

# Ultrapure Water (UPW) Cleaning and Assembling of Genesis Mission Payload in ISO Class 4

Judy Allton Genesis Solar Wind Sample Curator Astromaterials Research & Exploration Science Johnson Space Center



### **Genesis Solar Wind Sample Return Mission**

**Purpose:** Collect solar wind ions to enable laboratory measurement of the elemental and isotopic composition of the Sun with enough precision for planetary science.

Launched: August 8, 2001

Collection: On pure materials exposed 27 months at Earth-Sun L1

Recovered: September 9, 2004

http://curator.jsc.nasa.gov/genesis/index.cfm









## **CLEANING PAYLOAD PRIOR TO FLIGHT**

- •Cleaned and assembled in ISO Class 4 room
- •UPW for cleaning is resistivity 18.2 M $\Omega\text{-cm}$
- •Hardware cleaned to particle levels 25 to 50
- •Airborne molecular contamination measured by polished silicon witness plates 10 ng/cm2
- •Minimal use of lubricants (applied with dental pick), lubricated parts were isolated from collectors
- •Closed in ISO Class 4, not opened again until on station at Earth-Sun L1

## **CLEANING COLLECTORS AFTER CRASH**

- •UPW used on request
- •UV ozone to remove polymerized contaminant layer

Cleaning payload with ultrapure water (UPW)

- •Use of megasonic energy (above)
- •Use of ultrasonic energy (tank)
- •High purity water is an aggressive cleaner



### JSC UPW particle and TOC trends

18-hour TOC & Particle Trend



#### UNITS: Particles > 50 nm concentration per liter; Total Oxidizable Carbon in ppb

**SOURCE: High Purity Water Used for Moon and Mars Specimen Curation At the Johnson Space Center, Houston, Texas** *Presented at*: Ultrapure Water '2000, Philadelpia, PA, April 11-13, 2000

# JSC UPW Chemistry – Units are parts per trillion, below detection limit Resistivity 18.2 M $\Omega$ -cm

| <b>PARAMETER</b>  | CONCENTRATION<br><u>PPT</u> |
|-------------------|-----------------------------|
| Dissolved silica  | <100                        |
| Anions by IC      |                             |
| Fluoride (F-)     | <100                        |
| Chloride (Cl-)    | <200                        |
| Nitrite (NO2-)    | <20                         |
| Bromide (Br-)     | <20                         |
| Nitrate (NO3-)    | <20                         |
| Phosphate (HPO4=) | <20                         |
| Sulfate (SO4=)    | <50                         |

| <b>PARAMETER</b>                    | CONCENTRATION<br>PPT |  |
|-------------------------------------|----------------------|--|
| Monovalent & Divaient Cations by IC |                      |  |
| Lithium (Li+)                       | <10                  |  |
| Sodium (Na+)                        | <10                  |  |
| Ammonium (NH4+)                     | <50                  |  |
| Potassium (K+)                      | <20                  |  |
| Magnesium (Mg++)                    | <20                  |  |
| Calcium (Ca++)                      | <20                  |  |

## JSC UPW Chemistry – Units are parts per trillion, below detection limit (except boron) Resistivity 18.2 M $\Omega$ -cm

| 30 Elements in UPW |      |
|--------------------|------|
| Aluminum (Al)      | <2   |
| Antimony (Sb)      | <2   |
| Arsenic (As)       | <3   |
| Barium (Ba)        | <0.5 |
| Beryllium (Be)     | <1   |
| Bismuth (Bi)       | <1   |
| Boron (B)          | 2100 |
| Cadium (Cd)        | <3   |
| Calcium (Ca)       | <20  |
| Chromium (Cr)      | <3   |
| Cobalt (Co)        | <0.5 |
| Copper (Cu)        | <2   |
| Gallium (Ga)       | <0.5 |
| Germanium (Ge)     | <3   |
| Iron (Fe)          | <10  |
| Lead (Pb)          | <1   |
| Lithium (Li)       | <1   |
| Magnesium (Mg)     | <2   |
| Manganese (Mn)     | <2   |
| Molybdenum (Mo)    | <4   |
| Nickel (Ni)        | <2   |
| Potassium (K)      | <10  |
| Silver (Ag)        | <1   |
| Sodium (Na)        | <5   |
| Strontium (Sr)     | <0.5 |
| Tantalum (Ta)      | <2   |
| Tin (Sn)           | <3   |
| Titanium (Ti)      | <2   |
| Vanadium (V)       | <1   |
| Zinc (Zn)          | <5   |

SOURCE: J. H. Allton et al. (2002) Cleaning Genesis Sample Return Canister for Flight: Lessons for Planetary Sample Return, JSC-29742.



**Fig. 4-9.** Canister base is rinsed with ultrapure water (UPW)



SOURCE: J. H. Allton et al. (2002) Cleaning Genesis Sample Return Canister for Flight: Lessons for Planetary Sample Return, JSC-29742.

# Ultrapure water is reactiveCare must be used when cleaning bare aluminum



**Fig. 4-6**. The needle laths (bayerite?) radiating from single point. The view is from same coupon in fig. 4-5. Scale bar is 100nm.



**Fig. 4-5**. The wrinkled texture of hydroxides (boehmite?) resulting from UPW cleaning of aluminum 6061 at 75°C for 30 min. Scale bar is 100 nm.



**Fig. 4-7**. Erosion pit around inclusion in aluminum 6061 cleaned in UPW at 50°C for 30 minutes. Scale bar is  $1 \mu m$ .

### Assembled in ISO Class 4. Personnel wearing HEPA-filtered teflon suits





**Fig. 5-4.** Dryden suit completely envelops person. Self-contained battery motor forces exhaled breath through HEPA filters.



Particle counts for particles <1  $\mu$ m per ft3 taken directly downstream of activities show at left.

SOURCE: J. H. Allton et al. (2002) Cleaning Genesis Sample Return Canister for Flight: Lessons for Planetary Sample Return, JSC-29742.

Postscript – after the crash, using UPW to clean solar wind samples .....

















Samples held in place with vacuum chuck. Megasonically energized UPW flows onto the sample, spinning at 3000 rpm.

|                         | Clean Time |          |          |          |  |
|-------------------------|------------|----------|----------|----------|--|
| Number of Particles     | 0 min.     | 5 min.   | 15 min.  | 30 min.  |  |
| >30 µm diameter         | 492        | 6        | 7        | 7        |  |
| 10-30 µm diameter       | 1145       | 21       | 17       | 17       |  |
| 5-10 µm diameter        | 1869       | 86       | 78       | 89       |  |
| 1-5 µm diameter         | 13379      | 1187     | 1470     | 1237     |  |
| 0.3-1.0 µm diameter     | 10697      | 1400     | 2114     | 1600     |  |
| Total Particle Count    | 27582      | 2700     | 3686     | 2950     |  |
| % Particle Reduction    |            | 90.21%   | 86.64%   | 89.30%   |  |
| Total Area of Particles |            |          |          |          |  |
| (µm^2)                  | 74537.55   | 16570.56 | 15504.54 | 15501.39 |  |
| Surface Area Free of    |            |          |          |          |  |
| Contamination           | 93.20%     | 98.49%   | 98.59%   | 98.59%   |  |

We integrated two existing technologies: a Laurell Technologies Corp. WS-400E-NPP-Lite Series Natural Polypropylene Single Wafer Spin Processor and the W-357P-25 megasonic cleaner.

SOURCE: M.J. Calaway (2009) DECONTAMINATING SOLAR WIND SAMPLES WITH THE GENESIS ULTRA-PURE WATER MEGASONIC WAFER SPIN CLEANER. Lunar and Planetary Science XL, abstract #1183

http://www.lpi.usra.edu/meetings/lpsc2009/pdf/1183.pdf



- •UPW is an effective cleaner, leaves no residue
- •Cleans stainless steel effectively, high temperatures may be used
- •Can damage bare aluminum, low temperatures are needed
- •Can assemble a payload in ISO Class 4.
- •UPW is now used to clean solar wind samples

Contact: Judy Allton, Genesis Solar Wind Sample Curator Astromaterials Research and Exploration Science Directorate Mail Code KT NASA/Johnson Space Center 281-483-5766 Judith.h.allton@nasa.gov

THE SUN'S OXYGEN ISOTOPIC AND NITROGEN ISOTOPIC COMPOSITIONS HAVE BEEN MEASURED AND PUBLISHED –

THE #1 AND #2 SCIENCE GOALS OF GENESIS MISSION!