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Abstract Mathematical models of many physical/statistical problems are systems of
linear equations. Due to measurement and possible human errors/mistakes in
modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency
(contradiction) is injected into the model, viz. the linear system. While any inconsistent
system irrespective of the degree of inconsistency has always a least-squares solution,
one needs to check whether an equation i.e. an information is too much inconsistent or,
equivalently, too much contradictory. Such an equation will affect/distort the least
squares solution to such an extent that it becomes unacceptable/unfit to be used in a real
world application. We propose an algorithm, in Matlab, which (i) can detect and prune
numerically redundant linear equations from the system, if necessary, as these do not add
any new information to a non-least-squares model, although they do have significant
impact in a least-squares model, (ii) detects contradictory linear equations along with a
degree of contradiction (inconsistency index) and then (iii) obtain the minimum norm
least-squares solution of the acceptably inconsistent reduced (pruned) linear system as
well as that of non-reduced linear system without too contradictory equations. The
resulting two solution vectors will be different in general and have important implication
in a real-world environment. The algorithms presented in Matlab may reduce the
computational and storage complexities and also may improve the accuracy of the
solution. These also detect and provide the necessary warning if there exists a highly
contradictory equation in the model. In addition, we suggest a thorough relook into the
mathematical modeling to determine the reason why unacceptable contradiction has
occurred thus prompting one to make necessary corrections/modifications to the models 
both mathematical and, if necessary, physical. We will focus here mainly on the non
over-determined linear systems rather than over-determined systems which are often
usually the case in a least-squares problem.

Keywords Minimum-norm least-squares solution; Non-over-determined systems;
Pruning; Redundant linear equations; Too much inconsistent.



1. Introduction

There are many physical problems whose mathematical models tum out to be numerical
linear systems Ax = b, with more equations than the number of variables (over
determined), or with less equations than the number of variables (underdetermined), or

I

with the number of equations same as the number of variables. Specifically, statistical
problems giving rise to multivariate linear/multiple regression models are encountered in
many real-world problems such as weather forecasting, psychological research, and
business management. The systems will in general be inconsistent, i.e. the equations in a
system will be, in general, contradictory to a varying extent. Consequently there will be
no solution that will satisfy the linear system. If the system happens to be consistent (non
contradictory), then there will always be a solution which will satisfy all the equations in
the system. If we attempt to find a least-squares solution XI of such a consistent system, it

will always be a true solution of the system and sum of the squares of the residuals
II AXI -b 11 2 will always be a numerical zero (defined in the context) [3].

A least-squares solution of any linear system Ax =b, consistent or not, always exist
and can be readily computed just by computing the true solution of the ever consistent
system AI Ax = AIb, where t denotes the transpose. A least-squares solution XI is that

solution for which the sum of the squares of the residuals viz. II AXI - b 11
2 is the least,

where II II denotes the Euclidean norm. This solution may not be unique. However, one

of the possible least-squares solutions, viz. X ml for which II AXml - b 11 2 and also Ilxmill

are both minimum out of all possible least-squares solutions XI' is known as the

minimum-norm least-squares solution (mls). The mls xml is always unique while the

solution XI may not be unique. When a least-squares solution of the system Ax =b is not

unique, the system will then always have infinity of least-squares solutions. Consider, for
example, the system Ax = b, where

Using the Matlab commands (keyed in one line)

» A=[1 2 3;4 5 6;7 8 9], b=[6 15 23]', B=A'*A, c=A'*b, xt=B\c,nt=norm(A*xt-b),
xmt=pinv(A)*b, nmt=norm(A*xmt-b), nxt=norm(xt), nxmt=norm(xmt)

we obtain a least-squares solution xt = [3.4091 -4.4848 3.9091] I and the mls xmt
=[0.6944 0.9444 1.1944f, Yet another least-squares solution is obtained using the Gauss
reduction involving the following Matlab commands, which have used the foregoing
matrix B and vector c,



»E1=[1 0 0;-78/66 1 0;-90/66 0 1], B1=E1 *B, c1=E1*c
»E2=[1 0 0; 0 1 0; 0 -B1(3,2)1B1(2,2) 1]
» B2=E2*B1, c2=E2*c1
» x3=(c2(2)-B2(2,2»1B2(2,3)
» x2=1, xl=(227-78*x2-90*x3)/66

This second least-squares solution then in an exact form is XI = [~ I 2r. There are, in
3 6

fact, infinity of least-squares solutions for the foregoing problem. The sum of the squares
of the residuals viz. II Ax - b 11

2 for all the foregoing three solutions, viz.

2 7I· I
XI =[- 1 -], xt = [3.4091 -4.4848 3.9091f, xmt =[0.6944 0.9444 1.1944] are

3 6
numerically the same, viz. 0.4082 while their norms are different. These are 1.6750,
6.8569, and 1.6736, respectively.

Here we will be computing the numerical mls X ml instead of the solution XI' For any

least-squares problem, computing X ml instead of XI is absolutely fine and is usable for

any real-world application unless one has some other constraints in mind.
It may be seen that the number of solutions of any linear system could be either 0 or

just 1 or infinite. It can never be just 2 or just 3 or just n, where n is a finite positive
integer. For if there are two solutions then a linear combination of these two solutions is
also a solution of the system Ax =b .

. We present in section 2 the algorithms consisting of (i) pruning redundant (linearly
dependent) equations, (ii) locating the equations, if any, that are unacceptably
contradictory along with a computation of the inconsistency index ind, and (iii)
computing the mls of the pruned system that does not have too much (unacceptable
inconsistency) contradiction in the context. The pruned system, i.e. the system without
linearly dependent rows, involves less storage and less computation resulting in less
computational error as well as less space (storage) complexity. However, in the context
of a least-squares solution for a least-squares model, pruning linearly dependent rows
may alter the least-squares solution vector significantly to make the desired solution
worse or better depending on the problem on hand. One may compute both the pruned
solution and the un-pruned solution to correlate/interpret them in the physical/statistical
problem under consideration. An un-pruned least-squares solution of the inconsistent
system involving several linearly dependent rows of the augmented matrix [A, b] is
significant unlike a one for a fully consistent system. The algorithm detects excessive
contradiction in an equation, if any, in the system and cautions the concerned researcher
so that he falls back to the physical problem and the resulting mathematical model, finds
out the reason for unacceptable inconsistency in the model, takes appropriate corrective
measures, and then computes the required solution. It will definitely not serve any
purpose to compute the mls (that can always be easily computed) of any system (having
unacceptable inconsistency). In section 3, we provide numerical examples while in
section 4 we include conclusions.

2. The Algorithm



J

The algorithm is comprised of three sub-algorithms, viz. pruning sub-algorithm, over
inconsistency detection sub-algorithm, and mls solver sub-algorithm. We briefly
describe these sub-algorithms with a numerical example. However, it is always possible
as well as easy to combine these sub-algorithms into one algorithm and execute the
algorithm.

Sub-algorithm 1 (Pruning redundant equations) Consider the linear system (generally
inconsistent)

Ax=b, (1)

where A is a given numerical m x n matrix, b is a given numerical m -vector, and x is
an n -vector to be computed in the .least-squares sense. We assume or we know for
certain that the very first equation of the system (usually over":determined) Ax =b is
correct. We first consider the augmented matrix C = (A,b) which will be our coefficient

matrix. The right-hand side column vector d is computed as the row sum of the matrix
n+1

C =cil .That is, d; =2>il' i = l(1)m. Thus the system Cy = d is always consistent. We
j=1

now use the following Matlab program (self-explanatory) to sieve out the linearly
dependent rows (if any) of C as these rows are not required for computing a solution
vector. For the mathematics/justification of this program refer [1, 2]

function pruningldrows(C);
% C=UsualIy augmented matrix (A,b) of Ax=b
% Redundant (linearly dependent) rows of the C are pruned.
b=sum(C')'; A=C; redrow(l)=O;

disp('Given unpruned matrix is'); C
B=A; c=b; rrow=O;
1m n]=size(A); p=O;
x=zeros(n,l); r=O; P=eye(n); k=l;
abar=sum(sum(abs(A»)/(m*n); bbar=sum(abs(A(:,n-l»)/m;
fori=l:m

a=A(i,:)'; brow=b(i); u=P*a; v=(norm(u»)"2; inconsistency = brow-a'*x;
if abs(v) >= O.00005*abar %Permits 4 significant digit accuracy

P=P-u*u'/v; x = x + inconsistency*u/v; r=r+1;
else

% Store indices of redundant rows in a vector.
redrow(k)=i; k=k+1; rrow=l;

end
end; disp('Linearly dependent rows are'); red row
ifrrow=l
c(redrow)=II; B(redrow,:)=II;
end
ifp -= 1

S=size(B);
ifS(l)<=m

disp('The rank of the matrix C or the pruned matrix B is '); disp(r);
disp('The pruned matrix B is');B

end



end

» Ab = 1 2 3 4 5 15
2 4 6 8 10 30
3 6 9 12 15 400
1 1 1 1 1 10
2 2 2 2 2 10
8 16 24 32 40 120

11 23 35 47 59 175

where Ab= [A, b] is the augmented matrix where the first 5 columns constitute the
coefficient matrix A while the last column of Ab is the right-hand side bb vector which is
constructed by the row-sum of each row of the matrix A. Consequently, the system
Abx = bb is always consistent. The Matlab command » pruningldrows([Ab bb])
produces pruned system as follows.

Given unpruned matrix is

C = [Ab bb]
1 2 3 4 5 15 30
2 4 6 8 10 30 60
3 6 9 12 15 400 445
1 1 1 1 1 10 15
2 2 2 2 2 10 20
8 16 24 32 40 120 240

11 23 35 47 59 175 350

Linearly dependent rows are redrow = 2 5 6 7

The rank of the matrix C or the pruned matrix B is 3

The pruned matrix B is

B=
1 2 3 4 5 15 30
3 6 9 12 15 400 445
1 1 1 1 1 10 15

Sub-algorithm 2 (Over-inconsistency detection) Having pruned linearly dependent
(redundant) rows, the resulting system will be left with equations Bx = c which could be
(i) consistent or (ii) acceptably inconsistent or (iii) unacceptably (over-) inconsistent (in
the context). In case (i), we compute the mls xml (unique) of Bx = c, which is a true

solution of Bx = c, i.e.. II Bxm, - ell = 0 (numerical zero). In case (ii) also, we compute

the mls xml of Bx = c, which is not a true solution but a solution such that the norm

II BXml - c II i.e. the square-root of the sum of the squares of the residual, is a minimum



and not a numerical zero. In case (iii), once we detect an abnormally (too) inconsistent
equation or, equivalently, an outlier (analogous to a data point which is far away from
other data points or a cluster of data points in statistics), we do not proceed to compute
the mls of Bx = c as it may not often be useful. Instead, we go back to the original
physical (real-world) problem along with its corresponding mathematical model to
determine the cause of such an unacceptably large contradiction (inconsistency) and take
the necessary corrective measures before computing the mls of Bx = c. The following
Matlab code (program) nciinsolver(A, b) which is self-explanatory detects the equations
that cause over-inconsistency [2].

%Computational NC-LINSOLVER (Matlab program) The following program is self-explanatory.
%A general LINSOLVER program that includes near-consistent linear %system.
%Reference: S.K. Sen and Sagar Sen, Linear System: Relook, concise
%algorithms, and Matlab programs, Academic Studies - National Journal
%of Jyoti Research Academy, Feb., 2007, Vol. 1(1), pp. 1-8.

function [ ]=nclinsolver(A,b); [m, n]=size(A);
~oNC-LINSOLVER: Near-consistent Linear System Solver
'The matrix A and vector b of the system Ax=b are', A,b,
P=eye(n); sd=O; x(l:n)=O; x=x'; delb(l:m)=O; delb=delb'; bo=b; r=O;
abar=O; for i=l:m, for j=l:n, abar=abar+abs(A(i,j»; end; end;
abar=abar/(m*n);
bbar=O; for i=l:m, bbar=bbar+abs(b(i»; end; bbar=bbar/m;
for i=l:m

u=p*A(i,:) '; v=norm(u)A2; s=b(i) -A(i,:)*x; c=O;
if v<=.00005*abar & abs(s»=.00005*bbar, delb(i)=-s; sd=

s; b(i)=b(i) +delb(i); s=O;
elseif v<=.00005*abar & abs(s)<=.00005*bbar; delb(i)=O; end;
if v>=.00005*abar, x=x+u*s/v; P=P-u*u'/v; c=l; delb(i)=O; end;

r=r+c;
end;
if abs(sd».00005*(abar+bbar)*0.5, 'The system Ax=b is
inconsistent.', end;
inci=norm(delb)/norm([A,b]); err=norm(bo-A*x)/norm(x);
'The projection operator P = (I - A+A) is', P,
'The rank of the matrix A is', r,
'The inconsistency index is', inci,
'Modification in vector b, i.e., Db is', delb,
'Vector b of the nearest consistent system is', b,
'Solution vector of the nearest consistent system is', x,
'Error in the solution vector x is', err

The matrix AAA is our B matrix of the pruned system Bx = b while the vector bbb is
our vector b of the pruned system. The· pruned system could be consistent or acceptably
inconsistent or unacceptably inconsistent. We now detect the equation that causes the
inconsistency, using the Matlab command» nclinsolver(AAA, bbb). The matrix AAA
and vector bbb of the system AAAx=bbb are

AAA=
1 2
3 6
1 1

345
9 12 15
111



bbb =[15 400 10]t

The system Ax=b (i.e. AAAx=bbb) is inconsistent. The projection operator P = (I 
A+A) (i.e. P = (1- A+ A) needed for a solution Xc =Pz, of the homogeneous equation

Ax = 0, where z is an arbitrary column vector and A + is the minimum-norm least
squares (ml) inverse of the matrix A, also called the pseudo-inverse or the Moore
Penrose inverse of A, is

P=
0.4000 -0.4000 -0.2000 -0.0000 0.2000

-0.4000 0.7000 -0.2000 -0.1000 -0.0000
-0.2000 -0.2000 0.8000 -0.2000 -0.2000
-0.0000 -0.1000 -0.2000 0.7000 -0.4000
0.2000 -0.0000 -0.2000 -0.4000 004000

The rank of the matrix A is r = 2. The inconsistency index is inci = 6.5950. Modification
in vector b, i.e., Db is delb = [0 -355 o( Vector b of the nearest consistent system is b
= [15 45 lOr. Solution vector of the nearest consistent system is x = [5.0000 3.5000
2.0000 0.5000 -1.0000( Error in the solution vector x is err = 54.4545. delb in the
foregoing solution shows that the second element, viz. -355 is unacceptably large.
Ideally it should have been close to zero for an acceptable inconsistency. This implies
that one needs to fall back to the original physical problem and its mathematical model to
ascertain why such a large contradiction has occurred and to take necessary corrective
measures. The inconsistency index inci as well as the error in the solution vector provide
us enough information about the equation which has become too contradictory. One may

,recall that we assumed that the very first equation representing an information is correct.
Or, in other words, we have already carefully checked from the physical model and its
corresponding mathematical model that the first equation is correct or any of the

v equations of the system which is definitely known to be correct will be placed as our very
first equation. This is because all the other equations, each one of which representing an
information (an assertive sentence), are checked against the very first equation. A more
desirable thing will be to assemble all those equations in the beginning (at the top) which
have been checked and rechecked thoroughly and found to be definitely correct. In the
foregoing system, clearly the second equation is the one which is too inconsistent and
may be considered an outlier in a statistical sense.

However, if we have the same foregoing system with 40 instead of 400, then we will
have inconsistency index inci, delb (to make the system consistent), as well as err (error
in the solution vector x}as

inci = 0.0929, delb = [0 5 0]\ and err = 0.7670,

respectively. In the given context, such a relatively small contradiction could be
acceptable.



The solution vector of the nearest consistent system in the foregoing nclinsolver
program has been shown so that one can compare the actual mls to be computed by the
sub-algorithm 3 against it although it is not our focus.

Sub-algorithm 3 Minimum-norm least-squares solver (ml solver) Having confirmed that
the system Ex = c is an acceptably inconsistent system from the sub-algorithm 2, we
simply compute the mls of Ex = c. While one can always compute simply a least
squares solution (need not be unique) of Ex = c by any of the available numerical
methods in literature [4-11], we compute the mls simply by using the one concise Matlab
command »xc=pinv(B)*c. This solution is also a least-squares solution and it serves our
purpose perfectly well as long as our system is not too large. If the system is too large so
that it is beyond the scope of the general Matlab command pinv from both storage point
of view as well as from error point of view, we need to use a special software package
suited for computing a least-squares solution of the system.

Our acceptably inconsistent system is AAAx=bbb, where

AAA=
1
3
1

2
6
1

3
9
1

4
12

1

5
15

1

and bbb = [15 40 10]t

» x=pinv(AAA)*bbb

x = [5.3000 3.6500 2.0000 0.3500 -1.3000]t

One may compare the error erml due to this mls of the system AAAx=bbb with error
errnc due to the solution of the for~going nearest consistent system in Matlab as follows.

» errml=norm(AAA* [5.30003.65002.00000.3500 -1.3000]'-bbb)

errml = 1.5811

» errnc=norm(AAA*[5.00003.50002.00000.5000 -l.OOOO]'-bbb)

errnc = 5

It can be seen that error in the mls of the system is less possibly prompting us to infer
that the inconsistency is acceptable. Although we do not have sufficient pressing reason
to bother about nearest consistent system, we could see how much deviation in the right
hand side vector bbb is required for the original pruned inconsistent system to be
consistent. If the numerical deviation is too much, then evidently the inconsistency is also
too much and is unacceptable for a real-world implementation. Consider, for instance, the
foregoing system with bbb=[15 400 10]' instead of bbb=[15 40 10]'. Then we have



» bbb=[15 400 10)'

bbb = [15 400 10]1

» xml=pinv(AAA)*bbb

xml = [-16.3000 -7.1500 2.0000 11.1500 20.3000]1

»errmll=norm(AAA* [5.30003.65002.00000.3500 -1.3000)'-bbb)

errmll = 359.5031

This error errmll is sufficiently greater than the foregoing errnc. This indicates that the
inconsistency is too large to be accepted. However, the acceptance of inconsistency very
much depends on the context and is somewhat subjective.

Consider the following constructed (using Matlab rand command) over-determined
system Ax=b.

» A=rand(12, 5), b=sum(A')'

A=
0.8147 0.9572 0.6787 0.6948 0.7094
0.9058 0.4854 0.7577 0.3171 0.7547
0.1270 0.8003 0.7431 0.9502 0.2760
0.9134 0.1419 0.3922 0.0344 0.6797
0.6324 0.4218 0..6555 0.4387 0.6551
0.0975 0.9157 0.1712 0.3816 0.1626
0.2785 0.7922 0.7060 0.7655 0.1190
0.5469 0.9595 0.0318 0.7952 0.4984
0.9575 0.6557 0.2769 0.1869 0.9597
0.9649 0.0357 0.0462 0.4898 0.3404
0.1576 0.8491 0.0971 0.4456 0.5853
0.9706 0.9340 0.8235 0.6463 0.2238

b = [3.8548 3.2207 2.8966 2.1616 2.8034 1.7286 2.6613 2.8318 3.0368
1.8769 2.1347 3.5982]1

The augmented matrix C = [A b] is obtained as follows.

»C=[A b]

C=
0.8147 0.9572 0.6787 0.6948' 0.7094 3.8548
0.9058 0.4854 0.7577 0.3171 0.7547 3.2207



0.1270 0.8003 0.7431 0.9502 0.2760 2.8966
0.9134 0.1419 0.3922 0.0344 0.6797 2.1616
0.6324 0.4218 0.6555 0.4387 0.6551 2.8034
0.0975 0.9157 0.1712 '0.3816 0.1626 1.7286
0.2785 0.7922 0.7060 0.7655 0.1190 2.6613
0.5469 0.9595 0.0318 0.7952 0.4984 2.8318
0.9575 0.6557 0.2769 0.1869 0.9597 3.0368
0.9649 0.0357 0.0462 0.4898 0.3404 1.8769
0.1576 0.849~ 0.0971 0.4456 0.5853 2.1347
0.9706 0.9340 0.8235 0.6463 0.2238 3.5982

The 13th
, 14t

\ and 15th rows of C are constructed using the following three Matlab
commands.

» C(13,:)=2*C(12,:)+3*C(1l,:)
» C(14,:)=-1 *C(lO,:)+4*C(9,:)
» C(15,:)=-1*C(8,:)+4*C(7,:)

Thus the 15 x 6 augmented matrIx C is then

C=
0.8147 0.9572 0.6787 0.6948 0.7094 3.8548
0.9058 0.4854 0.7577 0.3171 0.7547 3.2207
0.1270 0.8003 0.7431 0.9502 0.2760 2.8966
0.9134 0.1419 0.3922 0.0344 0.6797 2.1616
0.6324 0.4218 0.6555 0.4387 0.6551 2.8034
0.0975 0.9157 0.1712 0.3816 0.1626 1.7286
0.2785 0.7922 0.7060 0.7655 0.1190 2.6613
0.5469 0.9595 0.0318 0.7952 0.4984 2.8318
0.9575 0.6557 0.2769 0.1869 0.9597 3.0368
'0.9649 0.0357 0.0462 . 0.4898 0.3404 1.8769
0.1576 0.8491 0.0971 0.4456 0.5853 2.1347
0.9706 0.9340 0.8235 0.6463 0.2238 3.5982
2.4140 4.4154 1.9383 2.6294 2.2034 13.6005
2.8651 2.5873 1.0615 0.2577 3.4986 10.2702
0.5671 2.2093 2.7924 2.2669 -0.0224 7.8133

We then inject inconsistency in 14th and 15th equations

» C(l4,6)=C(l4,6)-I, C(l5,6)=C(l5,6)+2 (%Inconsistency is injected in 14th and 15th

equations)

Thus the augmented matrix C of the inconsistent system becomes

C=
0.8147 0.9572 0.6787 0.6948 0.7094 3.8548



0.9058 0.4854 0.7577 0.3171 0.7547 3.2207
0.1270 0.8003 0.7431 0.9502 0.2760 2.8966
0.9134 0.1419 0.3922 0.0344 0.6797 2.1616
0.6324 0.4218 0.6555 0.4387 0.6551 2.8034
0.0975 0.9157 0.1712 0.3816 0.1626 1.7286
0.2785 0.7922 0.7060 0.7655 0.1190 2.6613
0.5469 0.9595 0.0318 0.7952 0.4984 2.8318
0.9575 0.6557 0.2769 0.1869 0.9597 3.0368
0.9649 0.0357 0.0462 0.4898. 0.3404 1.8769
0.1576 0.8491 0.0971 0.4456 0.5853 2.1347
0.9706 0.9340 0.8235 0.6463 0.2238 3.5982
2.4140 4.4154 1.9383 2.6294 2.2034 13.6005
2.8651 2.5873 1.0615 0.2577 .3.4986 9.2702
0.5671 2.2093 2.7924 2.2669 -0.0224 9.8133

If we use the Matlab command » pruningldrows(C) to prune linearly dependent rows
then we have:

Linearly dependent rows are

redrow = 6 7 8 9 10 11 12 13 15

The rank of the matrix C or the pruned matrix B is 6

The pruned matrix B is

B=
0.8147 0.9572 0.6787 0.6948 0.7094 3.8548
0.9058 0.4854 0.7577 0.3171 0.7547 3.2207
0.1270 0.8003 0.7431 0.9502 0.2760 2.8966
0.9134 0.1419 0.3922 0.0344 0.6797 2.1616
0.6324 0.4218 0.6555 0.4387 0.6551 2.8034
2.8651 2.5873 1.0615 0.2577 3.4986 9.2702

The rank of the augmented matrix is obtained using the Matlab command» rank(C) as
6 (thus C is a matrix with full-column rank).

Thus the right-hand side vector bb of the pruned linear system Bx=bb is obtained using
the command »bb=B(:,6) as

bb = [3.8548 3.2207 2.8966 2.1616 2.8034 9.2702]t

while the coefficient matrix B is sieved out using the command »B= B(l :6, 1:5) as

B=



0.8147 0.9572 0.6787 0.6948 0.7094
0.9058 0.4854 0.7577 0.3171 0.7547
0.1270 0.8003 0.7431 0.9502 0.2760
0.9134 0.1419 0.3922 0.0344 0.6797
0.6324 0.4218 0.6555 0.4387 0.6551
2.8651 2.5873 1.0615 0.2577 3.4986

(The original augmented matrix B no longer exists.)

The Matlab program » nclinsolver(B, bb) when executed produces the following
results (omitting, however, the print output of the coefficient matrix B and the right-hand
side vector bb).

The system Ax=b (i.e. Bx=bb) is inconsistent.

The projection operator P = (1- A+A) i.e. P = (I - B+ B) is

P = 1.0e-014 *
0.2554 -0.3381 -0.2512 0.3830 -0.0999

'-0.3381 0.0216 -0.1015 -0.0459 0.4447
: -0.2512 -0.1015 -0.1620 0.0737 0.4038

0.3830 -0.0459 0.0737 0.0737 -0.4698
-0.0999 0.4447 0.4038 -0.4698 -0.1887

which is a numerical null (zero) matrix.

The rank of the matrix A (i.e. B) is r = 5

the inconsistency index is inci = 0.0729

Modification in vector b, i.e., Db is delb = [0 0 0 0 0 0.9985]t

Vector b of the nearest consistent system is

b;= [3.8548 3.2207 2.8966 2.1616 2.8034 10.2687]1

Solution vector of the nearest consistent system is

x = [1.0007 1.0000 1.0002 1.0001 0.9989]t

Error in the solution vector x is err = 0.4466

Ifwe now consider the un-pruned system CCx=bc, where

bc = [3.8548 3.2207 2.8966 2.1616 2.8034 1.7286 2.6613 2.8318 3.0368
1.8769 2.1347 3.5982 13.6005 9.2702 9.8133]t



and

CC=
0.8147 0.9572 0.6787 0.6948 0.7094
0.9058 0.4854 0.7577 0.3171 0.7547
0.1270 0.8003 0.7431 0.9502 0.2760
0.9134 0.1419 0.3922 0.0344 0.6797
0.6324 0.4218 0.6555 0.4387 0.6551
0.0975 0.9157 0.1712 0.3816 0.1626
0.2785 0.7922 0.7060 0.7655 0.1190
0.5469 0.9595 0.0318 0.7952 0.4984
0.9575 0.6557 0.2769 0.1869 0.9597
0.9649 0.0357 0.0462 0.4898 0.3404
0.1576 0.8491 0.0971 0.4456 0.5853
'0.9706 0.9340 0.8235 0.6463 0.2238
2.4140 4.4154 1.9383 2.6294 2.2034
2.8651 2.5873 1.0615 0.2577 3.4986
0.5671 2.2093 2.7924 2.2669 -0.0224

then we have the mls xl of the pruned system Bx-bb and the mls x2 of the non-pruned
system CCx=bc obtained using the commands

»xl=pinv(B)*bb, x2=pinv(CC)*bc

as

xl = [1.4061 0.8277 1.0575 1.2195 0.4759]t
x2 = [0.8656 0.8763 1.5941 1.1482 0.7234]t.

Their respective norms are, using

» norm(xl), norm(x2),

2.3439 and 2.4290, respectively.

» BB=[B;C(15,1:5)], bbb=[bb; C(l5,6)]

BB=
0.8147 0.9572 0.6787 0.6948 0.7094
0.9058 0.4854 0.7577 0.3171 0.7547
0.1270 0.8003 0.7431 0.9502 0.2760
0.9134 0.1419 0.3922 0.0344 0.6797
0.6324 0.4218 0.6555 0.4387 0.6551
2.8651 2.5873 1.0615 0.2577 3.4986
0.5671 2.2093 2.7924 2.2669 -0.0224



bbb = [3.8548 3.2207 2.8966 2.1616 2.8034 9.2702 9.8133]!

» x3=pinv(BB)*bbb

x3 = [1.3955 1.4626 1.8621 0.2521 -0.1601]!

» norm(x3)

2.7647

» xl=pinv(B)*bb

xl = [1.4061 0.8277 1.0575 1.2195 0.4759]!

» norm(xl)

2.3439

»CC

Cc=
0.8147 0.9572 0.6787 0.6948 0.7094
0.9058 0.4854 0.7577 0.3171 0.7547
0.1270 0.8003 0.7431 0.9502 0.2760
0.9134 0.1419 0.3922 0.0344 0.6797
0.6324 0.4218 0.6555 0.4387 0.6551
.0.0975 0.9157 0.1712 0.3816 0.1626
0.2785 0.7922 0.7060 0.7655 0.1190
0.5469 0.9595 0.0318 0.7952 0.4984
0.9575' 0.6557 0.2769 0.1869 0.9597
0.9649 0.0357 0.0462 0.4898 0.3404
0.1576 0.8491 0.0971 0.4456 0.5853
0.9706 0.9340 0.8235 0.6463 0.2238
2.4140 4.4154 1.9383 2.6294 2.2034
2.8651 2.5873 1.0615 0.2577 3.4986
0.5671 2.2093 2.7924 2.2669 -0.0224

»bc

be = [3.8548 3.2207 2.8966 2.1616 2.8034 1.7286 2.6613 2.8318 3.0368 1.8769
2.1347 3.5982 13.6005 9.2702 9.8133]!

» x2=pinv(CC)*bc



x2 = [0.8656 0.8763 1.5941 1.1482 0.7234]t

» norm(x2)

2.4290

3. Numerical Example

Consider the non-over-determined inconsistent system Ax = b created by the
. following Matlab commands

» A=rand(4,6); A(5,:)=1.5*A(l,:)+2*A(2,:); A(6,:)=3*A(2,:)-1.7*A(3,:)+4*A(4,:),
b=sum(A')'; b(5)=b(5)+ 2; b(6)=b(6)-1

where the coefficient matrix A and the right-hand side column vector b are (correct
up to 4 decimal digits)

·A=
0.6787 0.6555 0.2769 0.6948 0.4387 0.1869
0.7577 0.1712 0.0462 0.3171 0.3816 0.4898
0.7431 0.7060 0.0971 0.9502 0.7655 0.4456
0.3922 0.0318 0.8235 0.0344 0.7952 0.6463
2.5336 1.3256 0.5077 1.6764 1.4212 1.2598
2.5788 -0.5594 3.2672 -0.5263 3.0241 3.2970

and

b = [2.9316 2.1635 3.7076 2.7235 10.7244 10.0815]1,

respectively although the actual computation was done with 15 digits. If one tries to
compute the rank of A with the foregoing 4-digit entry for each element then one will
find that the rank of A as 6 instead of 4. This is due to rounding errors. However, if

.. one retains all the 15 digits for each element of A and then compute the rank of A,
then he will get the rank as 4 and the rank of the augmented matrix [A b] as 5.

The system Ax = b is inconsistent. The 5th and 6th rows of the matrix A is linearly
dependent on the foregoing four rows. The augmented matrix C obtained by the
Matlab command» C=[A b] is (correct up to 4 decimal digits)

C=
0.6787 0.6555 0.2769 0.6948 0.4387 0.1869 2.9316
0.7577 0.1712 0.0462 0.3171 0.3816 0.4898 2.1635
0.7431 0.7060 0.0971 0.9502 0.7655 0.4456 3.7076
0.3922 0.0318 0.8235 0.0344 0.7952 0.6463 2.7235
2.5336 1.3256 0.5077 1.6764 1.4212 1.2598 10.7244
2.5788 -0.5594 3.2672 '-0.5263 3.0241 3.2970 10.0815



The linearly dependent (ld) row of C obtained using the command »
pruningldrows(C) is its 6th row. The rank of the matrix C or the pruned matrix B is
5 (The input data were kept correct up to 15 decimal digits and not up to 4 decimal
digits in actual computation)

The right-hand side column vector bb is (correct up to 4 decimal digits) bb = [2.9316
2.1635 3.7076 2.7235 10.7244]1. The pruned matrix B is (up to 4 decimal digits),
'using the command» BB=B(:,1:6),

BB=
0.6787 0.6555 0.2769 0.6948 0.4387 0.1869
0.7577 0.1712 0.0462 0.3171 0.3816 0.4898
0.7431 0.7060 0.0971 0.9502 0.7655 0.4456
0.3922 0.0318 0.8235 0.0344 0.7952 0.6463
2.5336 1.3256 0.5077 1.6764 1.4212 1.2598

We now detect the equation(s), using the command » nclinsolver(BB,bb), that are
inconsistent as follows.

The system Ax=b (i.e. BBx=bb) is inconsistent. The rank of the matrix A (i.e. BB)
is r = 4. The inconsistency index is inci = 0.1746. Modification in vector b, i.e., Db is
delb = [0 0 0 0 -2.0001]1. The fifth element of delb depicts that the fifth
equation is inconsistent. Vector b (i.e. bb) of the nearest consistent system is b =
[2.9316 2.1635 3.7076 2.7235 8.7243t Solution vector of the nearest consistent
system is x = [1.1102 0.8803 0.9555 0.9595 1.2137 0.7351t Error in the
solution vector x is err = 0.8266.

The mls of the pruned system and that of un-pruned system along with their
norms are given using the Matlab commands

. »xl=pinv(BB)*bb, xln=norm(xl), x2=pinv(A)*b, x2n=norm(x2)

where xl = 1.0e+003 * [3.8250 -6.4839 -0.5869 1.0113 6.5185 -9.3243]1
is the mls of the pruned system and xln = 1.3692e+004 is the norm of xl.

The mls of the un-pruned system is x2 = 1.0e+004 * [0.7794 2.2436 -1.5833 
3.4841 2.6687 -1.6636]1 and its norm is x2n = 5.4933e+004.
The square-roots of the sums of the squares of the residuals of the pruned and un

pruned systems are, using the commands »xlt=norm(BB*xl-bb), x2t=norm(A*x2
b), xlt = 1.2841e-Oll and x2t = 2.3662e-Ol0, respectively. Here we see that the sum of
the squares of the residuals for the pruned system is less than that of un-pruned system. In
reality, it can be the other way also for some other least-squares problems. However, the
foregoing inconsistency due to the fifth equation may be quite acceptable in most real
world computations.

4. Conclusions



Inconsistency for non-over-determined system Ax =b is due to linear dependence of
a row of the matrix A while the corresponding element of b on the right-hand side is not
linearly dependent. In other words the row(s) of A are linearly dependent while the
Corresponding rowes) of the augmented matrix [A, b] are not.

It is possible to know globally whether inconsistency is relatively large or not by
computing the sum of squares of the residuals, viz. II Axm, - b II, where II II denotes the

Euclidean norm and xml is the mls of the system Ax = b. This sum should be acceptably

low in the context. But it is not possible to know the equations which have caused the
inconsistency. In fact, it is more important to detect the equations which cause the
excessive inconsistency and take necessary corrective measures before proceeding.
Hence it is necessary to fall back on to the original physical/statistical problem and the
corresponding mathematical model and find out the reason for over-inconsistency and
correct the model accordingly before proceeding to compute the mls.

While for consistent systems, linearly dependent rows do not carry any new
information and are hence redundant, for inconsistent systems, the linearly dependent
rows do carry information about the physical problem and hence do not always deserve to
be pruned (in many contexts). The mls for pruned and non-pruned inconsistent systems
will be, in general, different. The sum of the squares of the residuals could be
significantly more or significantly less than that for the non-pruned system. The
foregoing numerical examples demonstrate this fact.

We have omitted the algorithms in mathematical form and provided them in Matlab
codes (programs). One can readily translate these codes to algorithms in mathematical
form if it is more convenient to appreciate the essence of the algorithms.

For pruning linearly dependent rows as well as for the detection of the equations that
cause inconsistency, one may use Gauss reduction with partial pivoting. But this method
involves row interchanges and also the need for keeping track of row numbers. These,
specifically row interchanges, are not desirable in many situations. For instance, a
situation where row interchanges disturb the structure of the matrix such as the one
having one main diagonal with two diagonals above and two diagonals below. Of course,
both pruning and detection of inconsistent equations assume that the first equation is
definitely correct. This does not necessarily imply that some other subsequent linearly
independent equation is also correct. .
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Abstract

Mathematical models of many physical/statistical problems are systems of linear equations.
Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain
assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the
linear system. While any inconsistent system irrespective of the degree of inconsistency has always a
least-squares solution, one needs to check whether an equation i.e. an information is too much
inconsistent or, equivalently, too much contradictory. Such an equation will affect/distort the least
squares solution to such an extent that it becomes unacceptable/unfit to be used in a real-world
application. We propose an algorithm, in MatLab, which (i) can detect and prune numerically
redundant linear equations from the system, if necessary, as these do not add any new information to
a non-least-squares model, although they do have significant impact in a least-squares model, (ii)
detects contradictory linear equations along with a degree of contradiction (inconsistency index) and
then (iii) obtain the minimum norm least-squares solution of the acceptably inconsistent reduced
(pruned) linear system as well as that of non-reduced linear system without too contradictory
equations. The resulting two solution vectors will be different in general and have important
implication in a real-world environment. The algorithms presented in MatLab may reduce the
computational and storage complexities and also may improve the accuracy of the solution. These also
detect and provide the necessary warning if there exists a highly contradictory equation in the model.
In addition, we suggest a thorough relook into the mathematical modeling to determine the reason
why unacceptable contradiction has occurred thus prompting us to make necessary
corrections/modifications to the models - both mathematical and, if necessary, physical. We will focus
here mainly on the non-over-determined linear systems rather than over-determined systems.
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Least-Squares Solution

A least-squares solution of any linear system Ax= b} consistent or not}
always exist and can be readily computed just by computing the true
solution of the ever consistent system At Ax= b} (t denotes the transpose)

A least-squares solution Xl is that solution for which the sum of the

squares of the residuals viz. IIA XI - bl1 2 is the least (II II denotes an

Euclidean norm)

This solution may not be unique. However} one of the possible least

squares solutions} viz. x ml for which IIA Xml - bl1 2 and also II xmlll are both

minimum out of all possible least-squares solutions} is known as the
minimum-norm least-squares solution (mls).

The mls x ml is always unique while the solution Xl may not be unique.
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normO

A norm is a function that assigns a strictly
positive length or size to all vectors in a
vector space, other than the zero vector.

A simple example is the 2-dimensional
Euclidean space R2 equipped with the
Euclidean norm.

In MATLAB function norm returns the 2
norm (Euclidean norm).

Example:

a = -2:2
a = -2 -1 0 1 2

The 2-norm of a is equal to
sn = norm(a)

sn =

3.1623

With each nonzero vector one can
associate a unit vector that is parallel to
the given vector.
For instance, for the vector a its unit
vector is
unitvector =a Isn

unitvector =

-0.6325 -0.3162 0 0.3162 0.6325
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normO

The norm function calculates several different types of matrix and vector
norms. If the input is a vector or a matrix:

n = norm(X}2) returns the 2-norm of X.

n = norm(X) is the same as n = norm(X}2); 2-norm is default in MatLab

n = norm(X}l) returns the i-norm of X.

n = norm(X}lnf) returns the infinity norm of X.

n = norm(X/fro ') returns the Frobenius norm of X.

In addition} when the input is a vector v:

n = norm(v}p) returns the p-norm of v. The p-norm is sum(abs(v).l\p)l\(ljp).

n = norm(v}lnf) returns the largest element of abs(v).

n = norm(v}-Inf) returns the smallest element of abs(v).



norm(}

Example
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1
A=

2 1

Ab = ~crf cc- 2.618
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pinvO

pinvO -- Moore-Penrose pseudo-inverse of a
matrix

B = pinv(A)

If A is square and not singular, then pinv(A)
is an expensive way to compute inv(A)

A=

64 2
9 55
17 47
40 26
32 34
41 23
49 15
8 58

3 61 60
54 12 13
46 20 21
27 37 36
35 29 28
22 44 45
14 52 53
59 5 4

6
51
43
30
38
19
11
62

b=
260
260
260
260
260
260
260
260

If A is not square, or is square and singular,
then inv(A) does not exist

In these cases, pinv(A) has some of, but not
all, the properties of inv(A).

If A has more rows than columns and is not
of full rank, then the overdetermined least
squares problem "minimize norm(A*x-b)"

does not have a unique solution.

x = pinv(A)*b which is

x=

1.1538
1.4615
1.3846
1.3846
1.4615
1.1538

and norm(x) = 3.2817



Sixth International Conference on Dynamic Systems and Applications!

Least-Squares Solution

Consider, for example, the system Ax= h,
where

123

A= 4 5 6,

789

6

b= 15 .

23

Using the MatLab script:

A=[1 2 3;4 5 6;7 8 9]
b=[6 15 23]'
B=A'*A
c=A'*b
xt=B\c
nt=norm(A*xt-b)
xmt=pinv{A)*b
nmt=norm(A*xmt-b)
nxt=norm(xl)
nxmt=norm(xmt)

we obtain a least-squares solution:
xt = [3.4091 -4.4848 3.9091]t

and the
mls xmt =[0.6944 0.9444 1.1944} t.
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Least-Squares Solution

It may be seen that the number of solutions of any linear system could be either 0 or just 1
or infinite.

It can never be just 2 or just 3 or just} where n is a finite positive integer.

For if there are two solutions then a linear combination of these two solutions is also a
.solution of the system} Ax= b.

However} in the context of a least-squares solution for a least-squares model} pruning
linearly dependent rows may alter the least-squares solution vector significantly to make
the desired solution worse or better depending on the problem on hand.

One may compute both the pruned solution and the un-pruned soluti.on to
correlate/interpret them in the physical/statistical problem under consideration.

An un-pruned least-squares solution of the inconsistent system involving several linearly
dependent rows of the augmented matrix [A} b] is significant unlike a one for a fully
consistent system.
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Sub-algorithm 1 (Pruning redundant equations)

The algorithm is comprised of three
sub-algorithms:

1. pruning sub-algorithm

2. over-inconsistency detection sub
algorithm

3. solver sub-algorithm

Lets consider linear system:

Ax:=b
A is a given numerical mxn matrix

b is a given numerical n-vector

x is an n-vector to be computed

Consider the augmented matrix: C == (A, b)

The right-hand sided column vector dis

computed as the row sum of the matrix c = Cij

n+l

d i == Leij' i . l(l)m
j=l

The C = d is always consistent
y
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The Algorithm - MatLab program

function pruningldrows(C);

% C=Usually augmented matrix (A,b) ofAx=b

%Redundant (linearly dependent) rows of the C are pruned.

b=sum(CT; A=C; redrow(l)=O;

disp('Given unpruned matrix is'); C

B=A' c=b' rrow=O'I I I

[m n]=size(A); p=O;

x=zeros(n/1); r=O; P=eye(n); k=l;

abar=su m(sum(abs(A)))/(m* n); bba r=su m(a bs(A( :,n-1)))/m;

for i = l:m

a=A(i/:)I; brow=b(i); u=P*a; v=(norm(u))1\2; inconsistency =
brow-a'*x'I

if abs(v) >= 0.00005*abar %Permits 4 significant digit accuracy

P=P-u*ul/v; x = x + inconsistency*u/v; r=r+1;

else

% Store indices of redundant rows in a vector.

redrow(k)=i; k=k+1; rrow=l;

end

end; disp(ILinearly dependent rows are'); redrow

if rrow==l
c(redrow)=[]; B(redrow/:)=[];
end
if p "'= 1

S=size(B);
if S(l)<=m

disp(The rank of the matrix C ');
disp('or the pruned matrix B is I);
disp(r);
disp(The pruned matrix B is');B

end
End

»Ab = 1 2 3 4 5 15
2 4 6 8 10 30
3 6 9 12 15 400
1 1 1 1 1 10
2 2 2 2 2 10
8 16 24 32 40 120
11 23 35 47 59 175

Ab= [A, b] is the augmented matrix
the first 5 columns constitute the coefficient
matrix A the last column of Ab is the right
hand side bb vector which is constructed by
the row-sum of each row of the matrix A.
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The Algorithm - MatLab program

Given unpruned matrix is

C= [Ab bb]

1 2 3 4 5 15 30

2 4 6 8 10 30 60

3 6 9 12 15 400 445

1 1 1 1 1 10 15

2 2 2 2 2 10 20

8 16 24 32 40 120 240

11 23 35 47 59 175 350

Linearly dependent rows are redraw = 2 5 6 7

The rank of the matrix Cor the pruned
matrix B is 3

The pruned matrix B is:

B=

1 2 3 4 5 15 30
3 6 9 12 15 400 445
1 1 1 1 1 10 15

The rank of the matrix C or the pruned matrix B is 3

The pruned matrix B is
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The Algorithm - MatLab program

Sub-algorithm 2 (Over-inconsistency detection)

Having pruned linearly dependent (redundant) rows, the resulting system will be left with equations Bx=c
which could be

(i) consistent or

(ii) acceptably inconsistent or

(iii) unacceptably (over-) inconsistent (in the context)

In case (i), we compute the mls xml (unique) of, which is a true solution of Bx =c, i.e.

II BXm1 - C II = 0 (numerical zero)

In case (ii) also, we compute the mls xml of Bx == C

which is not a true solution but a solution such that the Norm II Bxm, - c II
i.e. the square-root of the sum of the squares of the residual, is a minimum and not a numerical zero.

In case (iii), once we detect an abnormally (too) inconsistent equation or, equivalently, an outlier
(analogous to a data point which is far away from other data points or a cluster of data points in

statistics), we do not proceed to compute the mls of Bx == c
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The Algorithm - MatLab program

The following Matlab code (program) nclinsolver{A, b) detects the equations that cause over-inconsistency

% Computational NC-L1NSOLVER (Matlab program) The following program is self-explanatory.

% A general L1NSOLVER program that includes near-consistent linear %system.

% Reference: S.K. Sen and Sagar Sen, Linear System: Relook, concise algorithms, and Matlab

% programs, academic Studies - National Journal of Jyoti Research Academy, Feb., 2007, Vol. 1(1), pp. 1-8.

function[ ]=nclinsolver{A,b); [m, n]=size{A);

%NC-L1NSOLVER: Near-consistent Linear System Solver

'The matrix A and vector b of the system Ax=b are', A,b,

P=eye{n); sd=O; x{1:n)=0; x=x'; delb{1:m)=0; delb=delb'; bo=b; r=O;

abar=O; for i=1:m, for j=1:n, abar=abar+abs{A{i,j)); end; end; abar=abar/{m*n);

bbar=O; for i=1:m, bbar=bbar+abs{b{i)); end; bbar=bbar/m;

for i=1:m

u=P*A{i,:)'; v=norm{u)1\2; s=b{i) -A{i,:)*x; c=O;

if v<=.00005*abar & abs{s»=.00005*bbar, delb{i)=-s; sd=-s; b{i)=b{i) +delb{i); s=O;

elseif v<=.00005*abar & abs{s)<=.00005*bbar; delb{i)=O; end;

if v>=.00005*abar, x=x+u*s/v; P=P-u*u'/v; c=1; delb{i)=O; end; r=r+c;

end;
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The Algorithm - MatLab program

if abs(sd».00005*(abar+bbar)*O.5, 'The system Ax=b is inconsistent.', end;

inci=norm(delb)/norm([A,b]); err=norm(bo-A*x)/norm(x);

'The projection operator P = (I - A+A) is', P,

'The rank of the matrix A is', r,

'The inconsistency index is', inci,

'Modification in vector b, i.e., Db is', delb,

'Vector b of the nearest consistent system is', b,

'Solution vector of the nearest consistent system is', x,

'Error in the solution vector x is', err

Matlab command:

» nciinsolver(A, b)
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The Algorithm - MatLab program

The matrix AA and vector bb are pruned system

The pruned system could be consistent or acceptably
inconsistent or unacceptably inconsistent

pseudo-inverse or the Moore-Penrose inverse of,
is

bb =[15 400 10]t

MatLab command:

» nciinsolver(AA, bb)

The system Ax=b (i.e. AAx = bb) is inconsistent

The projection operator P = (I - A+A)

i.e. p = (1- A+ A) needed for a solution Xc = pz

AA=

1 2

3 6

1 1

345

9 12 15

111

P=
0.4000 -0.4000 -0.2000 -0.0000 0.2000
-0.4000 0.7000 -0.2000 -0.1000 -0.0000
-0.2000 -0.2000 0.8000 -0.2000 -0.2000
-0.0000 -0.1000 -0.2000 0.7000 -0.4000
0.2000 -0.0000 -0.2000 -0.4000 0.4000

The rank of the matrix A is r = 2
The inconsistency index is inci = 6.5950.
Modification in vector b, i.e.,
Db is delb = [0 -355 O]t
Vector b of the nearest consistent system is
b = [15 45 10]t
Solution vector of the nearest consistent system is
x =[5.0000 3.5000 2.0000 0.5000 -1.0000P

Error in the solution vector x is err = 54.4545.

of the homogeneous equation Ax = 0

where z is an arbitrary column vector and A+

is the minimum-norm least squares (m! ) inverse of the

matrix A (called the pseudo-inverse or the Moore
Penrose inverse)

delb in the foregoing solution shows that the
second element, viz. -355 is unacceptably large.
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The Algorithm - MatLab program

Sub-algorithm 3

Minimum-norm least-squares solver ( solver)

Having confirmed that the system is an acceptably
inconsistent system from the sub-algorithm 2, we simply
compute the mls of Bx =c .

by using the MatLab command

»xc=pinv(B)*c

Our acceptably inconsistent system is AAx =bb, where

AA=

1 2 345

3 6 9 12 15

1 111 1

and bb = [15 40 10]t

» x = pinv(AA)*bb

x =[5.3000 3.6500 2.0000 0.3500 -1.3000]t
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The Algorithm - Numerical Example

Consider the non-over-determined inconsistent system
created by the following MatLab commands

»A=rand(4,6); A(S,:)=l.S*A(l,:)+2*A(2,:);
A(6,:)=3*A(2,:)-1.7*A(3,:)+4*A(4,:), b=sum(A')';
b(S)=b(S)+ 2; b(6)=b(6)-1

where the coefficient matrix A and the right-hand side
column vector b are (correct up to 4 decimal digits)

A=

0.6787 0.6555 0.2769 0.6948 0.4387 0.1869

0.7577 0.1712 0.0462 0.3171 0.3816 0.4898

0.7431 0.7060 0.0971 0.9502 0.7655 0.4456

0.3922 0.0318 0.8235 0.0344 0.7952 0.6463

2.5336 1.3256 0.5077 1.6764 1.4212 1.2598

2.5788 -0.5594 3.2672 -0.5263 3.0241 3.2970

and

b = [2.9316 2.1635 3.7076 2.7235 10.7244 10.0815]t

The system is inconsistent. The 5th and 6th rows of the
matrix A is linearly dependent on the foregoing four
rows

The augmented matrix C obtained by the
MatLab command
» C=[A b] is (correct up to 4 decimal digits)

C=
0.6787 0.6555 0.2769 0.6948 0.4387 .0.1869 2.9316
0.7577 0.1712 0.0462 0.3171 0.3816 0.4898 2.1635
0.7431 0.7060 0.0971 0.9502 0.7655 0.4456 3.7076
0.3922 0.0318 0.8235 0.0344 0.7952 0.6463 2.7235
2.5336 1.3256 0.5077 1.6764 1.4212 1.2598 10.7244
2.5788 -0.5594 3.2672 -0.5263 3.0241 3.2970 10.0815

The linearly dependent ( ) row of C obtained
using the
MatLab command
»pruningldrows(C) is its 6th row

The rank of the matrix C or the pruned matrix B is
5 (The input data were kept correct up to 15
decimal digits and not up to 4 decimal digits in
actual computation)
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The Algorithm - Numerical Example

The right-hand side column vector bb is (correct
up to 4 decimal digits)

bb =[2.9316 2.1635 3.7076 2.7235 10.7244]t

The pruned matrix B is (up to 4 decimal digits),
using the command

» BB=B(:,1:6),

BB =
0.6787 0.6555 0.2769 0.6948 0.4387 0.1869

0.7577 0.1712 0.0462 0.3171 0.3816 0.4898

0.7431 0.7060 0.0971 0.9502 0.7655 0.4456

0.3922 0.0318 0.8235 0.0344 0.7952 0.6463

2.5336 1.3256 0.5077 1.6764 1.4212 1.2598

We now detect the equation(s), using the
command

» nciinsolver(BB,bb)

The system Ax=b (Le. BBx=bb) is inconsistent

The rank of the matrix A (Le. BB) is r = 4

The inconsistency index is inci = 0.1746

Modification in vector b, i.e., Db is
delb = [0 0 0 0 -2.0001]t

The fifth element of delb depicts that the fifth equation
is inconsistent.

Vector b (i.e. bb) of the nearest consistent system is
b = [2.9316 2.1635 3.7076 2.7235 8.7243]t

Solution vector of the nearest consistent system is
x = [1.1102 0.8803 0.9555 0.9595 1.2137 0.7351]t

Error in the solution vector x. is err = 0.8266.
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The Algorithm - Numerical Example

Pruned system and un-pruned system along with their norms are given using
the MatLab commands

» xl=pinv(BB)*bb, xln=norm(xl), x2=pinv(A)*b, x2n=norm(x2)

where:

xl = 1.0e+003 * [3.8250 -6.4839 -0.5869 1.0113 6.5185 ~9.3243]t

is the of the pruned system and

xln = 1.3692e+004 is the norm of xl.

The of the un-pruned system is

x2 = 1.0e+004 * [0.7794 2.2436 -1.5833 -3.4841 2.6687 -1.6636]t

and its norm is

x2n =5.4933e+004.
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The Algorithm - Numerical Example

The square-roots of the sums of the squares of the residuals of the
pruned and un-pruned systems are (using the commands ):

» xlt=norm(BB*xl-bb)

» x2t=norm(A*x2-b)

xlt = 1.2841e-Oll and x2t =2.3662e-Ol0

Here we see that the sum of the squares of the residuals for the
pruned system is less than that of un-pruned system.

In reality, it can be the other way also for some other least-squares
problems.

However, the foregoing inconsistency due to the fifth equation
may be quite acceptable in most real-world computations.
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Conclusion

Inconsistency for non-over-determined system is due to linear dependence of a row of the matrix
while the corresponding element of on the right-hand side is not linearly dependent

It is possible to know globally whether inconsistency is relatively large or not by computing the sum
of squares of the residuals, viz. ,where denotes the Euclidean norm and is the of the system

This sum should be acceptably low in the context. But it is not possible to know the equations
which have caused the inconsistency

In fact, it is more important to detect the equations which cause the excessive inconsistency and
take necessary corrective measures before proceeding

Hence it is necessary to fall back on to the original physical/statistical problem and the
corresponding mathematical model and find out the reason for over-inconsistency and correct the
model accordingly before proceeding to compute the.
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Conclusion

For consistent systems, linearly dependent rows do not carry any new information and are hence
redundant

For inconsistent systems, the linearly dependent rows do carry information about the physical
problem and hence do not always deserve to be pruned (in many contexts)

The pruned and non-pruned inconsistent systems will be, in general, different

The sum of the squares of the residuals could be significantly more or significantly less than that for
the non-pruned system

The foregoing numerical examples demonstrate this fact

We have omitted the algorithms in mathematical form and provided them in MatLab codes
(programs)

One can readily translate these codes to algorithms in mathematical form if it is more convenient
to appreciate the essence of the algorithms
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Conclusion

For pruning linearly dependent rows as well as for the detection of the equations that cause
inconsistency, one may use Gauss reduction with partial pivoting

Gauss reduction method involves row interchanges and also the need for keeping track of row
numbers

These, specifically row interchanges, are not desirable in many situations. For instance, a situation
where row interchanges disturb the structure of the matrix such as the one having one main
diagonal with two diagonals above and two diagonals below

Of course, both pruning and detection of inconsistent equations assume that the first equation is
definitely correct

This does not necessarily imply that some other subsequent linearly independent equation is also
correct.
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Thank you!

Questions
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