

Humidity Steady State Low Voltage Testing of MLCCs (Based on NESC Technical Assessment Report)

Mike Sampson*, Jay Brusse**, Alexander Teverovsky**

*NASA/GSFC, **Dell Perot Systems

alexander.a.teverovsky@nasa.gov

Purpose of NESC* Task

Review of the low voltage reduced Insulation Resistance (IR) failure phenomenon in MLCCs and NASA approaches to contend with this risk.

- 1. Analyze published materials on root cause mechanisms.
- 2. Investigate suitability of current test methods to assess MLCC lots for susceptibility.
- 3. Review current NASA parts selection and application guidelines in consideration of benefits vs. disadvantages.

*NESC = NASA Engineering and Safety Center

Team List

Name	Discipline	Organization/Location			
Core Team					
Mitch Davis	NASA Technical Fellow for Avionics	GSFC			
Mike Sampson	Capacitor Specialist	GSFC			
Jay Brusse	Capacitor Specialist	GSFC/Dell Perot Systems			
Henning Leidecker	Chief Parts Engineer	GSFC			
Norman Helmold	Failure Analyst/Physicist	GSFC			
Raymond Wade	Electrical Components	GRC			
Consultants					
Tom Duffy	Capacitor Specialist	GSFC/Dell Perot Systems			
Alexander Teverovsky	Failure Analyst/Physicist	GSFC/Dell Perot Systems			
Jocelyn Siplon	Capacitor Specialist	The Aerospace Corporation			
Michael Cozzolino	Capacitor Specialist	Raytheon			
Terry Dowdy	Hybrid Specialist	Naval Surface Warfare Center			
Alan Devoe	Capacitor Manufacturer Representative	Presidio Components			
Joseph Dougherty	Consultant	Pennsylvania State University			
Robert Stevenson	Senior Scientist	Greatbatch (Medical)			
Michael Azarian	Department of Mechanical Engineering	University of Maryland			
Leon Hamiter	Consultant	CTI, Inc.			
Gary Ewell	Consultant	Consulting Engineering			
Administrative Support					
Tricia Johnson	MTSO Program Analyst	LaRC			
Linda Burgess	Planner and Control Analyst	LaRC, ATK			
Pamela Sparks	Project Coordinator	LaRC, ATK			
Christina Williams	Technical Writer	LaRC, ATK			

- Multilayer ceramic capacitors (MLCCs) are among the most commonly used electronic components in electronic systems.
- MLCC components are used on every electrical assembly with quantities usually in the thousands.

Majority of the parts are used in low-voltage (compared to rated voltage, VR) applications. => Importance of low-voltage failure (LVF) phenomena for reliability assurance.

History of MLCC Problems in Low Voltage Applications

- 1978: -Brennan (Sperry) first to document MLCC LVFs.
- 1981: -NASA-MSFC issues GIDEP describing LVFs.
- 1980s: -MLCC LVF experiences are at their peak. -NASA contracts Hughes to study MLCC LVF.
 - -Bulk of industry research is conducted.
 - -NASA risk reduction strategies are developed.
 - -MIL-C-123A space-level MLCCs features LVF avoidance.
- 1980s-90s: -Sporadic MLCC LVFs reported.
- 2000s: -Continued need for MLCC LVF guidelines questioned.
- Historically, LVFs were attributed to lots with large proportion of manufacturing defects.
- Currently, LVFs are more likely to be caused by cracking due to soldering and handling.

- LVF are phenomena which produce insulation resistance (IR) degradation below the device limits at voltage bias well below MLCC ratings.
 Donnelly, Randall'
 - Typical IR limits are in GΩ range.
 - LVF can be from ~0.1k Ω to > 1M Ω .
- IR recovery may occur through application of voltage higher than that resulting in the original failure.
- Two main categories of LVF:
 - Low impedance circuit failures.
 - o Tend to be catastrophic, PWB damage possible.
 - High impedance circuit failures.
 - o Can be intermittent or persistent.
 - May not cause circuit failure unless sensitive to IR degradation.

NASA Guidelines to Reduce Risk of MLCC LVF

Basic approaches involve combination of the following:

Procure MIL-PRF-123 parts and <u>use as-is</u>;

Otherwise NASA Guidance Suggests: Drives selection to

- Restrict MLCC Selections
 - 100 V ratings or higher

larger parts; more prone to handling damage

- Minimum dielectric thickness (0.8 mil for VR=50V)
- Destructive Physical Analysis (DPA) to specialty standard EIA-469
- Humidity, Steady-State, Low Voltage (HSSLV) Lot Acceptance Test (aka "Low Volt 85/85")

NESC Team Approach

- 1. Conduct literature review.
- 2. Survey the industry for recent LVF experiences.
- 3. Review past and current NASA and industry guidelines for LVF risk reduction.
- 4. Review current and historical results from screening and lot acceptance testing.
 - Discussion of HSSLV is emphasized since this has been one key element of NASA's MLCC LVF risk reduction strategy since the 1980s.
- 5. Consider future NASA evaluation of alternative test methods.

Mechanisms of IR Degradation

Charge instability in the dielectric (migration of oxygen vacancies).

- Graceful increase in DCL.
- Activated by T and V.
- Can be revealed during HALT.
- Can be mitigated by derating.

Formation of conductive path via mechanical defects .

- Erratic behavior.
- Activated by moisture.
- Effect of T and V is not clear.
- No effective screens to reveal.
- Derating does not help.

CDR 0.1uF 50V DPA failure gefects

CDR 0.1 uF 100V failed due to delamination at R~1.5 kohm during board-level testing

Mechanical Defects in MLCCs, Cont.

Cracks are difficult to observe even using a high power microscope. Some failures might be not identified properly.
 Vicinal illumination is an effective method for revealing cracks.

S. Hull/NASA, "Nondestructive Detection of Cracks in Ceramics Using Vicinal Illumination", ASM International, Nov. 1999, ISBN 0-87170-646-6

Revealing Mechanical Defects in MLCCs

Origin	Defect	Screen /Qual	Comment
Manufacturing	VoidDelaminationCrack	 Electrical: DWV, IR Acoustic Microscopy DPA HSSLV 	Effectiveness of these tests needs to be evaluated.
Soldering- related thermal shock	DelaminationCrack	 Thermal shock Resistance to Soldering Heat 	Effectiveness of these tests is currently being evaluated by NEPP.
Board handling (flex cracking)	•Delamination •Crack	•Flex crack testing	Mfr. standards; AEC-Q200-005; A need for NASA?

NESC task was focused on the effectiveness of the Humidity Steady State Low Voltage Testing

Is Soldering-Induced Cracking Parts or Workmanship Issue?

They are both:

Assuring that capacitors are robust enough and can withstand normal level stresses associated with soldering and handling is a part issue.

This is a manufacturer responsibility and should be achieved by adequate screening and qualification procedures.

Assuring that soldering and handling conditions are in compliance with the

existing guidelines and requirements is a workmanship issue. This is a user responsibility and should be achieved by developing adequate assembly guidelines and process control.

HSSLV Test Conditions per MIL-PRF-123

Test Conditions		Acceptance Criteria
Preconditioning:	40° C for 24 hours	Sample Size: 12 pcs per lot
Test Voltage: app	$1.3\pm0.25~ extsf{VDC}$ lied through a 100k Ω	Failure criteria: IR < specified limit* *measured at 1.3V thru 100kΩ
<u>Temperature:</u>	85°C	Accept lot on zero failures; Reject lot on 1 or more failures.
Relative Humidity	<u>:</u> 85%	\Box \/oltage range from 1.05\/ to
Test Duration:	240 hours	1.55V seems too large.
Post Exposure: Dry at 25°C for 3.5 hrs		Can monitoring of DCL at higher voltages be more
Mounting: Leads may be attached to chip		effective?
capacitors for mounting and loading purposes.		Is sample size adequate?

Statistical Significance of HSSLV

- Consider two HSSLV test results:
 - Lot A 0 / 12 failures
 - Lot B m / 12 failures
- Fisher exact test determines if Lot A and B are statistically different.
 - Difference in test results is significant if the calculated P-value is less than 0.05
- Fisher exact test shows that Lot A (0 failures) and Lot B (1 failure) are not statistically different.
- A "failed" lot can be considered different from the "passed" lot if m > 5.

Fisher exact test

number of failed samples in lot B

P-values for comparison of test results for lot A having 0 failures out of 12 samples and lot B having from 1 to 8 failures out of 12 samples.

What sample size is necessary to assure low probability of defects in a lot?

Sample-Based Acceptance Testing

- Purpose of sample-basis screening/lot acceptance testing.
- □ What is the necessary SS to assure $p_f < 0.1\%$?
- Zero Defect/Failure Sampling: SS that must be tested without failure to prove maximum probability of failure (*p_f*) at a certain level of confidence (*c.l.*):

$$n(p_f) = \frac{\ln(1-c.l.)}{\ln(1-p_f)} \approx \frac{-\ln(1-c.l.)}{p_f}$$

If statistics requires 1,000 samples does it make sense to test 10 samples?

MIL vs. New Technology/SCD Parts

Using the same SS may not provide the same level of confidence in quality and reliability

- Assumed:
- o Consistent quality.
- History of testing.
- o SS justified by heritage.
- FR can be calculated based on cumulative data.

Mature Technology: Sample Size = n(p_f)/(number of lots)

Good news:

a relatively small SS might be sufficient for mature technologies. Bad news:

new technologies are not mature.

Note: commercial technology can be mature.

Findings (1 of 3)

- No MLCC LVF was identified in NASA flight systems for at least the past 15 years
- For the last 10 years there has been a low incidence rate of field failures of high and established reliability MLCCs due to reduced IR in low voltage circuit applications. Only 7 potentially relevant LVF cases were identified during the time period from 1999 to 2009.
- Most of the literature regarding MLCC LVF is more than 20 years old and this subject seems to have attracted little attention since then.

Findings (2 of 3)

- The literature identifies several degradation mechanisms which could produce LVF in MLCCs. These include metal migration, ionic conduction paths, and semiconductive phases in the dielectric.
- The hybrid manufacturers that responded to the NESC survey were unaware of any MLCC LVF problems in their products and most were unfamiliar with the phenomenon.
- The HSSLV testing on military grade MLCCs has generated zero failures in the last eight years.
- For MIL grade MLCCs the HSSLV test as currently specified is ineffective to reveal lots with less than 6% of flawed MLCCs due to inadequate sample size.

Findings (3 of 3)

- MLCC manufacturers have reported success and recommend using HSSLV testing (with large sample sizes) as an evaluation tool during development of new MLCC materials, processes and designs.
- No justification was found for continuing NASA's current recommendation to use MLCCs rated at 100 V or greater to mitigate low voltage failure phenomenon.
- Technological advances in manufacturing processes and controls have produced much more uniform dielectric structure, thickness, and low porosity MLCCs.
- Some circuit applications can tolerate MLCCs having reduced insulation resistance which may have obscured instances of failure.

Observations

Recent failures have been attributed to cracking during installation (especially hand soldering practices and PWB flexure). Larger MLCCs tend to be more prone to thermomechanical damage.

□ Flexible termination may reduce the propensity for MLCC flex cracking. However, susceptibility to LVF may be enhanced by end termination structures which could provide a preferred diffusion for moisture.

Reduced IR failures are sometimes caused by external conductive paths (e.g., metal dendrite formation) resulting from surface contamination.

Recommendations

- NASA guidelines should be amended to remove requirements to perform HSSLV test as an add-on lot acceptance test for MIL QPL MLCCs.
- Add a NASA guideline to perform a HSSLV test with increased sample size and optimized test conditions on new technology, commercial/industrial grade MLCCs for qualification and lot acceptance.
- NASA guidelines should be amended to remove restrictions on MLCCs rated at less than 100 V when used in low voltage applications.
- During failure analysis of MLCCs NASA parts analysis laboratories should include low-voltage characterization of the failure in order to reduce the likelihood of destroying evidence of the failure site.