

Single Event Effect (SEE) Test Planning 101

Kenneth A. LaBel, Jonathan A. Pellish
NASA/GSFC
Melanie D. Berg
MEI Technologies, NASA/GSFC

Unclassified

Outline

- Introductory Comments
 - Scope of course
- Requirements
 - Flight Projects
 - Research
 - Programmatic constraints
- Device Considerations
 - A word on data collection
- Test Set Considerations
- Facility Considerations
- Logistics
- Contingency Planning
- Test Plan Outline
- Summary

Introduction

- This is a course on SEE Test Plan development
- It is NOT
 - How to test or testing methodology
 - A detailed discussion of technology
 - New material on new effects
- It is
 - An introductory discussion of the items that go into planning an SEE test that should complement the SEE test methodology used
- Material will only cover heavy ion SEE testing and not proton, LASER, or other though many of the discussed items may be applicable.

Course Abstract

- While standards and guidelines for how-to perform single event effects (SEE) testing have existed almost since the first cyclotron testing, guidance on the development of SEE test plans has not been as easy to find.
- In this section of the short course, we attempt to rectify this lack.
- We consider the approach outlined here as a "living" document:
 - mission specific constraints and new technology related issues always need to be taken into account.
- We note that we will use the term "test planning" in the context of those items being included in a test plan.

Requirements – Dual and Competing Nature(s)

- Programmatic
 - Cost
 - Schedule
 - Personnel
 - Availability
 - Criticality
 - RISK!

- Technical
 - Device
 - Packaging
 - Beam/facility
 - Application
 - Data Capture

Dual Nature 2: Flight Project versus Research

How we plan and prepare for a test will also vary with this trade space

All tests are driven by requirements and objectives in one manner or another

Flight Project Requirements

- When planning a test for a flight project, considerations may include:
 - Acceptance criteria
 - Error or fail rate (System or Device)
 - System availability may be appropriate, as well
 - Minimum device hardness level
 - Linear Energy Transfer threshold (LETth), for example
 - Error definition and application information
 - User application(s)
 - Circuit
 - We note that "test as you fly" is recommended
 - Criticality
 - Programmatic constraints
- The bottom line is that flight project tests are usually application specific and designed to get a specific answer such as:
 - Is the SEL threshold higher than X? or
 - Will I see an effect more than once every 10 days?

Research Requirements

- These are less specific than requirements for flight projects and may include
 - Generic technology/device hardness
 - Application range
 - Angular exploration
 - Frequency exploration
 - Beam characteristics such as ion/energy/range effects
 - Error propagation, charge sharing, etc...
 - Programmatic constraints
- The bottom line is that all requirements and objectives should be "in plan", i.e., considered prior to test and included in test plan development.

Resource Estimation

- Many factors will weigh in to actual resource (re: cost and schedule) considerations including:
 - Complexity of device/test and preparation thereof
 - Facility availability (and time allotment)
 - Urgency of test
 - Funds availability, and so forth
- We usually try to "pre-plan" facility access approximately three months prior to a test date and refine the list as flight project exigencies, test readiness levels, etc are evaluated.
 - At NASA, flight projects receive priority in planning
- Schedules should be developed and included that include all phases of testing from requirements definition to completed report.

Cost Estimation Factors

- Labor
 - Principal investigator/team lead
 - Test engineers/technicians
 - Electrical, mechanical, VHDL, software, cabling, etc.
 - Test performance (pay attention to overtime needs)
 - Data Analysis
 - Report and plan writing
- Non-recurring engineering costs
 - Board fabrication and population
 - Device thinning/delidding
 - Cables, connectors, miscellaneous
 - Test equipment purchase/rental
- Facility Costs
 - Note that estimating the amount of beam time required is non-trivial: modes of operation, ions, temperature, power, etc. all factor into the test matrix and need to be prioritized
- Travel
- Shipping

Device Constraints

- Devices under test (DUTs) can range from very simple transistors to the most complex systems on a chip (SOC)
 - This range implies test set implementations can vary just as widely
- At the top level, the following are the key items to begin planning with:
 - Datasheet and
 - Application requirements (mission specific or range for "generic" research)
- We note that implementing a test set hinges greatly on the DUT type and requirements, however, detailed discussion of this is out of scope for this talk.
 - Certain key features will be delineated later

DUT Parameter Space

- DUT parameter space may include multiple items found on datasheets:
 - Electrical performance
 - Frequency, timing, load, drive, fanout, IO, ...
 - Application capability/ operating modes
 - Processing, configuration, utilization...
 - Power
 - Environmental characteristics, and so on
- Mission specific testing will limit the space as part of the requirements
 - Research tests must consider the overall application space of the DUT and determine priorities for configuration of tests
- We note that device sample size is also considered and may be limited due to resource or other constraints.
 - Good statistical methods are still recommended
 - Lot qualification issues should be considered
- Key features, device markings, etc. should be included

Predicting DUT SEE Categories

- An analysis of the types of SEE the device might observe during irradiation is required.
 - This may be called a error/failure mode analysis
 - Predicted type and even frequency of SEEs will drive the data capture requirements discussed later as will error propagation/visibility
- An analysis should include
 - Upset (single, multiple, transient, functional interrupts, etc..) and destructive issues, as well as,
 - Mission specific objectives (Ex., application requirements or destructive test only)
- Looking at existing data on similar device types and technologies may help in this process

DUT Data Capture - Sample SEU Capture Signatures

- Upsets can be as simple as a short glitch/transient in an output or an incorrect output state
- Upsets can be complex:
 - Bursts: streaming upsets that are time limited (i.e. occur from time τ_n to τ_{n+k})
 - Burst vs uncorrectable error?
 - One particle strike may cause an oscillation between known good and bad values (metastable)

Difficulties

- Differentiate between a single event versus accumulation:
 - Multiple effects may occur from one particle strike
 - Multiple effects may occur from an accumulation of particle strikes
- Differentiate between hard errors and soft errors
 - Is it bus contention?
 - Is it a micro-latch? Or...

Test Set Requirements

- Test set requirements are a set of derived requirements from the mission/DUT/facility requirements
 - Example: requirement for a test in vacuum may be different than one in air
- Knowing how a DUT performs is one thing, but defining requirements for a test system is clearly separate
 - Test set requirements should encompass actual application range or have sufficient flexibility such that modifications can be made on site easily
- Mission Requirements generally have ranges of operation.
 - The test set should accommodate this range in areas such as:
 - Min, max, and typical (speed, temperature, voltage)
 - Vary inputs
 - Note the difference between static tests and dynamic tests
 - Output loading
- We note that a test plan should provide full details, schematics, figures, photos, etc. of test method/set

Test Set Considerations

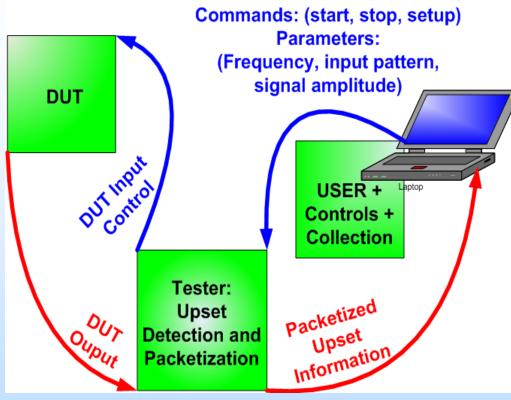
- Test Set Development challenges
 - Visibility of upsets may be restricted with complex devices
 - Testing the expected state of the device may be impossible
- Test Set considerations
 - May be necessary to separate tests for various portions of the device
 - Example: FPGA (configuration, data paths, and SEFIs)
 - Understand and note test restrictions when determining SEU cross sections and error rates
 - Be aware of the separation of tester, user equipment, and DUT during testing.
- Boards for DUTs: roll your own or ???
 - DUT mounting can be performed by: wiring, soldering, or socketing
 - Wiring will only work for slow devices with minimal I/O count
 - Soldering onto a board will increase the range of angular testing and improved speed/noise performance
 - Socketing provides flexibility: if DUT dies, another can easily replace it
 - Potential signal integrity issues must be considered (ground bounce, transmission line effects, etc...)

Data Requirements

- Data requirements may be broken into two categories
 - Data capture, and,
 - Data analysis
- Data capture, in this context, is not how you capture the data, but the requirements/items that should be considered for capture
- Data analysis is the other end of the picture: everything from the system-wide flow of the data, what format it is being captured in, and what are the requirements for analyzing this data (real-time and post-testing, as well as planning how this should be implemented.
- We suggest treating radiation data much like a spacecraft treats science data: a telemetry and command system
 - Utilize as many reliable design practices as possible to have confidence in the results

Data Capture

- Multiple facets are included in data capture including
 - Data volume and storage
 - Maximum error capture rates should be planned as well in order ensure the TBD system can keep up
 - Resolution of measurements
 - This includes "housekeeping" data as well at the "scientific" information
 - Timetagging
 - Supply currents
 - Temperature
 - Beam/facility run information,
 - Accumulated dose, and so on...
 - We note that capture criteria per beam run may hinge upon beam "stop" criteria
 - X number of errors
 - Beam fluence
 - Current limit
 - Anomaly
 - Other

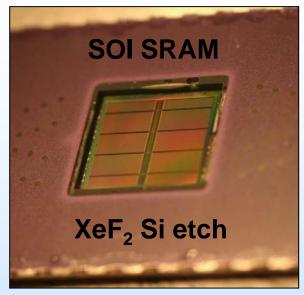

Data Capture – Reliable!

- Some suggested implied requirements for reliable data capture
 - Must abide by datasheet requirements (timing diagrams, DUT output drive, etc...)
 - Might require the capability to observe short duration upsets
 - Should readily capture random errors
 - Should be able to determine changes in current
 - Should be able to keep up with the upset rate by:
 - Storing upset data locally (fastest method but can be restricted by amount of storage)
 - Bandwidth limitations of communications links
 - Some mix of the above two options alleviates the storage and bandwidth issues
- Flexibility to adapt to unexpected "events"

Data Analysis

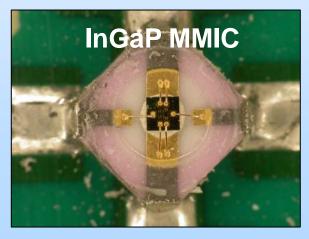
- The early definition of the data/command flow and structure is key to performing a successful test
 - Developing an end-to-end data/command flow diagram, and,
 - Defining data and command packet structure at each point along the path
 - Headers (run number, etc...)
 - Word formats and length
 - Insertion of housekeeping information
- Note: Geographical (DUT layout) and temporal information often aid determining root cause of error

END-to-END Data/Command Flow

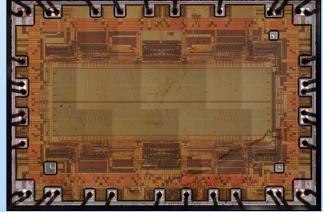


Processing the Data

- Every plan should include a discussion of how the data will be processed whether it's for
 - Full width half max (FWHM) for transients,
 - Physical mapping of errors and multiple bit events, or
 - Any of the myriad of data events in between.
- Requirements for what needs to be viewed/processed real-time in order to make informed decisions at the site as well as what should be done as part of post-processing should be clearly delineated.

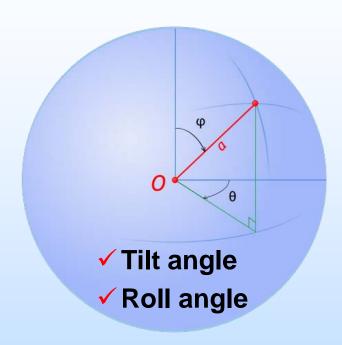


Facility Issue - Device Preparation

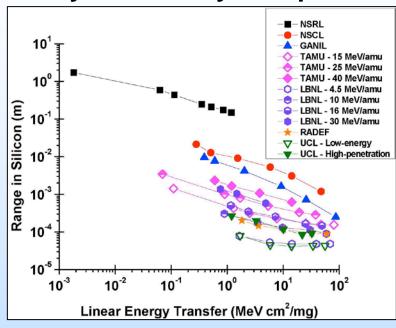

M. R. Shaneyfelt, et al., SEE Symposium, 2011.

- If only everything was hermetic!
- Ion's range of penetration is short compared to packaging materials
 - Cannot use protons for everything
- What is the package style and die material?
 - Are there heat sinks?
- Methods: mechanical, chemical, and electromagnetic (ablation lasers)

Open a can



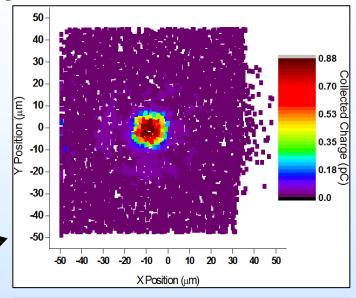
Acid etch/de-pot plastic encapsulated microcircuits

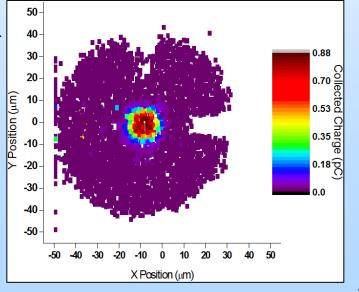


Facility Considerations – Angles and Ion Choice

http://en.wikipedia.org/wiki/Spherical_coordinate_system

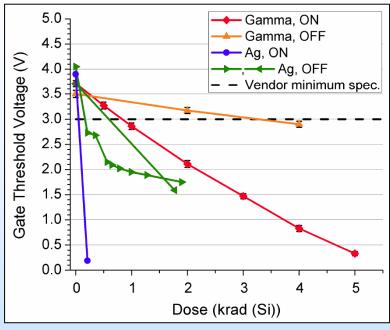
Heavy Ion Facility Comparison

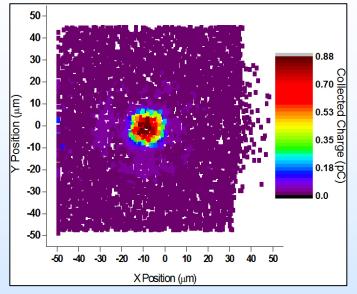


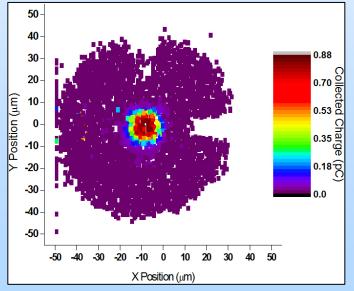

J. A. Pellish, et al., *IEEE Trans. Nucl. Sci.*, vol. 57, no. 5, pp. 2948-2954, Oct. 2010.

- What's the sensitive area(s) geometry and are there any hardening techniques (design and/or process) employed?
- Is ion range or dE/dx (ionization/length) more important?

- SiGe HBT transistor under microbeam irradiation at Sandia National Laboratories
- 36 MeV oxygen
 - Surface LET = 5.3 MeV-cm²/mg
- 60 scans in total
 - Early = first 12 scans
 - Late = last 12 scans
- Note the large diffusion component


- Dose/damage from heavy ions can be a significant factor
- Is my device susceptible to this?

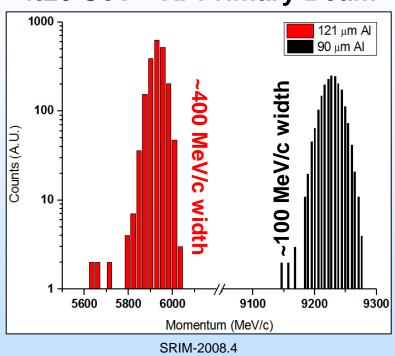

Facility Considerations – Dosimetry

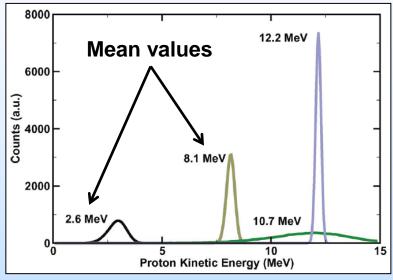


J.-M. Lauenstein, Ph.D. Dissertation, U. Maryland, 2011.

Dose type and bias effects on power MOSFET V_{th}

- Dose/damage from heavy ions can be a significant factor
- Is my device susceptible to this?

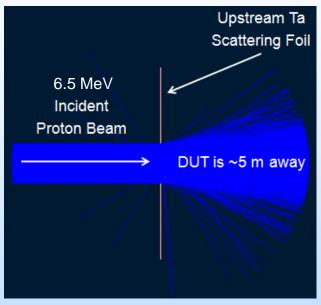




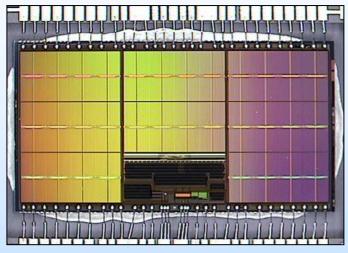
Facility Considerations – Beam Profile and Purity

1.26 GeV 84Kr Primary Beam

Degraded Proton Energy Distributions 14.6 and 63 MeV primaries


B. D. Sierawski, *et al.*, *IEEE Trans. Nucl. Sci.*, vol. 56, no. 6, pp. 3085-3092.

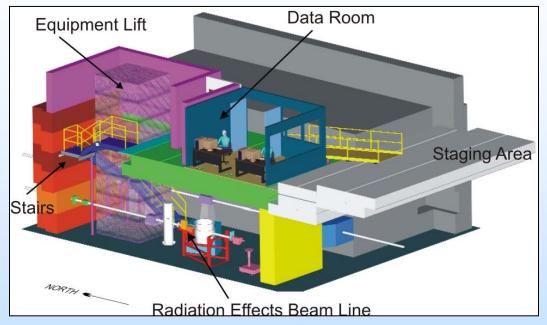
- What is the beam's emittance (space and momentum)?
- Where are the sensitive areas on my device under test?
- How big are the sensitive areas?
- Am I sensitive to destructive effects?


Facility Considerations – Beam Profile and Purity

Low-Energy Proton Scattering

J. A. Pellish, et al., SEE Symposium, 2011.

ESA SEU Monitor


R. H. Sørensen, et al., Proc. RADECS, 2005.

- What is the beam's emittance (space and momentum)?
- Where are the sensitive areas on my device under test?
- How big are the sensitive areas?
- Am I sensitive to destructive effects?

Facility Considerations – Setup and Cabling

Texas A&M Cyclotron Facility

http://cyclotron.tamu.edu/ref/pics/3d_new_reline.png

Is there a staging area?

- How large is the data collection/user room?
- What kind of cables/feedthroughs are present?
- How long is the cable run? (signal bandwidth, voltage droop, etc.)

NASA Space Radiation Lab

http://www.bnl.gov/medical/NASA/CAD/NSRL_Facility_and Target Room.asp

Facility Considerations – Setup and Cabling

Avoid the dreaded CABLE CADAVER

Configuration Management (CM)

- The rule here is simple: know and document what you have, what you are using, and how you are using it. This ranges from cabling all the way to coding!
 - CM defines which version you have and making sure you bring the tools to modify if needed
 - Ex., which VHDL code is final one for either the test set or DUT (if applicable)?
 - Each team member is responsible for CM
- Data backup is related
 - Make sure you have a plan for storage of multiple copies of the data, who is responsible, and what happens for post-processing

Logistics

- While non-technical, logistics related to test planning and writing a test plan are no less important
- Areas for consideration in no particular order:
 - Test team member contact info (cell phones, hotels, flights, etc...)
 - Facility contact information including maps for newbies
 - Contact information for key people at home site
 - Equipment list including spares
 - Don't forget datasheets!
 - Shipping/transport of equipment (cost, tracking, ...)
 - Roles and responsibilities of the team

Contingency

- Contingency is required for several reasons:
 - Test set does not work
 - Test set does not work as well as expected
 - Error signatures are different than anticipated
 - Facility may have an "issue" such as the beam goes down
- A good plan will include:
 - Prioritization of tests planned (which devices, which tests)
 - Limits on debug time to make a decision to test, move to a later test timeslot, or ???
 - Example: if after 1.5 hours no significant progress is noted, go to backup device
 - Backup devices (in case test ends early or other device/test doesn't work properly)

SEE Test Plan Outline - Summary

- Introduction and objectives
- Detailed Device Information
- Documentation
 - Block diagrams, circuit diagrams, cabling diagrams, datasheets, etc...
 - Photos of device and test set
- Equipment list
 - Packing and shipping information (detailed)
- Test Methodology and Data Capture
 - Including Data Storage Structure
- Configuration management
 - Data backup and distribution plan
- Personnel and Logistics
- Data Analysis Plan
- Contingency Plan

Summary

- This section of the short course was designed to provide the user the basic thought processes required to develop a successful test plan
 - Technical issues,
 - Logistics issues, and,
 - Programmatic issues.
- Further details are found in the full notes accompanying this presentation.