anal-
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ysis context by Trias et al in Ref [13]. For our purposes, 
we are not yet concerned with the statistical properties 
of our chain and accept the fact that our recovered dis
tributions will be biased. 

Our lazy implementation of delayed rejection is per
fectly suited to prevent us from sticking on a sub
dominant harmonic of the waveform. The secondary 
modes appear at integer multiples of the LISA modu
lation frequency fm l/year. We propose a shift in 
frequency by some nfm' where n is a random integer 
drawn from U[-6,6], adopt that solution, and then allow 
the chains a few iterations to refine the remaining param
eters (in particular, the sky location) before comparing 
back to the current solution. This addition to the search 
procedure mitigates the instances of recovered sources 
having the central frequency on a harmonic induced by 
the orbital motion. 

Figure 2 is a scatter plot of chain samples in the 
p(sI8) - f plane. The plot is centered at the true fre
quency of the injected source. The sub-dominant modes 
of the distribution are clearly visible as peaks in the 
likelihood surface occurring at even integer multiples of 
fmT 2 Fourier bins. In this example, the search chain 
approached from higher frequency. The multi-modal 
structure of the likelihood surface due to orbital motion 
is roughly symmetric about the injected value. A single 
Markov chain without the benefit of delayed rejection or 
parallel tempering would be severely challenged by these 
local maxima. 

·900 

-950 

·1000 

1 
~ ·1050 

~ 

·1100 

-1150 

·15 ·10 10 15 

FIG. 2: Delayed Rejection at work: This scatter plot 
shows from a search chain in the - f 

The plot is centered at the true frequency of the 
injected source. Delayed enables the chain to 
efficiently leave secondary maximum ill fayor of the 

true source parameters. 



D. Parameter Estimation & Model Selection 

Upon the completion of the search phase, the chains 
have produced samples of some biased distribution func
tion, the modes of which closely correspond to that of 
the target posterior. To accurately refine the characteri
zation of the model and to evaluate wether or not it is the 
one favored by the data, we run a RJMCMC following all 
of the rules to ensure the chain samples are representa
tive of the target posterior. RJMCMCs are notoriously 
difficult to work with in high-dimension problems. Th~ 
proposal distributions have to be informative enough that 
drawing a random point out of (for this example) an 8 
dimensional parameter ;;pace produces a reasonable fit to 
the data, but are not so constraining that the improved 
fit to the data is overly penalized by how strongly you 
forced the trial solution to that point. For these tech
niques to work efficiently. the chains can not tolerate a 
proposal that is anything but a good approximation to 
the posterior. 

Fortunately for us, we spent the search phase produc
ing such an approximation. While these chains could 
not be used (ethically) for model selection or parameter 
estimation, there are no rules against employing them 
to build suitable proposal distributions. This concept 
was originally suggested by Green [20] and we have de
scribed in detail the procedure applied to this work in 
Ref. [15]. In short, we bin the chains into an 8D grid us
ing fisher matrix estimates of the parameter variances to 
set the cell size in the grid. The number of samples from 
the chain that land in a given cell is proportional to the 
probability density in that cell. The proposal distribution 
randomly chooses a cell weighted by its probability, and 
then uniformly draws within the cell to come up with the 
parameters. Recently, Farr and );Iandel [34] introduced 
an improvement on how to bin the chain samples by us
ing a kD-tree data structure instead of our Fisher-scaled 
grid. It's clear that this will further improve the effi
ciency of these proposals by eliminating the dependence 
on the grid size, something which we had to carefully 
tune. We will transition to the kD-tree decomposition in 
future work. 

As mentioned previously, this analysis is performed it
eratively, including an additional signal in the model at 
each iteration. During the characterization phase of the 
procedure on iteration l the RJl\ICMC is exploring mod
els containing anywhere between 0 and I signals. The 
model with the strongest support is the one in which the 
RJMCMC spends the most iterations. \Vhen two models 
are similarly supported by the data a more subtle selec
tion has to be made. Between any two models we can 
calculate the Bayes factor 

iterations in 

which is easily interpreted as the odds prior 
preferences for one model over that A1]) is pre
ferred over A1i . Thus. ~ 1 means that both models 
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are similarly supported by the data. While that is a 
nice interpretation, when assembling a catalogue of de
tectable galactic binaries and producing a residual fit for 
subsequent searches, decisions need to be made about 
which model to pick in these marginally distinguishable 
cases. This, sadly, somewhat reduces the Bayes factor 
to a statistic used for model selection. Nevertheless. we 
have to draw a line in the sand, and have chosen for this 
study a Bayes factor "threshold" of 12:1 needed to prefer 
a higher dimensional model, above which the support for 
A1 j is canonically considered "strong" [35]. 

A more satisfying thing to do would be to repeat the 
analysis for several different Bi.i cutoffs, producing ap
pendices to the final SOllrce catalogue of more specula
tive detections, but the time for such an exercise was not 
warranted at this juncture. 

If the highest dimension model is supported by the 
data, we store the map parameters and begin another 
iteration. If not, the MAP parameters from the winning 
model are stored and no more iterations on that win
dow are performed. Only sources with initial frequency 
inside the acceptance region are added to the "master" 
list of detections. Figure 3 shows ~ 5 windows' worth of 
training data, with the best fit waveforms over-plotted. 
A higher frequency window was chosen so that the dif
ferent signals in the fit could be distinguished. 

o 
if) 
n. 

FIG. 3: Power spectral density of a small bandwidth 
segment of the training data. This figure spano ~ 5 

search windows. The green [dashed] line is the original 
data, while the red [solidjline shows the best fit signal 

model. 

E. Source Subtraction 

The biggest cost to performing these ::VICMC runs is 
the waveform calculation. \Vhile our waveform model is 
extremely efficient, there is not much that can be done 
about the colossal number of templates that need to be 
computed to resolve 10000+ sources. To help mitigate 



this expense, we want to hold fixed the waveform param
eters for sources which <tre not signific<tntly overlapping 
other sources in the window. 

After e<tch iteration, if the new source is within some 
pre-defined number of frequency bins (depending on the 
ch<tracteristic bandwidth of sources in that window), 
than on the following iteration this template, along with 
any others that satisfy the closeness condition, and the 
new source included in the model, are allowed to vary. 
Otherwise, the signals located in previous iterations are 
held fixed. This keeps the number of "active" sources per 
window, per iteration, much lower than the total number 
of detectable binaries in that segment of data. We are 
essentially searching on the residual of the data from pre
vious iterations. but with the caveat that if new sources 
get too close to existing detections than all nearby sig
nals need to be simultaneously re-characterized. FIgure 4 
shows the same data segment as in Figure 3, but with 
the best fit model regressed from the originaJ data. The 
residual is consistent with stationary Gaussian noise at 
the level of the instrument noise. 

1e-37 

16-38 

1e-39 

1 ... 0 
Cl 
<Il 
C. 

1e-41 

1 ... 2 

1e-43 

1&44 
7 7.005 7.01 7.015 7.02 

f(mHz) 

7.025 7.03 7.035 7.04 

FIG. 4: Same as Figure 3, but with the red [solid] line 
replaced by the residual power spectral density after the 

best fit model has been regressed from the data. 

V. THE RECOVERED SOURCE CATALOGUE 

vVe performed a comprehensive test run of the 
rithm on the ::\ILDC challenge 4 training data set. con

instrument noise and the signals from the 
In the interest of time for the 

the search was not carried to completion in all 
windows. In this section we quantify the per

formance of the algorithm by comparing the recovered 
catalogue to the source list supplied with the training 
data. 
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1. Evaluating the recovered catalogue 

The total number of detected galactic binaries that 
we located in the data before moving on to the blind data 
set was ~ 9000. The merit of our recovered catalogue was 
judged using the MLDC challenge 3 evaluation software 
available as part of the lisatools software package [? ]. 

For each recovered source hrcc , the evaluation software 
searches through the list of (SNR;?; 1) sources in the sim
ulated galaxy, and determines which injected signal hinj 
gives the lowest noise-weighted residual (hinj - hrcclhinj
hrcc ). Once hrcc is paired with the corresponding hinj the 
correlation between the two waveforms 

COrrinj,rcc (20) 

is computed and stored in a "report card" for the recov
ered catalogue. A histogram of the correlations for our 
recovered population of sources is depicted in Figure 5. 

10000....----,.----..,...----..,----...,----, 

1000 

100 

C 

8 're 
c~, I 

10 

in 
n ~1 ru~ 

I' 
I~ 

'll 'ili !:I iii 
0.5 0.6 0.7 0.8 0.9 

correlation 

FIG. 5: Correlations between recovered sources and 
their corresponding signal in the training data. Of the 

rv 9000 detections over 90% had a correlation above 0.9 
with an injected signal. 

Along with the correlation files, the MLDC evaluation 
software saves the parameter error between each recov
ered signals and its corresponding source in the data. 
The distribution of errors for the entire catalogue will 
reveal any systematic biases in the parameter recovery. 
Figure 6 shows the distribution of recovered parameter 
biases. We are pleased to report that all parameters show 
a strong peak at zero bias. 

The galaxy search serves the dual purpose of recovering 
a trove of information about the galaxy, and removing a 
substantial amount of foreground signal-power, facilitat-

the search for at cosmological distances. The 
residual power spectral density of the training data after 

removed the recovered signals is shown in 
nre 7. The dashed trace shows the 
training data (without BHBs, EMRIs. 
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FIG. 6: [Top left] The distribution of SNRs for the recovered signals. The x-axis is in 10glO SNR. [All others] 
Distributions of the difference between the recovered signal parameters and the associated source in the data. We 
see no significant systematic biases between our best fit parameters and true values for the recovered sources. The 

orientation parameters of the binary are typically not well measured, hence the larger tails on the error distributions. 

solid [red] line is the residual after our recovered cata
logue has been regressed from the data. Notice we only 
performed the search out to 0.01 Hz. At higher frequen
cies the signals are typically bright and isolated. This 
makes them easy to find, but computationally expensive 
to characterize, as the bandwidth of the signal increases 
with frequency and amplitude. Individual high frequency 
windows have been tested and will be included in our 
blind search, but we omit them from the results here. It 
is clear from the residual that there are more detectable 
sources than the 9000 on which we are reporting. How
ever. as a test of the algorithm we take this as a satisfying 
result. 

2. Galactic astronomy 

While the focus of this work has been the algorithm 
and its performance on simulated data, the real fun be
gins when we brandish the source catalogue as an un-

precedented astronomical tooL Our follow on work to 
this paper will address some specifics, but in the mean 
time there is one piece of "low hanging fruit" that is too 
good to pass up. As mentioned in §??, the inclusion of jo 
in the waveform model presents us with an opportunity 
to disentangle the luminosity distance from the overall 
GW amplitude. To demonstrate this capability, we se
h;ct from the catalogue any binary with SNR> 15 and 
foT2 ::: 1 and compute the DL using Eqs ?? The re
sulting galactic map is shown in Figure 8. As promoted 
in the LISA science case studies [? 1, we recover a three
dimensional map of the entire Galaxy. 

Admittedly, we artificially benefit from knowing that 
any with > 0 is dynamically evolving under ra
diation reaction forces How this assumption biases 
the spatial distribution of the detected population is a 
top priority of our subsequent studies. 



1045 

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.G1 

((Hz) 

FIG. 7: Power spectral density of the training data 
(dashed/green) and residual (solid/red) after removal of 

the recovered sources. The remaining spikes in the 
residual are detectable signals left behind after we 

prematurely halted the search in favor of analyzing the 
blind data. 

VI. DISCUSSION 

Using [10] as a foundation, we have developed our own 
galactic binary detection code and tested it on the round 
4.0 training data supplied by the YIock LISA Data Chal
lenge Task Force. New features to this search algorithm 
are the inclusion of parallel tempering and delayed re
jection to increase the efficiency of the search, and using 
a trans-dimensional MCMC to simultaneously character
ize the detected binaries, and determine the most likely 
number of binaries in each small-bandwidth segment of 
data being analyzed. We also include the jo parameter 
in the waveform modeling which was not part of the orig-
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inal work by Crowder and Cornish, but was included in 
the MLDC round 3 data and subsequent entries. 

The codes were written for the purpose of participat
ing in the blind challenge, so the analysis of the train
ing data was halted before completion. Before moving 
on to the challenge data, we recovered ~ 9000 sources, 
90% of which matched one of the injected sources with 
correlation greater than 0.90. It is worth noting that 
a smaller-scale space borne gravitational wave detector 
is more likely to fly in the near future thau the full 5 
Gm LISA mission concept. If anything, that makes our 
current search software overqualified to handle whatever 
data we are presented. 

Of course, detecting the sources is the first step to
wards using the data to its full potential, as a unique 
probe of the Galaxy. 

Including the first time derivative of the frequency in 
the waveform model allows us to compute the distance to 
binaries whose dynamics are not affected by mass trans
fer or tidal effects .. From the recovered sonrce catalogue, 
we measured the sky-location and j well enough to con
strain D L of ~ 1000 binaries, sampled from the entire 
volume of the Galaxy. This result hints at the potential 
for low-frequency gmvitational wave astronomy to offer 
an unprecedented view of compact stellar remnants are 
distributed. Implicit in the calculation of the distance is 
the supposition that all mass-transferring systems have 
j < O. How our ability to map the distribution of the 
Galaxy after relaxing this assumption is impacted will be 
the focus of follow-on work. 
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FIG. 8: Scatter plots showing the spatial distribution of recovered signals for which DL could be measured in 
ecliptic coordinates from different viewing angles. The symbol is located at the solar system barycenter. 
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