
mu uuuu ui iiui iiui mu uui mu uui uui mii uuii uu uii mi

(12) United States Patent
Hinchey et al.

(54) SYSTEMS, METHODS AND APPARATUS FOR
PATTERN MATCHING IN PROCEDURE
DEVELOPMENT AND VERIFICATION

(75) Inventors: Michael G. Hinchey, Bowie, MD (US);
James L. Rash, Davidsonville, MD
(US); Christopher A. Rouff, Beltsville,
MD (US)

(73) Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1329 days.

(21) Appl. No.: 11/533,837

(22) Filed:	 Sep. 21, 2006

(65)	 Prior Publication Data

US 2007/0067755 Al	 Mar. 22, 2007

Related U.S. Application Data

(63) Continuation-in-part of application No. 11/461,669,
filed on Aug. 1, 2006, which is a continuation-in-part
of application No. 11/203,590, filed onAug. 12, 2005,
now Pat. No. 7,739,671, which is a
continuation-in-part of application No. 10/533,376,
filed on Apr. 29, 2005, now Pat. No. 7,484,688.

(51) Int. Cl.
G06F 9144	 (2006.01)
G06F 9145	 (2006.01)

(52) U.S. Cl. 717/127; 717/128; 717/131; 717/141

1102

(1o) Patent No.:	 US 7,979,848 B2
(45) Date of Patent:	 Jul. 12 9 2011

(58) Field of Classification Search None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

	

5,247,651 A *	 9/1993 Clarisse 703/13

	

6,898,791 131*	 5/2005 Chandy et al 719/314

* cited by examiner

Primary Examiner Chuck O Kendall
(74) Attorney, Agent, or Firm Heather Goo

(57) ABSTRACT

Systems, methods and apparatus are provided through which,
in some embodiments, a formal specification is pattern-
matched from scenarios, the formal specification is analyzed,
and flaws in the formal specification are corrected. The sys-
tems, methods and apparatus may include pattern-matching
an equivalent formal model from an informal specification.
Such a model can be analyzed for contradictions, conflicts,
use of resources before the resources are available, competi-
tion for resources, and so forth. From such a formal model, an
implementation can be automatically generated in a variety of
notations. The approach can improve the resulting implemen-
tation, which, in some embodiments, is provably equivalent
to the procedures described at the outset, which in turn can
improve confidence that the system reflects the requirements,
and in turn reduces system development time and reduces the
amount of testing required of a new system. Moreover, in
some embodiments, two or more implementations can be
"reversed" to appropriate formal models, the models can be
combined, and the resulting combination checked for con-
flicts. Then, the combined, error-free model can be used to
generate a new (single) implementation that combines the
functionality of the original separate implementations, and
may be more likely to be correct.

27 Claims, 25 Drawing Sheets

PATTERN-MATCHING SCENARIOS INTO
PROCESS-BASED SPECIFICATION SEGMENTS

AGGREGATE THE PROCESS-BASED
SPECIFICATION SEGMENTS INTO A SINGLE

PROCESS-BASED SPECIFICATION

1104

1106
TRANSLATE THE SINGLE PROCESS-BASED

SPECIFICATION
INTO HIGH LEVEL LANGUAGE INSTRUCTIONS

COMPILE THE HIGH LEVEL LANGUAGE
INSTRUCTIONS INTO EXECUTABLE CODE

1108

1100

https://ntrs.nasa.gov/search.jsp?R=20110014420 2019-08-30T16:23:19+00:00Z

U.S. Patent
	

Jul. 12 9 2011
	

Sheet 1 of 25
	

US 7,979,848 B2

102
	

104
INFORMAL
	

LAWS OF
SPECIFICATION
	

CONCURRENCY

106

TRANSLATOR

108
PROCESS-

BASED
SPECIFICATION

110

ANALYZER

112
CODE

TRANSLATOR

COMPUTER
LANGUAGE
PROGRAM

114

FIG. 1	 1ao

U.S. Patent	 Jul. 12 9 2011	 Sheet 2 of 25	 US 7,979,848 B2

FIG. 2	 Ix,-- 200

202

210

U.S. Patent	 Jul. 12 9 2011	 Sheet 3 of 25	 US 7,979,848 B2

102
	 104

INFORMAL	 LAWS OF
SPECIFICATION	 CONCURRENCY

302
PATTERN
MATCHER

108
PROCESS-

BASED
SPECIFICATION

110
	 112

CODE
ANALYZER	 TRANSLATOR

114
COMPUTER
LANGUAGE
PROGRAM

FIG. 3	 I\,— 300

U.S. Patent	 Jul. 12 9 2011	 Sheet 4 of 25	 US 7,979,848 B2

FIG. 4	 1^11-- 400

202

406

U.S. Patent
	

Jul. 12 9 2011	 Sheet 5 of 25	 US 7,979,848 B2

502
TRANSLATE INFORMAL SPECIFICATION INTO
PROCESS-BASED SPECIFICATION SEGMENTS

504
AGGREGATE THE PROCESS-BASED

SPECIFICATION SEGMENTS INTO A SINGLE
PROCESS-BASED SPECIFICATION

506
TRANSLATE THE SINGLE PROCESS-BASED

SPECIFICATION
INTO HIGH LEVEL LANGUAGE INSTRUCTIONS

508
COMPILE THE HIGH LEVEL LANGUAGE

INSTRUCTIONS INTO EXECUTABLE CODE

FIG. 5	 500

U.S. Patent	 Jul. 12 9 2011	 Sheet 6 of 25	 US 7,979,848 B2

602

VERIFY
SYNTAX

604
MAP TO

PROCESS-BASED
SPECIFICATION

502

606
CONSISTENCY
WITH OTHER

PROCESS-BASED
SPECIFICATIONS

608
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 6	 111^_ 600

U.S. Patent	 Jul. 12 9 2011	 Sheet 7 of 25	 US 7,979,848 B2

ANALYZE A SCRIPT DERIVED FROM RULES

704

NO
FLAW IN SCRIPT	 p

YES

CORRECT THE FLAW IN THE RULES

702

706

FIG. 7	 I\"— 700

U.S. Patent	 Jul. 12 9 2011	 Sheet 8 of 25	 US 7,979,848 B2

802
TRANSLATE SCENARIOS INTO A FORMAL

SPECIFICATION

804
ANALYZE THE FORMAL SPECIFICATION

806
TRANSLATE THE FORMAL SPECIFICATION

INTO SCRIPT

FIG. 8
	

800

U.S. Patent
	

Jul. 12 9 2011	 Sheet 9 of 25	 US 7,979,848 B2

902
MECHANICALLY TRANSLATE DOMAIN

KNOWLEDGE INTO FORMAL SPECIFICATION
SEGMENTS

904
AGGREGATE THE FORMAL SPECIFICATION

SEGMENTS INTO A SINGLE FORMAL
SPECIFICATION

906
TRANSLATE THE SINGLE FORMAL

SPECIFICATION
INTO SCRIPT(S)

908

GENERATE A SCRIPT FROM THE SCRIPT(S)

FIG. 9	 1\1'-- 900

U.S. Patent	 Jul. 12 9 2011	 Sheet 10 of 25	 US 7,979,848 B2

1002

VERIFY
SYNTAX

1004

MAP TO FORMAL
SPECIFICATION

1006	 VERIFY
CONSISTENCY

OF FORMAL
SPECIFICATION

1008
VERIFY LACK

OF OTHER
PROBLEMS

902

FIG. 10	 ^\-- 1000

U.S. Patent
	

Jul. 12 9 2011	 Sheet 11 of 25	 US 7,979,848 B2

1102

PATTERN-MATCHING SCENARIOS INTO
PROCESS-BASED SPECIFICATION SEGMENTS

1104
AGGREGATE THE PROCESS-BASED

SPECIFICATION SEGMENTS INTO A SINGLE
PROCESS-BASED SPECIFICATION

1106
TRANSLATE THE SINGLE PROCESS-BASED

SPECIFICATION
INTO HIGH LEVEL LANGUAGE INSTRUCTIONS

1108

COMPILE THE HIGH LEVEL LANGUAGE
INSTRUCTIONS INTO EXECUTABLE CODE

FIG. 11	 I\,-- 1100

U.S. Patent	 Jul. 12 9 2011	 Sheet 12 of 25
	

US 7,979,848 B2

1202
VERIFY SYNTAX OF

INFORMAL REQUIREMENTS

1204
MAP INFORMAL

REQUIREMENTS TO PROCESS-
BASED SPECIFICATION

1102
1206

PROCESS-BASED
SPECIFICATION

WITH OTHER PROCESS-BASED
SPECIFICATIONS

1208
VERIFY LACK OF OTHER

PROBLEMS IN THE PROCESS-
BASED SPECIFICATION

FIG. 12	 I\"-- 1200

U.S. Patent	 Jul. 12 9 2011	 Sheet 13 of 25	 US 7,979,848 B2

ANALYZE A SPECIFICATION DERIVED FROM
SCENARIOS

1304

NO
FLAW IN

SPECIFICATION	 --^

YES

CORRECT THE FLAW IN THE SCENARIOS

1302

1306

FIG. 13	 ^ 1300

U.S. Patent	 Jul. 12 9 2011	 Sheet 14 of 25	 US 7,979,848 B2

PATTERN-MATCHING SCENARIOS INTO A
FORMAL SPECIFICATION

1402

1404
ANALYZE THE FORMAL SPECIFICATION

TRANSLATE THE FORMAL SPECIFICATION
INTO AN IMPLMENTATION

1406

FIG. 14	 1400

U.S. Patent	 Jul. 12 9 2011	 Sheet 15 of 25	 US 7,979,848 B2

MECHANICALLY PATTERN-MATCH DOMAIN
KNOWLEDGE INTO FORMAL SPECIFICATION

SEGMENTS

1502

1504
AGGREGATE THE FORMAL SPECIFICATION

SEGMENTS INTO A SINGLE FORMAL
SPECIFICATION

FIG. 15	 "Il'- 1500

U.S. Patent	 Jul. 12 9 2011	 Sheet 16 of 25
	

US 7,979,848 B2

1602-,,VERIFY
SYNTAX OF

DOMAIN
KNOWLEDGE

MAP DOMAIN
1604	 KNOWLEDGE TO

A FORMAL
SPECIFICATION

SEGMENT

1606	 CONSISTENCY
OF THE FORMAL
SPECIFICATION

SEGMENT

1608	 VERIFY LACK OF
OTHER PROBLEMS

IN THE FORMAL
SPECIFICATION

SEGMENT

1502

FIG. 16	 I\\-- 1600

1726

1728SPEAKER I I SPEAKER

NIC

POWER	 1734

1722	 1724

1702	 DISPLAY

1704

CPU

1706

RAM

1708--,

1730

LAN	 NIC

1732	 1736
REMOTE

WAN	 COMPUTER

U.S. Patent	 Jul. 12 9 2011	 Sheet 17 of 25	 US 7,979,848 B2

ROM

1710
MASS

STORAGE

1716
	 1712

COMM
1700

1714 CINTERNE>T 1718 KEYBOARDJ J ̂
POINTING	 FIG. 17

DEVICE	 1720

U.S. Patent	 Jul. 12 9 2011	 Sheet 18 of 25	 US 7,979,848 B2

102	 104
INFORMAL	 LAWS OF

SPECIFICATION	 CONCURRENCY

1802
CSP

TRANSLATOR

1804
CSP

SPECIFICATION

1806

1808
VISUALIZATION	 ANALYZERTOOL

1810

CSP TOOL

112

1804

MODIFIED CSP
SPECIFICATION

CODE
TRANSLATOR

114

FIG. 18	
COMPUTER
LANGUAGE
PROGRAM	 1800

U.S. Patent	 Jul. 12 9 2011	 Sheet 19 of 25	 US 7,979,848 B2

1722	 1724

1702	 DISPLAY	 SPEAKER

1726

SPEAKER	 1728

1730
1704

NIC	 LAN	 NIC
CPU

1706 POWER	 1734	 1732	 1736
REMOTER AM

1738	 WAN	 COMPUTER

1708 1802
CSP

ROM TRANSLATOR

1710 1806
MASS ANALYZER

STORAGE

1712
1716 112

COMM
CODE

TRANSLATOR 1900

POINTING	 FIG. 1917141718INTERNET	 KEYBOARD DEVICE	 1720

SCENARIOS	
INFERENCE	

204

ENGINE

104
LAWS OF

CONCURRENCY

U.S. Patent	 Jul. 12 9 2011	 Sheet 20 of 25	 US 7,979,848 B2

202

206

TRANSLATOR

210

208

FORMAL	 P ANALYZERSPECIFICATION

2122002	 REVERSE
SCRIPT

TRANSLATOR

FIG. 20

SCRIPT
TRANSLATOR

214

SCRIPT

2000

U.S. Patent	 Jul. 12 9 2011	 Sheet 21 of 25	 US 7,979,848 B2

1722

1702

1724

DISPLAY	 SPEAKER

1726

SPEAKER	 1728

1730

LAN1704
NIC	 NIC

CPU

1706 POWER	 1734	 1732	 1736
REMOTERAM 1738	 [WAN	 COMPUTER

1708 212
SCRIPT

ROM
_

-' TRANSLATOR

1710 210
MASS SCRIPT

STORAGE ANALYZER
17121716 REVERSE	 2002

COMM SCRIPT
TRANSLATOR	 1500

POINTING	 FIG. 211714 1718INTERNET	 KEYBOARD DEVICE	 1720

U.S. Patent	 Jul. 12 9 2011	 Sheet 22 of 25	 US 7,979,848 B2

102 ^	 /)	 -104
INFORMAL	 LAWS OF

SPECIFICATION	 CONCURRENCY

2202
IMPLEMENTATION

PATTERN
MATCHER

2204

IMPLEMENTATION

2206

2208
VISUALIZATION	 ANALYZERTOOL

2212--,

2210

TOOL

112

MODIFIED
IMPLEMENTATION

CODE
TRANSLATOR

114

FIG. 22	
COMPUTER
LANGUAGE
PROGRAM	 2200

U.S. Patent	 Jul. 12 9 2011	 Sheet 23 of 25	 US 7,979,848 B2

1722	 1724

1702	 DISPLAY

1704

CPU

1706
RAM

1708
ROM

1710
MASS

STORAGE

1716
	 1712

COMM

1726

1728

1730

	

LAN	 NIC

	

1732	 1736
REMOTE

	

[WAN	 COMPUTER

2202

NIC

POWER	 1734

1738

IMPLEMENTATION
PATTERN
MATCHER

-► ANALYZER
2206

CODE	
112

TRANSLATOR 2300

FIG. 23

SPEAKER I I SPEAKER

1714-_I 	
POINTING

	

DEVICE	 1720

U.S. Patent
	

Jul. 12 9 2011	 Sheet 24 of 25	 US 7,979,848 B2

202

104 ^-----	 204
LAWS OF	 SCENARIOS	 INFERENCE

CONCURRENCY	 I ENGINE

206

PATTERN
MATCHER

208

406
FORMAL	

, I^f ANALYZERSPECIFICATION

2402

REVERSE
TRANSLATOR

408

TRANSLATOR

410

FIG. 24

	 IMPLEMENTATION //	
2400

U.S. Patent	 Jul. 12 9 2011	 Sheet 25 of 25	 US 7,979,848 B2

1722	 1724

1702	 DISPLAY

1704

CPU

1706

RAM

1708

ROM

1710
MASS

STORAGE

1716	
1712

COMM

1726

1730

LNIC	 LAN	 NIC

POWERI 1734	 1732	 1736
REMOTE

1738	 WAN	 COMPUTER

408
TRANSLATOR

H,,-

406
ANALYZER

2402
REVERSE

TRANSLATOR	 2500

SPEAKER I I SPEAKER
	

1728

1714 INTERNET J1718 ^KEYBOARDJI POINTIN
G

1720	
FIG. 25

DEVICE [--`-

US 7,979,848 B2
1

SYSTEMS, METHODS AND APPARATUS FOR
PATTERN MATCHING IN PROCEDURE
DEVELOPMENT AND VERIFICATION

RELATED APPLICATIONS

This application is a continuation-in-part of co-pending
U.S. application Ser. No. 11/461,669 filed on Aug. 1, 2006
entitled "Systems, Methods and Apparatus for Procedure
Development and Verification," which is a continuation-in-
part of U.S. application Ser. No. 11/203,590 filed Aug. 12,
2005 now U.S. Pat. No. 7,739,671 entitled "Systems, Meth-
ods & Apparatus For Implementation Of Formal Specifica-
tions Derived From Informal Requirements," which is a con-
tinuation-in-part of U.S. application Ser. No. 10/533,376 filed
Apr. 29, 2005 now U.S. Pat. No. 7,484,688 entitled "System
and Method for Deriving a Process-based Specification."

ORIGIN OF THE INVENTION

The invention described herein was made by employees of
the United States Government and may be manufactured and
used by or for the Government of the United States of
America for governmental purposes without the payment of 25

any royalties thereon or therefor.

FIELD OF THE INVENTION

This invention relates generally to software development 30

processes and more particularly to validating a system imple-
mented from requirements expressed in natural language or a
variety of graphical notations.

BACKGROUND OF THE INVENTION
	

35

High dependability and reliability is a goal of all computer
and software systems. Complex systems in general cannot
attain high dependability without addressing crucial remain-
ing open issues of software dependability. The need for ultra- 40

high dependable systems increases continually, along with a
corresponding increasing need to ensure correctness in sys-
tem development. Correctness exists where the implemented
system is equivalent to the requirements, and where this
equivalence can be mathematically proven. 	 45

The development of a system may begin with the develop-
ment of a requirements specification, such as a formal speci-
fication or an informal specification. A formal specification
might be encoded in a high-level language, whereas require-
ments in the form of an informal specification can be 50

expressed in restricted natural language, "if-then" rules,
graphical notations, English language, programming lan-
guage representations, flowcharts, scenarios or even using
semi-formal notations such as unified modeling language
(UML) use cases. 	 55

A scenario can be defined as a natural language text (or a
combination of any, e.g. graphical, representations of sequen-
tial steps or events) that describes the software's actions in
response to incoming data and the internal goals of the soft-
ware. Some scenarios can also describe communication pro- 60

tocols between systems and between the components within
the systems. Also, some scenarios can be known as UML
use-cases. In some embodiments, a scenario describes one or
more potential executions of a system, describing what hap-
pens in a particular situation, and what range of behaviors is
expected from or omitted by the system under various condi-
tions.

2
Natural language scenarios are usually constructed in

terms of individual scenarios written in a structured natural
language. Different scenarios can be written by different
stakeholders of the system, corresponding to the different
views the stakeholders have of how the system will perform,
including alternative views corresponding to higher or lower
levels of abstraction. Natural language scenarios can be gen-
erated by a user with or without mechanical or computer aid.
The set of natural language scenarios provides the descrip-
tions of actions that occur as the software executes. Some of
these actions may be explicit and required, while others can
be due to errors arising, or as a result of adapting to changing
conditions as the system executes.

For example, if the system involves commanding space
satellites, scenarios for that system can include sending com-
mands to the satellites and processing data received in
response to the commands. Natural language scenarios might
be specific to the technology or application domain to which
the natural language scenarios are applied. A fully automated
general purpose approach covering all domains is technically
prohibitive to implement in a way that is both complete and
consistent. To ensure consistency, the domain of application
might be purpose-specific. For example, scenarios for satel-
lite systems might not be applicable as scenarios for systems
that manufacture agricultural chemicals.

After completion of an informal specification that repre-
sents domain knowledge, the system is developed. A formal
specification is not necessarily used by the developer in the
development of a system.

In the development of some systems, computer readable
code is generated. The generated code is typically encoded in
a computer language, such as a high-level computer lan-
guage. Examples of such languages include Java, C, C Lan-
guage Integrated Production System (CLIPS), and Prolog.

One step in creating a system with high dependability and
reliability can be verification and validation that the execut-
able system accurately reflects the requirements. Validation
of the generated code is sometimes performed through the use
of a domain simulator, a very elaborate and costly approach
that is computationally intensive. This process of validation
via simulation rarely results in an unambiguous result and
rarely results in uncontested results among systems analysts.
In some examples, a system is validated through parallel
mode, shadow mode operations with a human operated sys-
tem. This approach can be very expensive and exhibit
severely limited effectiveness. In some complex systems, this
approach leaves vast parts of possible executionpaths forever
unexplored and unverified.

During the life cycle of a system, requirements typically
evolve. Manual change to the system creates a risk of intro-
ducing new errors and necessitates retesting and revalidation,
which can greatly increase the cost of the system. Often,
needed changes are not made due to the cost of verifying/
validating consequential changes in the rest of the system.
Sometimes, changes are simply made in the code and not
reflected in the specification or design, due to the cost or due
to the fact that those who generated the original specification
or design are no longer available.

For the reasons stated above, and for other reasons stated
below which will become apparent to those skilled in the art
upon reading and understanding the present specification,
there is a need in the art to reduce system development time,
reduce the amount of testing required of a new system, and
improve confidence that the system reflects the requirements.

BRIEF DESCRIPTION OF THE INVENTION

5

10

15

20

65 The above-mentioned shortcomings, disadvantages and
problems are addressed herein, which will be understood by
reading and studying the following discussion.

US 7,979,848 B2
3

Some embodiments of the systems, methods and apparatus
described herein provide automated analysis, validation, veri-
fication, and generation of complex procedures. The genera-
tion is performed by pattern matching with set comprehen-
sions without a theorem-prover or a formal proof of
correctness. The systems, methods and apparatus may
include pattern-matching an equivalent formal model from an
informal specification. Such a model can be analyzed for
contradictions, conflicts, use of resources before the
resources are available, competition for resources, and so
forth. From such a formal model, an implementation can be
automatically generated in a variety of notations. Some
implementations may include traditional programming lan-
guage code, machine language code, scripts, and/or proce-
dures. The approach can improve the resulting implementa-
tion, which, in some embodiments, is provably equivalent to
the procedures described at the outset, which in turn can
improve confidence that the system reflects the requirements,
and in turn reduces system development time and reduces the
amount of testing required of a new system. Moreover, in
some embodiments, two or more implementations can be
"reversed" to appropriate formal models, the models can be
combined, and the resulting combination checked for con-
flicts. Then, the combined, error-free model can be used to
generate a new (single) implementation that combines the
functionality of the original separate implementations, and
may be more likely to be correct.

In at least one embodiment, systems, methods and appara-
tus are provided through which scenarios are pattern-matched
without human intervention into a formal specification or
other process-based specification segment. In some embodi-
ments, the formal specification is converted to an implemen-
tation. In some embodiments, the formal specification is ana-
lyzed for errors, which reduces errors in the formal
specification. In some embodiments, the formal specification
is translated back to an informal specification expressed in
natural language or a plurality of graphical notations. The
scenario or complex set of procedures can be designed for the
assembly and maintenance of devices (whether by human or
robots), for business operation, or for experimentation in a
laboratory (such as might be used by the bioinformatics com-
munity).

In other embodiments, a system may include an inference
engine and a pattern matcher, the pattern matcher being oper-
able to receive scenarios and to generate, in reference to an
inference engine, a formal specification. The system may also
include an analyzer operable to perform model verification/
checking and determine existence of omissions, deadlock,
livelock, and race conditions or other problems and inconsis-
tencies in either the formal specification or the scenario.

In yet other embodiments, a method may include pattern-
matching requirements expressed informally in natural lan-
guage or a plurality of graphical notations to a formal speci-
fication or scenario, and analyzing the formal specification or
scenario.

Systems, clients, servers, methods, and computer-readable
media of varying scope are described herein. In addition to the
embodiments and advantages described in this summary, fur-
ther embodiments and advantages will become apparent by
reference to the drawings and by reading the detailed descrip-
tion that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that provides an overview of a
system to generate a high-level computer source code pro-
gram from an informal specification, according to an embodi-
ment of the invention;

4
FIG. 2 is a block diagram that provides an overview of a

system to engineer a script or procedure from scenarios,
according to an embodiment of the invention;

FIG. 3 is a block diagram that provides an overview of a
5 system to generate a high-level computer source code pro-

gram from an informal specification, according to an embodi-
ment that includes a pattern matcher;

FIG. 4 is a block diagram that provides an overview of a
system to engineer an implementation from scenarios,

io according to an embodiment that may include a pattern
matcher and an inference engine;

FIG. 5 is a flowchart of a method to generate an executable
system from an informal specification, according to an
embodiment;

15 FIG. 6 is a flowchart of a method to translate mechanically
each of a plurality of requirements of the informal specifica-
tion to a plurality of process-based specification segments,
according to an embodiment;

FIG. 7 is a flowchart of a method to verify the syntax of a
20 set of scenarios, translate the set of scenarios to a formal

specification, verify the consistency of the formal specifica-
tion, and verify the absence of other problems, according to
an embodiment;

FIG. 8 is a flowchart of a method to validate/update sce-
25 narios of a system, according to an embodiment;

FIG. 9 is a flowchart of a method to translate each of a
plurality of requirements of the domain knowledge to a plu-
rality of formal specification segments, and formally com-
pose the plurality of formal specification segments into a

30 single equivalent specification, andtranslatethesingleformal
specification into a script, according to an embodiment;

FIG. 10 is a flowchart of a method to generate a formal
specification from scenarios, according to an embodiment;

FIG. 11 is a flowchart of a method to generate an executable
35 system from an informal specification, according to an

embodiment;
FIG. 12 is a flowchart of a method to translate mechanically

each of a plurality of requirements of the informal specifica-
tion to a plurality of process-based specification segments,

4o according to an embodiment;
FIG. 13 is a flowchart of a method to validate/update a

system, according to an embodiment;
FIG. 14 is a flowchart of a method to pattern-match sce-

narios into a formal specification, analyze the formal speci-
45 fication, and translate the formal specification into CSP,

according to an embodiment;
FIG. 15 is a flowchart of a method to translate each of a

plurality of requirements of the domain knowledge to a plu-
rality of formal specification segments, and formally com-

50 pose the plurality of formal specification segments into a
single equivalent specification, according to an embodiment;

FIG. 16 is a flowchart of a method to generate a formal
specification from domain knowledge, according to an
embodiment;

55 FIG. 17 is a block diagram of the hardware and operating
environment in which different embodiments can be prac-
ticed, according to an embodiment;

FIG. 18 is a block diagram of a particular CSP implemen-
tation of an apparatus to generate a high-level computer

60 source code program from an informal specification, accord-
ing to an embodiment;

FIG. 19 is a block diagram of a hardware and operating
environment in which a particular CSP implementation of
FIG. 18 is implemented, according to an embodiment;

65 FIG. 20 is a block diagram of a particular implementation
of an apparatus capable to translate scenarios to a formal
specification, optionally analyze the formal specification and

US 7,979,848 B2
5

translate the formal specification to a script and reverse engi-
neer (translate) a script into a formal specification and option-
ally analyze the formal specification, according to an embodi-
ment;

FIG. 21 is a block diagram of a hardware and operating
environment in which components of FIG. 20 can be imple-
mented, according to an embodiment.

FIG. 22 is a block diagram of a particular CSP pattern-
matching implementation of an apparatus to generate a high-
level computer source code program from an informal speci-
fication, according to an embodiment;

FIG. 23 is a block diagram of a hardware and operating
environment in which a particular CSP pattern-matching
implementation of FIG. 22 can be implemented, according to
an embodiment;

FIG. 24 is a block diagram of a particular implementation
of an apparatus capable of pattern-matching scenarios to a
formal specification, optionally analyzing the formal specifi-
cation and translating the formal specification to an imple-
mentation and reverse engineering (translating) an imple-
mentation into a formal specification and optionally
analyzing the formal specification, according to an embodi-
ment; and

FIG. 25 is a block diagram of a hardware and operating
environment in which components of FIG. 24 can be imple-
mented, according to an embodiment.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description, reference is made to
the accompanying drawings that form a part hereof, and in
which is shown, by way of illustration, specific embodiments
which can be practiced. These embodiments are described in
sufficient detail to enable those skilled in the art to practice the
embodiments, and it is to be understood that other embodi-
ments can be utilized and that logical, mechanical, electrical
and other changes can be made without departing from the
scope of the embodiments. The following detailed descrip-
tion is, therefore, not to be taken in a limiting sense.

The detailed description is divided into six sections. In the
first section, embodiments of a system level overview are
described. In the second section, embodiments of methods
are described. In the third section, embodiments of the hard-
ware and the operating environment, in conjunction with
which embodiments can be practiced, is described. In the
fourth section, particular CSP implementations of embodi-
ments are described. In the fifth section, particular apparatus
embodiments are described. Finally, in the sixth section, a
conclusion of the detailed description is provided.

System Level Overview

FIG. 1 is a block diagram that provides an overview of a
system 100 to generate a high-level computer source code
program from an informal specification, according to an
embodiment. FIG. 2 is a block diagram that provides an
overview of a system 200 to generate a formal specification
and an implementation from descriptions of a system, accord-
ing to embodiments. FIG. 3 is a block diagram that provides
an overview of a system to generate a high-level computer
source code program from an informal specification, accord-
ing to an embodiment that includes a pattern matcher. FIG. 4
is a block diagram that provides an overview of a system to
generate a formal specification and an implementation from
descriptions of a system, according to an embodiment that
includes a pattern matcher and an inference engine.

6
System 100 may solve the need in the art for an automated,

generally applicable way to produce a system that can be a
provably correct implementation of an informal design speci-
fication that does not require, in applying the system to any

5 particular problem or application, the use of a theorem-
prover.

System 100 may be a software development system that
includes a data flow and processing points for the data. Sys-
tem 100 may be representative of (i) computer applications

io and electrical engineering applications such as chip design
and other electrical circuit design, (ii) business management
applications in areas such as workflow analysis, (iii) artificial
intelligence applications in areas such as knowledge-based
systems and agent-based systems, (iv) highly parallel and

15 highly-distributed applications involving computer com-
mand and control and computer-based monitoring, and (v)
any other area involving process, sequence or algorithm
design. According to the disclosed embodiments, system 100
may mechanically convert different types of specifications

20 (either natural language scenarios or descriptions which are
effectively pre-processed scenarios) into process-based for-
mal specifications on which model checking and other math-
ematics-based verifications can be performed, and then
optionally can convert the formal specification into code.

25 System 100 may include an informal specification 102
having a plurality of rules or requirements. The informal
specification can be expressed in restricted natural language,
graphical notations, English language, programming lan-
guage representations, scenarios or even using semi-formal

so notations such as unified modeling language (UML) use
cases. One skilled in the art will recognize that other lan-
guages and graphic indicators may exist that fall within the
scope of this invention.

A scenario may be natural language text (or a combination
35 of any (possibly graphical) representations of sequential steps

or events) that describes the software's actions in response to
incoming data and the internal goals of the software. Sce-
narios also may describe communication protocols between
systems and between the components within the systems.

40 Scenarios also may be known as use cases. A scenario can
describe one or more potential executions of a system,
describing what happens in a particular situation, and what
range of behaviors is expected from or omitted by the system
under various conditions.

45 System 100 may also include a set of laws of concurrency
104. Laws of concurrency 104 can be rules detailing equiva-
lences between sets of processes combined in various ways,
and/or relating process-based descriptions of systems or sys-
tem components to equivalent sets of traces. An example of

50 the laws of concurrency 104 is given in "Concurrent Systems:
Formal Development in CS by M. G. Hinchey an S. A. Jarvis,
McGraw-Hill International Series in Software Engineering,
Newyork and London, 1995, which is herein incorporated by
reference in its entirety. Laws of concurrency 104 may be

55 expressed in any suitable language for describing concur-
rency. These languages may include, but are not limited to,
CSP (Communicating Sequential Processes), CCS (Calculus
of Communicating Systems) and variants of these languages.

The informal specification 102 and a set of laws of concur-
6o rency 104 can be received by a translator 106, which may be

a mechanical translator. The plurality of rules or requirements
of the informal specification 102 may be translated mechani-
cally to a process-based specification 108 or other formal
specification language representation. The mechanical aspect

65 can mean that no manual intervention in the translation is
provided. In some embodiments, the process-based specifi-
cation 108 is an intermediate notation or language of sequen-

US 7,979,848 B2
7

tial process algebra such as Hoare's language of Communi-
cating Sequential Processes (CSP).

The process-based specification 108 may be mathemati-
cally and provably equivalent to the informal specification
102. Mathematically equivalent does not necessarily mean
mathematically equal. Mathematical equivalence of A and B
means that A implies B and B implies A. Note that applying
the laws of concurrency 104 to the process-based specifica-
tion 108 would allow for the retrieval of a trace-based speci-
fication that may be equivalent to the informal specification
102. Note that the process-based specification may be math-
ematically equivalent to rather than necessarily equal to the
original informal specification 108. This indicates that the
process may be reversed, allowing for reverse engineering of
existing systems, or for iterative development of more com-
plex systems.

In some embodiments, the system includes an analyzer 110
to determine various properties such as existence of omis-
sions, deadlock, livelock, and race conditions in the process-
based specification 108.

System 100 may also include a code translator 112 to
translate the plurality of process-based specification seg-
ments 108 to a set of instructions in a high-level computer
language program 114, such as the Java language.

System 100 may be operational for a wide variety of infor-
mal specification languages and applications, thus system
100 can be generally applicable. Such applications will be
apparent to one skilled in the art and may include distributed
software systems, sensor networks, robot operation, complex
scripts for spacecraft integration and testing, chemical plant
operation and control, and autonomous systems.

System 100 can provide mechanical regeneration of the
executable system when requirements dictate a change in the
high level specification. In system 100, all that may be
required to update the generated application may be a change
in the informal specification 102, and then the changes and
validation can ripple through in a mechanical process when
system 100 operates. This also can allow the possibility of
cost effectively developing competing designs for a product
and implementing each to determine the best one.

In some embodiments, system 100 does not include a theo-
rem-prover to infer the process-based specification segments
from the informal specification. However, the plurality of
process-based specification segments 108 may be provably
correct implementations of the informal specification 102,
provided the developer of an instance of system 100 has
properly used a theorem-prover (not shown) to prove that the
translator 106 correctly translates informal specifications into
formal specifications.

Some embodiments of system 100 operate in a multi-pro-
cessing, multi-threaded operating environment on a com-
puter, such as computer 1702 in FIG. 17. While the system
100 i s not limited to any particular informal specification 102,
plurality of rules or requirements, set of laws of concurrency
104, translator 106, process-based specification 108, analyzer
110, code translator 112 and high-level computer language
program 114, for sake of clarity a simplified informal speci-
fication 102, plurality of rules or requirements, set of laws of
concurrency 104, translator 106, process-based specification
108, analyzer 110, code translator 112, and high-level com-
puter language program 114 are illustrated.

System 100 may relate to thefield of chemical orbiological
process design or mechanical system design, and, generally
to any field where the behaviors exhibited by a process to be
designed can be described by a set of scenarios expressed in
natural language, or some appropriate graphical notation or
textual notation.

8
FIG. 2 is a block diagram that provides an overview of a

system 200 to engineer a script or procedure from scenarios,
according to an embodiment. System 200 may solve the need
in the art for an automated, generally applicable way to verify

5 that an implemented script is a provably correct implementa-
tion of a set of scenarios.

One embodiment of the system 200 may be a software
development system that includes a data flow and processing
points for the data. According to some embodiments, system

l0 200 can convert scenarios into a script onwhich model check-
ing and other mathematics-based verifications can then be
performed.

The system 200 can include a plurality of scenarios 202.
15 The scenarios 202 can be written in a particular syntax, such

as constrained natural language or graphical representations.
The scenarios 202 can embody software applications,
although one skilled in the art will recognize that other sys-
tems fall within the purview of this invention.

20 In at least one embodiment, the scenarios 202 may be
received by a translator 206. In some embodiments, the
optional inference engine 204 might be referenced by the
translator 206 when the scenarios 202 are translated by the
translator 206 into a formal specification 208. Subsequently,

25 the formal specification 208 can be translated by script trans-
lator 212 into a script 214 in some appropriate scripting
language. In some embodiments, no manual intervention in
the translation is provided. Those skilled in the art will readily
understand that other appropriate notations and/or languages

so exist that are within the scope of this invention.
In some embodiments, system 200 can include an analyzer

210 to determine various properties of the formal specifica-
tion, such as the existence of omissions, deadlock, livelock,
and race conditions, as well as other conditions, in the formal

35 specification 208, although one skilled in the art will recog-
nize that other additional properties can be determined by the
analyzer 210. The analyzer 210 may solve the need in the
prior art to reduce errors.

The terms "scripts" and "procedures" can be used inter-
40 changeably. Scripts can encompass not only instructions

written in programming languages (such as Python, awk, etc.,
as described) but also languages for physical (electro-me-
chanical) devices and even in constrained natural language
instructions or steps or checklists to be carried out by human

45 beings such as, but not limited to, an astronaut.
Scripting languages are computer programming languages

initially used only for simple, repeated actions. The name
"scripting languages" comes from a written script such as a
screenplay, where dialog is repeated verbatim for every per-

50 formance. Early script languages were often called batch
languages or j ob control languages. A script is typically inter-
preted rather than compiled, but not always. Scripting lan-
guages may also be known as scripting programming lan-
guages or script languages.

55 Many such languages can be quite sophisticated and have
been used to write elaborate programs, which are often still
called scripts even though the applications of scripts are well
beyond automating simple computer tasks. A script language
can be found at almost every level of a computer system.

6o Besides being found at the level of the operating system,
scripting languages appear in computer games, web applica-
tions, word processing documents, network software and
more. Scripting languages favor rapid development over effi-
ciency of execution; scripting languages are often imple-

65 mented with interpreters rather than compilers; and scripting
languages are effective in communication with program com-
ponents written in other languages.

US 7,979,848 B2
9
	

10
Many scripting languages emerged as tools for executing

	
Likewise, many computer game systems use a custom script-

one-off tasks, particularly in system administration. One way
	

ing language to express the programmed actions of non-
of looking at scripts is as "glue" that puts several components 	 player characters and the game environment. Languages of
together; thus scripts are widely used for creating graphical

	
this sort are designed for a single application and, while

user interfaces or executing a series of commands that might 5 application-specific scripting languages can superficially
otherwise have to be entered interactively through keyboard

	
resemble a specific general-purpose language (e.g. QuakeC,

at the command prompt. The operating system usually offers 	 modeled after C), application-specific scripting languages
some type of scripting language by default, widely known as

	
have custom features which distinguish such languages.

a shell script language.	 Examples of application-specific scripting languages
Scripts are typically stored only in their plain text form (as io include, Action Code Script, ActionScript, AutoLISP, Blob-

ASCII) and interpreted, or compiled, each time prior to being
	

bieScript [1], Emacs Lisp, HyperTalk, IRC script, Lingo,
invoked.	 Cana Embedded Language, mIRC script, NWscript, QuakeC,

Some scripting languages are designed for a specific
	

UnrealScript, Visual Basic for Applications, VBScript, and
domain, but often it is possible to write more general pro-	 ZZT-oop.
grams in that language. In many large-scale projects, a script- 15	 In regards to web programming scripting languages, an
ing language and a lower level programming language are

	
important type of application-specific scripting language is

used together, each lending its particular strengths to solve 	 one used to provide custom functionality to internet web
specific problems. Scripting languages are often designed for	 pages. Web programming scripting languages are specialized
interactive use, having many commands that can execute

	
for internet communication and use web browsers for their

individually, and often have very high level operations (for 20 user interface. However, most modern web programming
example, in the classic UNIX shell (sh), most operations are	 scripting languages are powerful enough for general-purpose
programs).	 programming. Examples of web programming scripting lan-

Such high level commands simplify the process of writing 	 guage include ColdFusion (Application Server), Lasso,
code. Programming features such as automatic memory man- 	 Miva, and SMX.
agement and bounds checking can be taken for granted. In a 25	 In regards to text processing scripting languages, the pro-
`lower level' or non-scripting language, managing memory	 cessing of text-based records is one of the oldest uses of
and variables and creating data structures tend to consume	 scripting languages. Many text processing languages, such as
more programmer effort and lines of code to complete a given

	
Unix's awk and, later, PERL, were originally designed to aid

task. In some situations this is well worth it for the resulting 	 system administrators in automating tasks that involved Unix
fine-grained control. The scripter typically has less flexibility 30 text-based configuration and log files. PERL is a special
to optimize a program for speed or to conserve memory. 	 case originally intended as a report-generation language, it

For the reasons noted above, it is usually faster to program
	

has grown into a full-fledged applications language in its own
in a scripting language, and script files are typically much

	
right. Examples of text processing scripting languages

smaller than programs with equivalent functionality in con- 	 include awk, PERL, sed and XSLT.
ventional programming languages such as C.	 35	 In regards to general-purpose dynamic scripting lan-

Scripting languages may fall into eight primary categories: 	 guages, some languages, such as PERL, began as scripting
Job control languages and shells, macro languages, applica- 	 languages but developed into programming languages suit-
tion-specific languages, web programming languages, text	 able for broader purposes. Other similar languages fre-
processing languages, general-purpose dynamic languages, 	 quently interpreted, memory-managed, dynamic have been
extension/embeddable languages, and extension/embeddable 4o described as "scripting languages" for these similarities, even
languages.	 if general-purpose dynamic scripting languages are more

In regards to job control scripting languages and shells, a	 commonly used for applications programming. Examples of
major class of scripting languages has grown out of the auto- 	 general-purpose dynamic scripting languages include APL,
mation of job control starting and controlling the behavior

	
Dylan, Groovy, MUMPS (M), newLISP, PERL, PHP, Python,

of system programs. Many of these languages' interpreters 45 Ruby, Scheme, Smalltalk, SuperCard, and Tool command
double as command-line interfaces, such as the Unix shell or

	
language (TCL). TCL was created as an extension language

the MS-DOS COMMAND.COM . Others, such as Apple-	 but has come to be used more frequently as a general purpose
Script, add scripting capability to computing environments

	
language in roles similar to Python, PERL, and Ruby.

lacking a command-line interface. Examples of job control
	

In regards to extension/embeddable languages, a small
scripting languages and shells include AppleScript, ARexx 5o number of languages have been designed for the purpose of
(Amiga Rexx), bash, csh, DCL, 4NT, JCL, ksh, MS-DOS

	
replacing application-specific scripting languages, by being

batch, Windows PowerShell, REXX, sh, and Winbatch
	

embeddable in application programs. The application pro-
In regards to macro scripting languages, with the advent of

	
grammer (working in C or another systems language)

Graphical user interfaces, a specialized kind of scripting lan- 	 includes "hooks" where the scripting language can control
guage for controlling a computer evolved. These languages, 55 the application. These languages serve the same purpose as
usually called Macro languages, interact with the same 	 application-specific extension languages, but with the advan-
graphic windows, menus, buttons and such that a person does. 	 tage of allowing some transfer of skills from application to
Macro language scripts are typically used to automate repeti-	 application. Examples of extension/embeddable script lan-
tive actions or configure a standard state. Macro language 	 guages include Ch (C/C++ interpreter), ECMAScript a.k.a.
scripts can be used to control any application running on a 6o DMDScript, JavaScript, JScript, GameMonkeyScript, Guile,
GUI-based computer, but in practice the support for such

	
ICI, Squirrel, Lua, TCT, and REALbasic Script (RBScript).

languages depends on the application and operating system. 	 JavaScript began as and primarily still is a language for
Examples of macro scripting languages include AutoHotkey, 	 scripting inside of web browsers, however, the standardiza-
AutoIt, and Expect.	 tion of the language as ECMAScript has made JavaScript

In regards to application-specific scripting languages, 65 widely adopted as a general purpose embeddable language.
many large application programs include an idiomatic script- 	 Other scripting languages include BeanShell (scripting for
ing language tailored to the needs of the application user. 	 Java), CobolScript, Escapade (server side scripting), Eupho-

US 7,979,848 B2
11

ria, F-Script, Ferite, Groovy, Gu14CI1, To, KiXtart, Mondrian,
Object REXX, Pike, Pliant, REBOL, ScriptBasic, Shorthand
Language, Simkin, Sleep, StepTalk, and Visual DialogScript.

In some embodiments, the script 214 can be mathemati-
cally and provably equivalent to the scenarios 202. Math-
ematically equivalent does not necessarily mean mathemati-
cally equal. Mathematical equivalence ofA and B means that
A implies B and B implies A. Note that the script 214 of some
embodiments can be mathematically equivalent to, rather
than necessarily equal to, the scenarios 202.

In some embodiments, the formal specification 208 can be
a process-based specification, such as process algebra
encoded notation. The process algebra encoded notation is a
mathematically notated form. This embodiment may satisfy
the need in the art for an automated, mathematics-based pro-
cess for requirements validation that does not require large
computational facilities.

In some embodiments, the scenarios 202 of system 200 can
specify allowed situations, events and/or results of a software
system. In that sense, the scenarios 202 can provide a very
abstract specification of the software system.

Some embodiments of system 200 can be operational for a
wide variety of rules, computer instructions, computer lan-
guages and applications; thus, system 200 may be generally
applicable. Such applications can include, without limitation,
space satellite control systems, distributed software systems,
sensor networks, robot operations, complex scripts for space-
craft integration and testing, chemical plant operation and
control, autonomous systems, electrical engineering applica-
tions such as chip design and other electrical circuit design,
business management applications in areas such as workflow
analysis, artificial intelligence applications in areas such as
knowledge-based systems and agent-based systems, highly
parallel and highly-distributed applications involving com-
puter command and control and computer-based monitoring,
and any other area involving process, sequence or algorithm
design. Hence, one skilled in the art will recognize that any
number of other applications not listed can fall within the
scope of this invention.

Some embodiments of the system 200 can provide
mechanical or automatic generation of the script 214, in
which human intervention is not required. In at least one
embodiment of the system 200, all that may be required to
update the generated application is a change in the scenarios
202, in which case the changes and validation can ripple
through the entire system without human intervention when
system 200 operates. This also allows the possibility of cost
effectively developing competing designs for a product and
implementing each to determine the best one.

Some embodiments of the system 200 may not include an
automated logic engine, such as a theorem-prover or an auto-
mated deduction engine, to infer the script 214 from the
scenarios 202. However, the script 214 can be a provably
correct version of the scenarios 202.

Thus, in regards to scripts and complex procedures, auto-
matic code generation of system 200 can generate proce-
dures/scripts in suitable scripting language or device control
language (such as for a robot) that would provide the proce-
dures, once validated, to be automatically transformed into an
implementation. Additionally, system 200 can be used to
"reverse engineer" existing procedures/scripts so that the
existing procedures/scripts can be analyzed and corrected and
recast in a format and form that can be more easily under-
stood. System 200 also can be used to reverse engineer mul-
tiple existing procedures/scripts (even written in different
languages) to a single formal model by which the procedures/

12
scripts are combined, analyzed for conflicts, and regenerated
as a single procedure/script (in the same or a different proce-
dure/scripting language).

Some embodiments of system 200 may operate in a multi-
5 processing, multi-threaded operating environment on a com-

puter, such as the computer 1702 illustrated in FIG. 17. While
the system 200 is not limited to any particular scenarios 202,
inference engine 204, translator 206, formal specification
208, analyzer 210, script translator 212 and script 214, for

10 sake of clarity, embodiments of simplified scenarios 202,
inference engine 204, translator 206, formal specification
208, analyzer 210, script translator 212 and script 214 are
described.

15 In some embodiments, the system 200 may be a software
development system that can include a data flow and process-
ing points for the data. System 200 can be representative of (i)
computer applications and electrical engineering applica-
tions such as chip design and other electrical circuit design,

20 (ii) business management applications in areas such as work-
flow analysis, (iii) artificial intelligence applications in areas
such as knowledge-based systems and agent-based systems,
(iv) highly parallel and highly-distributed applications
involving computer command and control and computer-

25 based monitoring, and (v) any other area involving process,
sequence or algorithm design. One skilled in the art, however,
will recognize that other applications can exist that are within
the purview of this invention. According to the disclosed
embodiments, system 200 can, without human intervention,

30 convert different types of specifications (such as natural lan-
guage scenarios or descriptions which are effectively pre-
processed scenarios) into process-based scripts on which
model checking and other mathematics-based verifications

35 are performed, and then optionally convert the script into
code.

System 200 can be operational for a wide variety of lan-
guages for expressing requirements, thus system 200 may be
generally applicable. Such applications may include, without

40 limitation, distributed software systems, sensor networks,
robot operation, complex scripts for spacecraft integration
and testing, chemical plant operation and control, and autono-
mous systems. One skilled in the art will understand that these
applications are cited by way of example and that other appli-

45 cations can fall within the scope of the invention.
According to some embodiments, a scenario can be a natu-

ral language text (or a combination of any, such as possibly
graphical, representations of sequential steps or events) that
describes the software's actions in response to incoming data

5o and the internal goals of the software. Scenarios also can
describe communication protocols between systems and
between the components within the systems. Scenarios also
can be known as use cases. A scenario can describe one or
more potential executions of a system, such as describing

55 what happens in a particular situation and what range of
behaviors is expected from or omitted by the system under
various conditions.

Natural language scenarios can be constructed in terms of
individual scenarios written in a structured natural language.

6o Different scenarios can be written by different stakeholders of
the system, corresponding to the different views the stake-
holders can have of how the system will perform, including
alternative views corresponding to higher or lower levels of
abstraction. Natural language scenarios can be generated by a

65 user with or without mechanical or computer aid. Such a set
of natural language scenarios can provide the descriptions of
actions that occur as the software executes. Some of these

US 7,979,848 B2
13
	

14
actions can be explicit and required, while others can be due 	 specification language representation. In some embodiments,
to errors arising or as a result of adapting to changing condi- 	 the mechanical aspect means that no manual intervention in
tions as the system executes.	 the translation is provided. In some embodiments, the pro-

For example, if the system involves commanding space 	 cess-based specification 108 is an intermediate notation or
satellites, scenarios for that system can include sending com- 5 language of process algebra such as Hoare's language of
mands to the satellites and processing data received in

	
Communicating Sequential Processes (CSP).

response to the commands. Natural language scenarios may
	

According to some embodiments, the pattern matcher 302
be specific to the technology or application domain to which

	
matches patterns of traces against the traces that would be

the natural language scenarios are applied. A fully automated
	

generated by each of the laws of concurrency 104. The traces
general purpose approach covering all domains can be tech- io can be simplified versions of the scenarios. The traces gener-
nically prohibitive to implement in a way that is both com-	 ated by each law of concurrency 104 may be specified as a set
plete and consistent. 	 in comprehension; that is, instead of listing all of the traces

To ensure consistency, the domain of application can often 	 that a law would generate, a rule for generating this set is
be purpose-specific. For example, scenarios for satellite sys- 	 provided. A trace, or traces, can now be pattern matched
tems may not be applicable as scenarios for systems that 15 against a set of traces generated by a law by comparing the
manufacture agricultural chemicals. 	 trace(s) to the rule and seeing if it is admitted by the rule. A

FIG. 3 is a block diagram that provides an overview of a 	 trace can match more than one rule, in which case the choice
system 300 to generate a high-level computer source code	 may be arbitrary (possibly resulting in an inefficient result,
program from an informal specification, according to an

	
but this can be optimized later), or a trace can be based on

embodiment that includes a pattern matcher. System 300 may 20 some knowledge of the domain that can be encoded in a tool
solve the need in the art for an automated, generally appli- 	 to perform the pattern matching.
cable way to produce a system that is a provably correct

	
The process-based specification 108 may be mathemati-

implementation of an informal design specification that does 	 cally and provably equivalent to the informal specification
not require, in applying the system to any particular problem

	
102. Mathematically equivalent does not necessarily mean

or application, the use of a theorem-prover. In some embodi- 25 mathematically equal. Mathematical equivalence of A and B
ments, system 300 requires less computing resources and

	
means that A implies B and B implies A. Note that applying

time than required in using a theorem-prover, while still
	

the laws of concurrency 104 to the process-based specifica-
affording the benefits of using a theorem-prover such as 	 tion 108 might allow for the retrieval of a trace-based speci-
reduced amount of testing required of a new system, and

	
fication that is equivalent to the informal specification 102.

improved confidence that the systems reflects the require- so Also, note that the process-based specification 108 may be
ments.	 mathematically equivalent to rather than necessarily equal to

In some embodiments, system 300 is a software develop- 	 the original informal specification 102. This aspect may indi-
ment system that includes a data flow and processing points 	 cate that the process may be reversed, allowing for reverse
for the data. System 300 can be representative of (i) computer 	 engineering of existing systems, or for iterative development
applications and electrical engineering applications such as 35 of more complex systems.
chip design and other electrical circuit design (ii) business

	
In some embodiments, the system includes an analyzer 110

management applications in areas such as workflow analysis, 	 to determine various properties such as existence of omis-
(iii) artificial intelligence applications in areas such as knowl-	 sions, deadlock, livelock, and race conditions in the process-
edge-based systems and agent-based systems, (iv) highly par- 	 based specification 108.
allel and highly-distributed applications involving computer 40	 System 300 may also includes a code translator 112 to
command and control and computer-based monitoring, (v)

	
translate the plurality of process-based specification seg-

remote space vehicles such as autonomous nanotechnology 	 ments 108 to a set of instructions in a high-level computer
swarm (ANTS) and moon and Mars exploration vehicles, (vi)

	
language program 114, such as the Java language.

recognition of protein sequences in DNA samples, identify- 	 In some embodiments, system 300 is operational for a wide
ing rogue agents in a software system, and identification of 45 variety of informal specification languages and applications,
viruses or other malicious code in software systems and (vii)

	
thus system 300 can be generally applicable. Such applica-

any other area involving process, sequence or algorithm	 tions may include distributed software systems, sensor net-
design. According to the disclosed embodiments, system 300	 works, robot operation, complex scripts for spacecraft inte-
can mechanically convert different types of specifications 	 gration and testing, chemical plant operation and control, and
(either natural language scenarios or descriptions which are 50 autonomous systems.
effectively pre-processed scenarios) into process-based for- 	 System 300 may provide mechanical regeneration of the
mal specifications on which model checking and other math- 	 executable system when requirements dictate a change in the
ematics-based verifications are performed, and then option- 	 high level specification. In some embodiments of system 300,
ally convert the formal specification into code.	 all that is required to update the generated application is a

In some embodiments, system 300 includes an informal 55 change in the informal specification 102, and then the
specification 102 having a plurality of rules or requirements. 	 changes and validation can ripple through in a mechanical
The informal specification 102 can be expressed in restricted

	
process when system 300 operates. This may also allow the

natural language, graphical notations, English language, pro- 	 possibility of cost effectively developing competing designs
gramming language representations, scenarios, or even using

	
for a product and implementing each to determine the best

semi-formal notations such as unified modeling language 60 one. Thus, system 300 can reduce system development time,
(UML) use cases. 	 reduce the amount of testing required of a new system, and

System 300 may also include a set of laws of concurrency
	

improve confidence that the system reflects the requirements.
104. The informal specification 102 and a set of laws of

	
In some embodiments, system 300 does not include a theo-

concurrency 104 can be received by a mechanical pattern 	 rem-prover to infer the process-based specification segments
matcher 302. The plurality of rules or requirements of the 65 from the informal specification. However, the plurality of
informal specification 102 may be pattern-matched mechani- 	 process-based specification segments 108 can be provably
cally to a process-based specification 108 or other formal

	
correct implementations of the informal specification 102,

US 7,979,848 B2
15
	

16
provided the developer of an instance of system 300 has	 ematically equal. Mathematical equivalence of A and B
properly used a theorem-prover (not shown) to prove that the 	 means that A implies B and B implies A. Note that the imple-
mechanical pattern matcher 302 correctly translates informal

	
mentation 410 of some embodiments can be mathematically

specifications into formal specifications. 	 equivalent to, rather than necessarily equal to, the scenarios
Some embodiments of system 300 operate in a multi-pro- 5 202.

cessing, multi-threaded operating environment on a com- 	 In some embodiments, the formal specification 404 can be
puter, such as computer 1702 in FIG. 17. While the system	 a process-based specification, such as process algebra
300 may not be limited to any particular informal specifica- 	 encoded notation. The process algebra encoded notation can
tion 102, plurality of rules or requirements, set of laws of

	
be a mathematically notated form. This embodiment may

concurrency 104, mechanical pattern matcher 302, process- io satisfy the need in the art for an automated, mathematics-
based specification 108, analyzer 110, code translator 112

	
based process for requirements validation that does not

and high-level computer language program 114, for sake of
	

require large computational facilities.
clarity a simplified informal specification 102, plurality of

	
In some embodiments, the scenarios 202 of system 400 can

rules or requirements, set of laws of concurrency 104, pattern 	 specify allowed situations, events and/or results of a software
matcher 302, process-based specification 108, analyzer 110, 15 system. In that sense, the scenarios 202 can provide a very
code translator 112, and high-level computer language pro- 	 abstract specification of the software system.
gram 114 are described.	 Some embodiments of system 400 can be operational for a

In some embodiments, system 300 relates to the fields of
	

wide variety of rules, computer instructions, computer lan-
chemical or biological process design or mechanical system 	 guages and applications; thus, system 400 can be generally
design, and, generally to any field where the behaviors exhib- 20 applicable. Such applications can include, without limitation,
ited by a process to be designed is described by a set of

	
space satellite control systems, distributed software systems,

scenarios expressed in natural language, or some appropriate 	 sensor networks, robot operations, complex scripts for space-
graphical notation or textual notation. 	 craft integration and testing, chemical plant operation and

FIG. 4 is a block diagram that provides an overview of a 	 control, autonomous systems, electrical engineering applica-
system 400 to engineer an implementation from scenarios, 25 tions such as chip design and other electrical circuit design,
according to an embodiment. System 400 may reduce system

	
business management applications in areas such as workflow

development time, reduce the amount of testing required of a 	 analysis, artificial intelligence applications in areas such as
new system, and improve confidence that the system reflects

	
knowledge-based systems and agent-based systems, highly

the requirements.	 parallel and highly-distributed applications involving com-
At least one embodiment of the system 400 is a software 30 puter command and control and computer-based monitoring,

development system that includes a data flow and processing 	 and any other area involving process, sequence or algorithm
points for the data. According to the disclosed embodiments, 	 design. Hence, one skilled in the art will recognize that any
system 400 can convert scenarios into an implementation on 	 number of other applications not listed can fall within the
which model checking and other mathematics-based verifi- 	 scope of this invention.
cations can then be performed. 	 35	 Some embodiments of the system 400 can provide

The system 400 can include a plurality of scenarios 202. 	 mechanical or automatic generation of the implementation
The scenarios 202 can be written in a particular syntax, such

	
410, in which human intervention is not required. In at least

as constrained natural language or graphical representations.	 one embodiment of the system 400, all that may be required
The scenarios 202 can embody software applications,	 to update the generated application is a change in the sce-
although one skilled in the art will recognize that other appli- 4o narios 202, in which case the changes and validation can
cations fall within the purview of this invention. 	 ripple through the entire system without human intervention

In at least one embodiment, the scenarios 202 are received
	

when system 400 operates. This also allows the possibility of
by a pattern matcher 402. The optional inference engine 204

	
cost effectively developing competing designs for a product

might be referenced by the pattern matcher 402 when the	 and implementing each to determine the best one.
scenarios 202 are translated by the pattern matcher 402 into a 45	 Some embodiments of the system 400 do not include an
formal specification 404. Subsequently, the formal specifica- 	 automated logic engine, such as a theorem-prover or an auto-
tion 404 can be translated by a translator 408 into an imple-	 mated deduction engine, to infer the implementation 410
mentation 410 in some appropriate scripting language or

	
from the scenarios 202. However, the implementation 410

other implementation language. In some embodiments, no 	 can be a provably correct version of the scenarios 202.
manual intervention in the translation is provided; thus, sys- 50	 Thus, in regards to implementations, automatic code gen-
tem 400 can improve confidence that the system reflects the 	 eration of system 400 can generate an implementation in
requirements, which in turn can reduce the amount of testing	 suitable scripting language or device control language (such
required of a new system and reduce system development 	 as for a robot) that would provide the procedures, once vali-
time. Those skilled in the art will readily understand that other

	
dated, to be automatically transformed into an implementa-

appropriate notations and/or languages exist that are within 55 tion. Additionally, system 400 can be used to "reverse engi-
the scope of this invention.	 neer" existing implementation so that the implementation can

In some embodiments, system 400 can include an analyzer
	

be analyzed and corrected and recast in a format and form that
406 to determine various properties of the formal specifica- 	 can be more easily understood. System 400 also can be used
tion, such as the existence of omissions, deadlock, livelock, 	 to reverse engineer multiple existing implementations (even
and race conditions, as well as other conditions, in the formal 60 written in different languages) to a single formal model by
specification 404, although one skilled in the art will recog- 	 which the implementations may be combined, analyzed for
nize that other additional properties can be determined by the	 conflicts, and regenerated as a single implementation (in the
analyzer 406. The analyzer 406 may solve the need in the	 same or a different procedure/scripting language).
prior art to reduce errors. 	 Some embodiments of system 400 operate in a multi-pro-

In some embodiments, the implementation 410 can be 65 cessing, multi-threaded operating environment on a com-
mathematically and provably equivalent to the scenarios 202. 	 puter, such as the computer 1702 illustrated in FIG. 17. While
Mathematically equivalent does not necessarily mean math-	 the system 400 is not limited to any particular scenarios 202,

US 7,979,848 B2
17

inference engine 204, pattern matcher 402, formal specifica-
tion 404, analyzer 406, translator 408 and implementation
410, for sake of clarity, embodiments of simplified scenarios
202, inference engine 204, pattern matcher 402, formal speci-
fication 404, analyzer 406, translator 408 and an implemen-
tation 410 are described.

In some embodiments, the system 400 is a software devel-
opment system that can include a data flow and processing
points for the data. System 400 can be representative of (i)
computer applications and electrical engineering applica-
tions such as chip design and other electrical circuit design,
(ii) business management applications in areas such as work-
flow analysis, (iii) artificial intelligence applications in areas
such as knowledge-based systems and agent-based systems,
(iv) highly parallel and highly-distributed applications
involving computer command and control and computer-
based monitoring, and (v) any other area involving process,
sequence or algorithm design. One skilled in the art, however,
will recognize that other applications can exist that are within
the purview of this invention. According to the disclosed
embodiments, system 400 can, without human intervention,
convert different types of specifications (such as natural lan-
guage scenarios or descriptions which are effectively pre-
processed scenarios) into a formal specification on which
model checking and other mathematics-based verifications
are performed, and then optionally translate the formal speci-
fication into code or some other implementation.

System 400 can be operational for a wide variety of lan-
guages for expressing requirements; thus, system 400 can be
generally applicable. Such applications include, without
limitation, distributed software systems, sensor networks,
robot operation, complex scripts for spacecraft integration
and testing, chemical plant operation and control, and autono-
mous systems. One skilled in the art will understand that these
applications are cited by way of example and that other appli-
cations can fall within the scope of the invention.

Method Embodiments

In the previous section, a system level overview of the
operation of some embodiments are described. Inthis section,
the particular methods of some such embodiments are
described by reference to a series of flowcharts. Describing
the methods by reference to a flowchart enables one skilled in
the art to develop such programs, firmware, or hardware,
including instructions to carry out the methods on suitable
computers and executing the instructions from computer-
readable media. Similarly, the methods performed by the
server computer programs, firmware, or hardware may also
be composed of computer-executable instructions. Methods
500-1600 may be performed by a program executing on, or
performed by, firmware or hardware that is a part of a com-
puter, such as computer 1702 in FIG. 17.

FIG. 5 is a flowchart of a method 500 to generate an
executable system from an informal specification, according
to an embodiment. Method 500 may solve the need in the art
to generate executable computer instructions from require-
ments with neither the time involved in manually writing the
executable computer instructions, nor the mistakes that may
arise in manually writing the executable computer instruc-
tions, without using a theorem-prover.

Method 500 may include translating 502 mechanically
each of a plurality of requirements of the informal specifica-
tion to a plurality of process-based specification segments. In
some embodiments, the translating 502 includes inferring the

18
process-based specification segments from the informal
specification. One embodiment of translating 502 is shown in
FIG. 6 below.

In some embodiments, the process-based specification can
5 be process algebra notation. Such embodiments may satisfy

the need in the art for an automated, mathematics-based pro-
cess for requirements validation that does not require large
computational facilities.

Thereafter, method 500 may include aggregating 504 the
io plurality of process-based specification segments into a

single process-based specification or model.
Subsequently, method 500 may include translating 506 the

single process-based specification model to instructions
encoded in the Java computer language or some other high-

15 level computer programming language. Thereafter, method
500 may include compiling 508 the instructions encoded in
the Java computer language or other high-level computer
programming language into a file of executable instructions.

In some embodiments, method 500 includes invoking the
20 executable instructions, which can provide a method to con-

vert informal specifications to an application system without
involvement from a computer programmer.

Some embodiments ofinethod 500 do not include invoking
a theorem-prover to infer the process-based specification seg-

25 ments from the informal specification.
FIG. 6 is a flowchart of a method 600 to translate mechani-

cally each of a plurality of requirements of the informal
specification to aplurality of process-based specification seg-
ments, according to an embodiment. Method 600 may

30 include at least one embodiment of translating 502 in FIG. 5.
According to some embodiments, method 600 includes

verifying 602 the syntax of the plurality of requirements of
the informal specification. Thereafter, method 600 may
include mapping 604 the plurality of requirements of the

35 informal specification to a process-based specification.
In some embodiments, method 600 subsequently also

includes verifying 606 consistency of the process-based
specification with at least one other process-based specifica-
tion. In some embodiments, method 600 subsequently also

40 includes verifying 608 lack of other problems in the process-
based specification. One example of other problems can be
unreachable states in the process defined in the process-based
specification.

FIG. 7 is a flowchart of a method 700 to validate/update a
45 system, according to an embodiment. Method 700 may solve

the need in the prior art to reduce errors in scripts.
Method 700 can include analyzing 702 a script, such as

script 214, of the system 200, the script having been previ-
ously derived from the rules of the system.

50 Thereafter, a determination 704 can be made as to whether
or not the analyzing 702 indicates that the script contains a
flaw. If a flaw does exist, then the rules can be corrected 706
accordingly.

In some embodiments, the analyzing 702 can include
55 applying mathematical logic to the script in order to identify

a presence or absence of mathematical properties of the
script. Mathematical properties of the script that can be deter-
mined by applying mathematical logic to the script can
include, by way of example:

60	 1) whether or not the script implies a system execution
trace that includes a deadlock condition, and

2) whether or not the script implies a system execution
trace that includes a livelock condition.

The above two properties can be domain independent. One
65 skilled in the art will note that there are many other possible

flaws that could be detected through the analysis of the model,
many, or even most, of which might be domain dependent. An

US 7,979,848 B2
19

example of a domain dependent property could be repre-
sented by the operational principle that "closing a door that is
not open is not a valid action." This example could be appli-
cable in the domain of the Hubble Space Telescope on-orbit
repair.

Because in some embodiments the script can be provably
equivalent to the scenarios by virtue of method 700, if a flaw
is detected in the script, then the flaw could be corrected by
changing (correcting) the scenarios. Once the correction is
made, then the corrected scenarios can be processed by sys-
tem 200 in FIG. 2 or method 800 in FIG. 8 to derive a new
script from the corrected scenarios. According to at least one
embodiment, the new script can be processed by method 700,
and the iterations of method 800 and method 700 can repeat
until there are no more flaws in the script generated from the
scenarios, at which point the scenarios have no flaws because
the script is provably equivalent to the scenarios from which
it was derived. Thus, iterations of methods 800 and 700 can
provide verification/validation of the scenarios.

Thereafter, the new script can be used to generate an imple-
mentation of the system.

FIG. 8 is a flowchart of a method to validate/update sce-
narios of a system, according to an embodiment. The method
800 can include translating 802 scenarios, such as the sce-
narios 202, into a formal specification 208 without human
intervention.

Thereafter, method 800 can include optionally analyzing
804 the formal model or specification 208. The analyzing 804
can be a verification/validation of the scenarios 202. In some
embodiments, the analyzing 804 determines various proper-
ties such as existence of omissions, deadlock, livelock, and
race conditions in the script 214, although one skilled in the
art will know that analyzing the formal model can determine
other properties not specifically listed, which are contem-
plated by this invention. In some embodiments, the analyzing
804 can provide a mathematically sound analysis of the sce-
narios 202 in a general format that doesn't require significant
understanding of the specific rules of the scenarios 202. Fur-
ther, the analyzing 804 can warn developers of errors in their
scenarios 202, such as contradictions and inconsistencies, but
equally importantly it can highlight rules or sets of rules that
are underspecified or over-specified and need to be corrected
for the scenarios 202 to operate as intended. Thus, no knowl-
edge of the scenarios 202 may be required, but instead sig-
nificant analysis, verification, testing, simulation and model
checking of the scenarios 202 using customized tools or exist-
ing tools and techniques can be provided.

Thereafter, in some embodiments, method 800 can include
translating 806 the formal specification 208 to a script 214.
Thus, in at least one embodiment, the method 800 provides a
method to convert scenarios to scripts without involvement
from a computer programmer.

Some embodiments of the method 800 do not include
invoking an automated logic engine, such as a theorem-
prover, to infer the script 214 from the scenarios 202.

In some embodiments of the method 800, informal repre-
sentations of requirements for procedures/scripts that repre-
sent the operation of a system can be mechanically converted
to a mathematically sound specification that can be analyzed
for defects and used for various transformations including
automatic translation into executable form and automatic
regeneration of procedures/scripts into other notations/repre-
sentations. In other embodiments, the method disclosed
herein can be used to automatically reverse engineer existing
procedures and scripts to formal models from which the
method can be used to produce customer-readable represen-

20
tations of procedures/scripts or machine-processable scripts
in any of various scripting languages.

Mathematically sound techniques can be used to mechani-
cally translate an informal procedure/script requirement into

5 an equivalent formal model. The model may be mechanically
(that is, with no manual intervention) manipulated, examined,
analyzed, verified, and used in a simulation.

FIG. 9 is a flowchart of a method 900 to translate each of a

10
plurality of requirements to a plurality of formal specification
segments, and formally compose the plurality of formal
specification segments into a single equivalent specification,
and translate the single formal specification into a script,
according to an embodiment. Method 900 may solve the need

15 in the art to generate scripts from requirements with neither
the time involved in manually writing the scripts, nor the
mistakes that can arise in manually writing the scenarios,
without using an automated logic engine.

Method 900 can include mechanically translating 902 each
20 of a plurality of scenarios to a plurality of formal specification

segments. The translation can be done without human inter-
vention. One embodiment of translating 902 is shown in FIG.
10 below.

Thereafter, method 900 can include aggregating 904 the
25 plurality of formal specification segments into a single formal

specification or model.
Subsequently, method 900 can include translating 906 the

single formal specification or model to multiple scripts.
Thereafter, method 900 can include generating 908 a script

30 from the scripts that were accepted from translating 906.
Thus, method 900 can provide at least one embodiment of a
method to convert a script to an application system without
involvement from a computer programmer.

Some embodiments of method 900 do not include invoking
35 a theorem-prover or any other automated logic engine to infer

the formal specification segments from the scenarios.
FIG. 10 is a flowchart of a method 1000 to verify the syntax

of a set of scenarios, translate the set of scenarios to a formal
specification, verify the consistency of the formal specifica-

40 tion, and verify the absence of other problems, according to
an embodiment. Method 1000 can be one embodiment of
translating 802 in FIG. 8. As indicated, such translation can be
accomplished without human intervention.

In some embodiments, the method 1000 can include veri-
45 fying 1002 the syntax of the plurality of scenarios. Thereafter,

method 1000 can include mapping 1004 the plurality of sce-
narios to a formal specification.

In some embodiments, method 1000 subsequently can also
include verifying 1006 consistency of the formal specifica-

50 tion. In some embodiments, method 1000 subsequently also
includes verifying 1008 a lack of other problems in the formal
specification. One example of other problems may be
unreachable states in the process defined in the formal speci-
fication, although one skilled in the art will understand that

55 yet other problems are contemplated.
FIG. 11 is a flowchart of a method 1100 to generate an

executable system from an informal specification, according
to an embodiment. Method 1100 may solve the need in the art
to generate executable computer instructions from require-

60 ments with neither the time nor the mistakes involved in
manually writing the executable computer instructions, with-
out using a theorem-prover.

Some embodiments of method 1100 include mechanically
pattern-matching 1102 each of a plurality of scenarios of an

65 informal specification to a plurality of process-based specifi-
cation segments. In some embodiments, the pattern-matching
1102 includes inferring the process-based specification seg-

US 7,979,848 B2
21
	

22
ments from the scenarios. One embodiment ofpattern-match- 	 not open is not a valid action." This example could be appli-
ing 1102 is shown in FIG. 12 below.	 cable in the domain of the Hubble Space Telescope on-orbit

In some embodiments, the process-based specification is 	 repair.
process algebra notation. That embodiment may satisfy the

	
Because in some embodiments the specification can be

need in the art for an automated, mathematics-based process 5 provably equivalent to the scenarios by virtue of method
for requirements validation that does not require large com- 	 1300, if a flaw is detected in the specification, then the flaw
putational facilities. 	 could be corrected by changing (correcting) the scenarios.

Thereafter, some embodiments of method 1100 can
	

Once the correction is made, then the corrected scenarios can
include aggregating 1104 the plurality of process-based

	
be processed by system 200 in FIG. 2 or method 1400 in FIG.

specification segments into a single process-based specifica- io 14 to derive a new specification from the corrected scenarios.
tion or model.	 According to at least one embodiment, the new specification

Subsequently, method 1100 may include translating 1106
	

can be processed by method 1300, and the iterations of
the single process-based specification or model to instruc- 	 method 1400 and method 1300 can repeat until there are no
tions encoded in the Java computer language or some other 	 more flaws in the specification generated from the scenarios,
high-level computer programming language. Thereafter, 15 at which point the scenarios have no flaws because the speci-
method 1100 may include compiling 1108 the instructions

	
fication can be provably equivalent to the scenarios from

encoded in the high level computer programming language 	 which it was derived. Thus, iterations of methods 1400 and
into a file of executable instructions or code. 	 1300 can provide verification/validation of the scenarios.

In some embodiments, method 1100 includes generating
	

Thereafter, a determination 1304 can be made as to
the executable instructions, which can provide a method to 20 whether or not the analyzing 1302 indicates that the specifi-
convertinformal specifications to an application system with-	 cation contains a flaw. If a flaw does exist, then the rules/
out involvement from a computer programmer. 	 scenarios/requirements can be corrected 1306 accordingly.

Some embodiments of method 1100 do not include invok-	 Thereafter, the new specification can be used to generate an
ing a theorem-prover to infer the process-based specification

	
implementation of the system.

segments from the informal specification.	 25	 FIG. 14 is a flowchart of a method to pattern-match sce-
FIG. 12 is a flowchart of a method 1200 to translate	 narios into a formal specification, analyze the formal speci-

mechanically each of a plurality of requirements of the infor-	 fication, and translate the formal specification into an imple-
mal specification to a plurality of process-based specification	 mentation, according to an embodiment.
segments, according to an embodiment. Method 1200 is one

	
Method 1400 can include pattern-matching 1402 sce-

embodiment of pattern-matching 1102 in FIG. 11.	 so narios, such as scenarios 202, into a formal model or speci-
Method 1200 may include verifying 1202 the syntax of the

	
fication without human intervention. Thereafter, method

plurality of informal requirements of the specification. There- 	 1400 can include analyzing 1404 the formal specification or
after, method 1200 may include mapping 1204 the plurality of

	
model. The analyzing 1404 can be a verification/validation of

informal requirements of the specification to a process-based
	

the scenarios 202. In some embodiments, the analyzing 1404
specification. 	 35 determines various properties such as existence of omissions,

In some embodiments, method 1200 subsequently also
	

deadlock, livelock, and race conditions in the formal specifi-
includes verifying 1206 consistency of the process-based

	
cation, although one skilled in the art will know that analyzing

specification with at least one other process-based specifica-	 the formal model can determine other properties not specifi-
tion. In some embodiments, method 1200 subsequently also	 cally listed, which are contemplated in method 1400. In some
includes verifying 1208 a lack of other problems in the pro- 40 embodiments, the analyzing 1404 can provide a mathemati-
cess-based specification. One example of other problems	 cally sound analysis of the scenarios 202 in a general format
might include unreachable states in the process defined in the	 that doesn't require significant understanding of the specific
process-based specification.	 rules of the scenarios 202. Further, the analyzing 1404 can

FIG. 13 is a flowchart of a method 1300 to validate/update	 warn developers of errors in their scenarios 202, such as
a system, according to an embodiment. Method 1300 may 45 contradictions and inconsistencies, but equally importantly, it
solve the need in the prior art to reduce errors in specifica- 	 can highlight rules or sets of rules that are underspecified or
tions.	 over-specified and need to be corrected for the scenarios 202

Method 1300 can include analyzing 1302 a specification, 	 to operate as intended. Thus, in some embodiments, no
such as formal specification 208 of the system, the specifica-	 knowledge of the scenarios 202 is required, but instead sig-
tion having been previously derived from the scenarios of the 5o nificant analysis, verification, testing, simulation and model
system.	 checking of the scenarios 202 using customized tools or exist-

In some embodiments, the analyzing 1302 can include
	

ing tools and techniques is provided.
applying mathematical logic to the specification in order to

	
Thereafter, in some embodiments, method 1400 can

identify a presence or absence of mathematical properties of
	

include translating 1406 the formal specification into an
the specification. Mathematical properties of the specifica- 55 implementation, such as implementation 214. Thus, in at least
tion that can be determined by applying mathematical logic to	 one embodiment, the method 1400 provides a method to
the specification can include, by way of example: 	 convert scenarios to implementations without involvement

1)whether or not the specification implies a system execu- 	 from a computer programmer.
tion trace that includes a deadlock condition, and

	
Some embodiments of the method 1400 do not include

2) whether or not the specification implies a system execu- 60 invoking an automated logic engine, such as a theorem-
tion trace that includes a livelock condition. 	 prover, to infer the implementation 214 from the scenarios

The above two properties can be domain independent. One
	

202.
skilled in the art will note that there are many other possible

	
In method 1400, informal representations of requirements

flaws that could be detected through the analysis of the model, 	 for implementations that represent the operation of a system
many or even most of which might be domain dependent. An 65 can be mechanically converted to a mathematically sound
example of a domain dependent property would be repre- 	 specification that can be analyzed for defects and used for
sented by the operational principle that "closing a door that is 	 various transformations, including automatic translation into

US 7,979,848 B2
23

executable form and automatic regeneration of implementa-
tions into other notations/representations. In some embodi-
ments, the method disclosed herein can be used to automati-
cally reverse engineer existing implementations to formal
models or specifications from which the method can be used
to produce customer-readable representations of implemen-
tations or machine-proces sable implementations in any of
various languages.

Mathematically sound techniques can be used to mechani-
cally translate an informal scenario requirement into an
equivalent formal specification or model. The model may be
mechanically (that is, with no manual intervention) manipu-
lated, examined, analyzed, verified, and used in a simulation.

FIG. 15 is a flowchart of a method 1500 to translate each of
a plurality of requirements to a plurality of formal specifica-
tion segments, and formally compose the plurality of formal
specification segments into a single equivalent specification,
according to an embodiment. Method 1500 can solve the need
in the art to generate scenarios from requirements with nei-
ther the time involved nor the mistakes that can arise in
manually writing the scenarios, without using an automated
logic engine.

Method 1500 can include mechanically pattern-matching
1502 domain knowledge to a plurality of formal specification
segments. The translation can be done without human inter-
vention. One embodiment of pattern-matching 1502 is shown
in FIG. 16 below.

Thereafter, method 1500 can include aggregating 1504 the
plurality of formal specification segments into a single formal
specification or model.

Some embodiments of method 1500 do not include invok-
ing a theorem-prover or any other automated logic engine to
infer the implementation from the domain knowledge.

FIG. 16 is a flowchart of a method 1600 to verify the syntax
of a set of domain knowledge, translate the set of domain
knowledge to a formal specification, verify the consistency of
the formal specification, and verify the absence of other prob-
lems, according to an embodiment. Method 1600 can be one
embodiment of pattern-matching 1502 in FIG. 15. As indi-
cated, such translation can be accomplished without human
intervention.

In some embodiments, the method 1600 can include veri-
fying 1602 the syntax of the domain knowledge. Thereafter,
method 1600 can include mapping 1604 the set of domain
knowledge to a formal specification.

In some embodiments, method 1600 subsequently can also
include verifying 1606 consistency of the formal specifica-
tion segment. In some embodiments, method 1600 also sub-
sequently includes verifying 1608 a lack of other problems in
the formal specification. One example of other problems can
be unreachable states in the process defined in the formal
specification, although one skilled in the art will understand
that yet other problems are contemplated.

In some embodiments, methods 500-1600 can be imple-
mented as a computer data signal embodied in a carrier wave
that represents a sequence of instructions, which, when
executed by a processor, such as processor 1704 in FIG. 17,
cause the processor to perform the respective method. In other
embodiments, methods 500-1600 can be implemented as a
computer-accessible medium having executable instructions
capable of directing a processor, such as processor 1704 in
FIG. 17, to perform the respective method. In varying
embodiments, the medium can be a magnetic medium, an
electronic medium, an electromagnetic medium, a medium
involving configurations or spatial positioning of electrons,
ions, atoms, or molecules or aggregations of such particles, a
medium involving quantum mechanical entities, or an optical

24
medium. Other mediums will be readily apparent to one
skilled in the art and fall within the scope of this invention.

Hardware and Operating Environment
5

FIG. 17 is a block diagram of the hardware and operating
environment 1700 in which different embodiments can be
practiced. The description of FIG. 17 provides an overview of
computer hardware and a suitable computing environment in

io conjunction with which some embodiments can be imple-
mented. Embodiments are described in terms of a computer
executing computer-executable instructions. However, some
embodiments can be implemented entirely in computer hard-
ware in which the computer-executable instructions are

15 implemented in read-only memory. Some embodiments can
also be implemented in client/server computing environ-
ments where remote devices that perform tasks are linked
through a communications network. Program modules can be
located in both local and remote memory storage devices in a

20 distributed computing environment. Some embodiments can
also be at least partially implemented in a quantum mechani-
cal computing and communications environment.

Computer 1702 may include a processor 1704, commer-
cially available from Intel, Motorola, Cyrix and others. Com-

25 puter 1702 may also include random-access memory (RAM)
1706, read-only memory (ROM) 1708, and one or more mass
storage devices 1710, and a system bus 1712, that operatively
couples various system components to the processing unit
1704. The memory 1706, 1708, and mass storage devices,

30 1710, are types of computer-accessible media. Mass storage
devices 1710 are more specifically types of nonvolatile com-
puter-accessible media and can include one or more hard disk
drives, floppy disk drives, optical disk drives, and tape car-
tridge drives. The processor 1704 can execute computer pro-

35 grams stored on the computer-accessible media.
Computer 1702 can be communicatively connected to the

Internet 1714 (or any communications network) via a com-
munication device 1716. Internet 1714 connectivity is well
known within the art. In one embodiment, a communication

4o device 1716 may be a modem that responds to communica-
tion drivers to connect to the Internet via what is known in the
art as a "dial-up connection." In another embodiment, a com-
munication device 1716 may be an Ethernet(k or similar
hardware network card connected to a local-area network

45 (LAN) that itself is connected to the Internet via what is
known in the art as a "direct connection" (e.g., TI line, etc.).

A user may enter commands and information into the com-
puter 1702 through input devices such as a keyboard 1718 or
a pointing device 1720. The keyboard 1718 can permit entry

50 of textual information into computer 1702, as known within
the art, and embodiments are not limited to any particular type
of keyboard. Pointing device 1720 can permit the control of
the screen pointer provided by a graphical user interface
(GUI) of operating systems such as versions of Microsoft

55 Windows®. Embodiments are not limited to any particular
pointing device 1720. Such pointing devices may include
mice, touchpads, trackballs, remote controls andpoint sticks.
Other input devices (not shown) can include a microphone,
joystick, game pad, gesture-recognition or expression recog-

6o nition devices, or the like.
In some embodiments, computer 1702 may be operatively

coupled to a display device 1722. Display device 1722 can be
connected to the system bus 1712. Display device 1722 can
permit the display of information, including computer, video

65 and other information, for viewing by a user of the computer.
Embodiments are not limited to any particular display device
1722. Such display devices may include cathode ray tube

US 7,979,848 B2
25

(CRT) displays (monitors), as well as flat panel displays such
as liquid crystal displays (LCD's) or image and/or text pro-
jection systems or even holographic image generation
devices. In addition to a monitor, computers typically may
include other peripheral input/output devices such as printers 5

(not shown). Speakers 1724 and 1726 (or other audio device)
can provide audio output of signals. Speakers 1724 and 1726
can also be connected to the system bus 1712.

Computer 1702 may also include an operating system (not
shown) that may be stored on the computer-accessible media 10

RAM 1706, ROM 1708, and mass storage device 1710, and
can be executed by the processor 1704. Examples of operat-
ing systems include Microsoft Windows®, Apple MacOSO,
Linux®, UNIX®. Examples are not limited to any particular
operating system, however, and the construction and use of 15

such operating systems are well known within the art.
Embodiments of computer 1702 are not limited to any type

of computer 1702. In varying embodiments, computer 1702
may comprise a PC-compatible computer, a MacOSO-com-
patible computer, a Linux®-compatible computer, or a 20

UNIX®-compatible computer. The construction and opera-
tion of such computers are well known within the art.

Computer 1702 can be operated using at least one operat-
ing system to provide a graphical user interface (GUI) includ-
ing a user-controllable pointer. Computer 1702 can have at 25

least one web browser application program executing within
at least one operating system, to permit users of computer
1702 to access an intranet, extranet or Internet world-wide-
web pages as addressed by Universal Resource Locator
(URL) addresses. Examples of browser application programs 30

include Netscape Navigator® and Microsoft Internet
Explorer®.

The computer 1702 can operate in a networked environ-
ment using logical connections to one or more remote com-
puters, such as remote computer 1728. These logical connec- 35

tions can be achieved by a communication device coupled to,
or a part of, the computer 1702. Embodiments are not limited
to a particular type of communications device. The remote
computer 1728 can be another computer, a server, a router, a
network PC, a client, a peer device or other common network 40

node. The logical connections depicted in FIG. 17 include a
local-area network (LAN) 1730 and a wide-area network
(WAN) 1732. Such networking environments are common-
place in offices, enterprise-wide computer networks, intra-
nets, extranets and the Internet. 	 45

When used in a LAN-networking environment, the com-
puter 1702 andremote computer 1728 can be connected to the
local network 1730 through network interfaces or adapters
1734, which is one type of communications device 1716.
Remote computer 1728 may also include a network device 50

1736. When used in a conventional WAN-networking envi-
ronment, the computer 1702 and remote computer 1728 may
communicate with a WAN 1732 through modems (not
shown). The modem, which can be internal or external, may
be connected to the system bus 1712. In a networked envi- 55

ronment, program modules depicted relative to the computer
1702, or portions thereof, can be stored in the remote com-
puter 1728.

Computer 1702 also includes power supply 1738. Each
power supply can be a battery.	 60

Apparatus Embodiments

CSP Implementation
65

Referring to FIG. 18, a particular CSP implementation
1800 is described in conjunction with the system overview in

26
FIG. 1 and the methods described in conjunction with FIG. 3
and FIG. 6, according to an embodiment.

FIG. 18 is a block diagram of a particular CSP implemen-
tation of an apparatus 1800 to generate a high-level computer
source code program from an informal specification, accord-
ing to an embodiment. Apparatus 1800 may solve the need in
the art for an automated, generally applicable way to produce
a system that is a provably correct implementation of an
informal design specification that does not require use of a
theorem-prover.

Apparatus 1800 may include an informal specification 102
having a plurality of rules or requirements. The informal
specification 102 can be expressed in restricted natural lan-
guage, graphical notations, or even using semi-formal nota-
tions such as unified modeling language (UML) use cases.
Apparatus 1800 may also include a set of laws of concurrency
104.

The informal specification 102 and a set of laws of concur-
rency 104 may be received by a mechanical CSP translator
1802. The plurality of rules or requirements of the informal
specification 102 can be translated mechanically to a CSP
specification 1804 encoded in Hoare's language of Commu-
nicating Sequential Processes (CSP). In some embodiments,
the mechanical CSP translator 1802 performs action 302 in
FIG. 3.

In some embodiments, the system may include a formal
specification analyzer 1806 to perform model verification/
checking and determine existence of omissions, deadlock,
livelock and race conditions in the CSP specification 1804. In
some embodiments, the formal specification analyzer 1806
receives and transmits information from and to a visualization
tool 1808 that can provide a way to modify the CSP specifi-
cation 1804. In some embodiments, the formal specification
analyzer 1806 receives and transmits information from and to
a tool 1810 designed for CSP that provides a way to modify
the CSP specification 1804.

The formal specification analyzer 1806 may generate a
modified CSP specification 1812 that may in turn be received
by a code translator or compiler 112 to translate the modified
CSP specification 1808 to a set of instructions in a high-level
computer language program 114, such as Java language.

CSP specification analyzer 1806 may allow the user to
manipulate the CSP specification 1804 in various ways. The
analyzer 1806 may allow the user to examine the system
described by the informal specification 102, and to manipu-
late it. The CSP specification 1804 may be analyzed to high-
light undesirable behavior, such as race conditions, and
equally important, to point out errors of omission in the
informal specification 102. The CSP specification analyzer
1806 can be an optional but useful stage in the disclosed
embodiments of the present invention. If the analyzer 1806 is
not used, then the process-based specification 108 and the
modified CSP specification 1804 may be identical. Hence, if
the CSP analyzer 1806 is not used, then all references to the
modified CSP specification 1812 disclosed below may also
apply to the CSP specification 1804.

Some embodiments of apparatus 1800 do not include a
theorem-prover to infer the process-based specification seg-
ments from the informal specification.

Apparatus 1800 can be operational for a wide variety of
informal specification languages and applications, and thus
apparatus 1800 may be generally applicable. Such applica-
tions may include distributed software systems, sensor net-
works, robot operation, complex scripts for spacecraft inte-
gration and testing, and autonomous systems.

Apparatus 1800 components of the mechanical CSP trans-
lator 1802, the formal specification analyzer 1806, visualiza-

US 7,979,848 B2
27

tion tool 1808, CSP tool 1810 and the code translator 112 can
be embodied as computer hardware circuitry or as a com-
puter-readable program, or a combination of both, such as
shown in FIG. 18. In another embodiment, apparatus 1800
can be implemented in an application service provider (ASP) 5

system.
FIG. 19 is a block diagram of a hardware and operating

environment in which a particular CSP implementation of
FIG. 18 may be implemented, according to an embodiment.

10

Script Implementation

Referring to FIGS. 20 and 21, a particular scripting lan-
guage implementation 2000 is described in conjunction with
the system overview in FIG. 2 and the methods described in 15

conjunction with FIGS. 5-16.
FIG. 20 is a block diagram of a particular implementation

of an apparatus capable of translating scenarios to a formal
specification, optionally analyzing the formal specification
and translating the formal specification to a script and reverse 20

engineering (translating) a script into a formal specification
(and possibly analyzing the formal specification), according
to an embodiment. Apparatus 2000 may solve the need in the
art for an automated, generally applicable way to verify that
implemented scripts are a provably correct implementation of 25

a scenario(s).
Apparatus 2000 can include a translator 206 that generates

a formal specification 208 from the laws of concurrency 104
and the scenario(s) 202 in reference to the optional inference
engine 204.	 30

Subsequently, the formal specification 208 may be trans-
lated by a script translator 212 into a script 214 in some
appropriate scripting language. In some embodiments, no
manual intervention in the translation may be provided.
Those skilled in the art will readily understand that other 35

appropriate notations and/or languages exist that are within
the scope of this invention.

In some embodiments, apparatus 2000 can include an ana-
lyzer 210 to determine various properties of the formal speci-
fication, such as the existence of omissions, deadlock, live- 40

lock, and race conditions, as well as other conditions, in the
formal specification 208, although one skilled in the art will
recognize that other additional properties can be determined
by the analyzer 210. The analyzer 210 may solve the need in
the prior art to reduce errors.	 45

In some embodiments, a reverse script translator 2002
receives the script 214 and generates a formal specification
208. In various embodiments, the output of the reverse script
translator 2002 is a different formal specification than formal
specification 208 received from translator 206. While there 50

can be some small differences between the formal specifica-
tion generated by reverse script translator 2002 and formal
specification 208, the formal specifications generated by the
reverse script translator 2002 can be substantially function-
ally equivalent to the formal specification 208.	 55

Apparatus 2000 can operate for a wide variety of languages
and applications, and thus apparatus 2000 may be generally
applicable. Such applications can include, without limitation,
distributed software systems, sensor networks, robot opera-
tion, complex scripts for spacecraft integration and testing, 60

and autonomous systems, but those skilled in the art will
understand that other applications are contemplated.

Apparatus 2000 components such as the translator 206,
script translator 212, the script analyzer 210, and the reverse
script translator 2002 can be embodied as computer hardware 65

circuitry or as a computer-readable program, or a combina-
tion of both, such as shown in FIG. 21. In another embodi-

28
ment, apparatus 2000 can be implemented in an application
service provider (ASP) system.

FIG. 21 illustrates an environment 2100 similar to that of
FIG. 17, but with the addition of the script translator 212, the
analyzer 210 and the reverse script translator 2002 that cor-
respond to some of apparatus 2000, according to an embodi-
ment.

In a computer-readable program embodiment, the pro-
grams can be structured in an object-orientation using an
obj ect-oriented language such as Java, Smalltalk or C++, and
the programs can be structured in a procedural-orientation
using a procedural language such as COBOL or C. The soft-
ware components may communicate in any of a number of
ways that are well-known to those skilled in the art, such as
application program interfaces (API) orinterprocess commu-
nication techniques such as remote procedure call (RPC),
common object request broker architecture (CORBA), Com-
ponent Object Model (COM), Distributed Component Object
Model (DCOM), Distributed System Object Model (DSOM)
and Remote Method Invocation (RMI). The components can
execute on as few as one computer as in computer 1702 in
FIG. 17, or on at least as many computers as there are com-
ponents.

Referring to FIG. 22, a particular apparatus 2200 is
described in conjunction with the system overview in FIG. 1
and the methods described in conjunction with FIG. 11 and
FIG. 12, according to an embodiment.

FIG. 22 is a block diagram of a particular embodiment of an
apparatus 2200 to generate a high-level computer source code
program from an informal specification. Apparatus 2200 may
solve the need in the art for an automated, generally appli-
cable way to produce a system that is a provably correct
implementation of an informal design specification that does
not require use of a theorem-prover.

Apparatus 2200 may include an informal specification 102
having a plurality of rules or requirements. The informal
specification 102 can be expressed in restricted natural lan-
guage, graphical notations, or even using semi-formal nota-
tions such as unified modeling language (UML) use cases.
Apparatus 2200 may also include a set of laws of concurrency
104.

In some embodiments, the informal specification 102 and a
set of laws of concurrency 104 are received by a mechanical
implementation pattern matcher 2202. The plurality of rules
or requirements of the informal specification 102 can be
translated mechanically to an implementation 2204. In some
embodiments, the mechanical implementation pattern
matcher 2202 performs actions 1102 and 1104 in FIG. 11.

In some embodiments, the system includes an implemen-
tation analyzer 2206 to perform model verification/checking
and determine existence of omissions, deadlock, livelock and
race conditions in the implementation 2204. In some embodi-
ments, the implementation analyzer 2206 receives and trans-
mits information from and to a visualization tool 2208 that
provides a way to modify the implementation 2204. In some
embodiments, the implementation analyzer 2206 receives
and transmits information from and to a tool 2210 that pro-
vides a way to modify the implementation 2204.

The implementation analyzer 2206 can generate a modi-
fied implementation 2212 that is in turn received by a code
translator 112 or compiler to translate the modified imple-
mentation 2212 to a set of instructions in a high-level com-
puter language program 114, such as Java language.

The implementation analyzer 2206 may allow the user to
manipulate the implementation 2204 in various ways. The
implementation analyzer 2206 can allow the user to examine
the system describedby the informal specification 102, and to

US 7,979,848 B2
29

manipulate it. The implementation 2204 may be analyzed to
highlight undesirable behavior, such as race conditions, and
equally important, to point out errors of omission in the
informal specification 102. The implementation analyzer
2206 can be an optional but useful stage in the disclosed 5

embodiments of the present invention. If the implementation
analyzer 2206 is not used, then the implementation 2204 and
the modified implementation 2212 are identical. Hence, if the
implementation analyzer 2206 is not used then all references
to the modified implementation 2212 disclosed below may io
also apply to the implementation 2204.

In some embodiments, apparatus 2200 does not include a
theorem-prover to infer the process-based specification seg-
ments from the informal specification.

Apparatus 2200 can be operational for a wide variety of 15

informal specification languages and applications; thus appa-
ratus 2200 can be generally applicable. Such applications
may include distributed software systems, sensor networks,
robot operation, complex scripts for spacecraft integration
and testing, and autonomous systems. 	 20

Apparatus 2200 components of the mechanical implemen-
tation pattern matcher 2202, the implementation analyzer
2206, visualization tool 2208, tool 2210 and the code trans-
lator 112 can be embodied as computer hardware circuitry or
as a computer-readable program, or a combination of both, 25

such as shown in FIG. 23. In another embodiment, apparatus
2200 is implemented in an application service provider (ASP)
system.

FIG. 23 is a block diagram of a hardware and operating
environment in which a particular pattern-matching imple- 30

mentation of FIG. 22 is implemented, according to an
embodiment.

Referring to FIGS. 24 and 25, a particular pattern-match-
ing embodiment 2400 is described in conjunction with the
system overview in FIG. 2 and the methods described in 35

conjunction with FIGS. 5-16.
FIG. 24 is a block diagram of a particular embodiment of an

apparatus capable to pattern-match scenarios to a formal
specification, optionally analyze the formal specification and
translate the formal specification to an implementation and 40

reverse engineer (translate) the implementation into a formal
specification (and possibly analyze the formal specification),
according to an embodiment. Apparatus 2400 can solve the
need in the art for an automated, generally applicable way to
verify that implemented scenarios and other implementations 45

are a provably correct implementation of a scenario(s).
Apparatus 2400 can include a pattern matcher 206 that

generates a formal specification 208 from the laws of concur-
rency 104 and the scenario(s) 202 in reference to the optional
inference engine 204.	 50

Subsequently, the formal specification 208 may be trans-
lated by translator 408 into an implementation 410. In some
embodiments no manual intervention in the translation is
provided. Those skilled in the art will readily understand that
other appropriate notations and/or languages exist that are 55

within the scope of apparatus 2400.
In some embodiments, apparatus 2400 can include an ana-

lyzer 406 to determine various properties of the formal speci-
fication, such as the existence of omissions, deadlock, live-
lock, and race conditions, as well as other conditions, in the 60

formal specification 208, although one skilled in the art will
recognize that other additional properties can be determined
by the analyzer 406. The analyzer 406 may solve the need in
the prior art to reduce errors.

In some embodiments, a reverse translator 2402 receives 65

the implementation 410 and generates a formal specification
208. The output of the reverse translator 2402 can be a dif-

30
ferent formal specification than formal specification 208.
There can be some small differences between the formal
specification generated by reverse translator 2402 and formal
specification 208, but the formal specifications generated by
the reverse translator 2402 can be substantially functionally
equivalent to the formal specification 208.

Apparatus 2400 can operate for a wide variety of languages
and applications, and thus apparatus 2400 can be generally
applicable. Such applications can include, without limitation,
distributed software systems, sensor networks, robot opera-
tion, complex scripts for spacecraft integration and testing,
and autonomous systems, but those skilled in the art will
understand that other applications are contemplated.

Apparatus 2400 components such as the pattern matcher
206, translator 408, the analyzer 406, and the reverse trans-
lator 2402 can be embodied as computer hardware circuitry or
as a computer-readable program, or a combination of both,
such as shown in FIG. 25. In another embodiment, apparatus
2400 can be implemented in an application service provider
(ASP) system.

FIG. 25 illustrates an environment 2500 similar to that of
FIG. 17, according to an embodiment, but with the addition of
the translator 408, the analyzer 406 and the reverse translator
2402 that correspond to some of apparatus 2400.

CONCLUSION

Systems, methods and apparatus described herein may
have many commercial applications, such as (1) Business
procedures, in a variety of domains, may be analyzed, evalu-
ated, improved, combined, verified, and automatically imple-
mented in a programming language. (2) Formal modes may
have been proposed for analyzing legal contracts. However,
legal experts may not be likely to have the required skills to
develop such mathematical models. This approach may
enable legal contracts to be converted automatically to a
formal model and analyzed. (3) Procedures for assembling
(or disassembling) components in a factory, in space, or else-
where, whether performed by robots or humans, are prone to
error and "trial and error." The approach disclosed herein may
eliminate the uncertainty and may ensure that procedures are
correct. (4) There are a large number of implementations in
the public domain, in particular in communications networks
and the bioinformatics industry. Similarly, NASA (and other
organizations) have many existing implementations used for
space mission test and integration. Most of these implemen-
tations have little or no documentation, meaning that the
implementations cannot be used except by explanations of the
working of the implementations, and hence their reuse. (5)
Existing implementations can be combined using this
approach, and can be checked for incompatibilities, etc. Then
a single implementation may be generated to combine the
functionality of several implementations. This may have
major ramifications for bioinformatics, robotic assembly and
maintenance, integration and test, and other domains.

Systems and methods for generating implementations
from requirements expressed as scenarios are described
according to an embodiment. In some embodiments, the sys-
tems and methods also allow for "reverse engineering,"
analysis, and correction of errors found in existing implemen-
tations. In some embodiments, the methods allows multiple
existing implementations to be combined, discrepancies
resolved and re-generated as a single implementation in
which confidence can be placed in its correct implementation
of the stated requirements (which can be "captured" from the
existing implementation).

US 7,979,848 B2
31

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement which is calculated to
achieve the same purpose can be substituted for the specific
embodiments shown. This application is intended to cover
any adaptations or variations. For example, although
described in procedural terms, one of ordinary skill in the art
will appreciate that implementations can be made in an
object-oriented design environment or any other design envi-
ronment that provides the required relationships.

In some embodiments, a formal model may be generated
from the scenarios. The formal model may then be analyzed
for a range of different possible errors in the scenarios. Addi-
tionally, implementations can be generatedthat correspond to
the scenarios. Since the implementations are generated auto-
matically, there may be a significantly reduced likelihood of
error, and common "programming" errors may be eliminated.
These implementations may be in an implementation lan-
guage such as PERL, BioPerl, PYTHON, etc. or in a language
suitable for controlling machines, robots and other devices.

Existing implementations can be combined, analyzed, and
regenerated as a single implementation in the same language,
or another language, that increases accuracy and reduces
common errors.

In particular, one of skill in the art will readily appreciate
that the names of the methods and apparatus are not intended
to limit embodiments. Furthermore, additional methods and
apparatus can be added to the components, functions can be
rearranged among the components, and new components to
correspondto future enhancements and physical devices used
in embodiments canbe introduced without departing from the
scope of embodiments. One of skill in the art will readily
recognize that embodiments are applicable to future commu-
nication devices, different file systems, and new data types.

The terminology used in this application is meant to
include all object-oriented, database and communication
environments and alternate technologies which provide the
same functionality as described herein.

We claim:
1. A non-transitory computer-accessible medium having

executable instructions to validate a system, the computer-
accessible medium executable instructions capable of direct-
ing a processor to perform:

receiving scenarios of the system;
pattern-matching the scenarios of the system to at least one

process-based specification segment; and
analyze the formal specification,
wherein the computer executable instructions comprise

pattern-matching the scenarios of the system to a formal
specification, in reference to an inference engine, apply-
ing mathematical logic to the formal specification in
order to identify a presence or absence of mathematical
properties of the scenario, and correcting the absence of
the mathematical properties if the mathematical proper-
ties are identified as absent in the scenario, and

wherein the mathematical properties of the formal specifi-
cation comprise whether the formal specification
implies a system execution trace that includes a dead-
lock condition, whether the formal specification implies
a system execution trace that includes a livelock condi-
tion, and whether the formal specification implies a sys-
tem execution trace that exhibits or does not exhibit a
plurality of other desirable or undesirable behaviors
including, but not limited to safety properties, security
properties, unreachable states, inconsistencies, naming
conflicts, unused variables, unexecuted code.

2. The non-transitory computer-accessible medium of
claim 1, wherein the formal specification further comprises a
process algebra.

32
3. The non-transitory computer-accessible medium of

claim 2, wherein the process algebra comprises a language of
Communicating Sequential Processes.

4. A non-transitory computer-accessible medium having
5 executable instructions to generate a system from scenarios,

the executable instructions capable of directing a processor to
perform:

pattern-matching a plurality of scenarios to a formal speci-
fication; and translating the formal specification to a

10	 process-based specification implementing the system,
wherein the mathematical properties of the formal specifi-

cation comprise whether the formal specification
implies a system execution trace that includes a dead-
lock condition, whether the formal specification implies
a system execution trace that includes a livelock condi-

15 tion, and whether the formal specification implies a sys-
tem execution trace that exhibits or does not exhibit a
plurality of other desirable or undesirable behaviors
including, but not limited to safety properties, security
properties, unreachable states, inconsistencies, naming

20	 conflicts, unused variables, unexecuted code.
5. The non-transitory computer-accessible medium of

claim 4, wherein the executable instructions further com-
prise:

verifying the syntax of the plurality of scenarios; and
25	 mapping the plurality of scenarios to a plurality of formal

specification segments.
6. The non-transitory computer-accessible medium of

claim 4, wherein the executable instructions further com-
prise:

verifying consistency of the formal specification.
30 7. The non-transitory computer-accessible medium of

claim 4, wherein the executable instructions further com-
prise:

analyzing the formal specification.
8. The non-transitory computer-accessible medium of

35 claim 4, wherein the executable instructions further com-
prise:

determining mathematical and logical properties of the
formal specification by an automated inference engine.

9. The non-transitory computer-accessible medium of
40 claim 4, wherein the executable instructions further com-

prise:
pattern-matching the plurality of scenarios to a separate

formal specification without the use of an automated
inference engine.

10. The non-transitory computer-accessible medium of
45 claim 4, wherein the formal specification further comprises a

process algebra.
11. The non-transitory computer-accessible medium of

claim 10, wherein the process algebra comprises a language
of Communicating Sequential Processes.

50	 12. A system to validate a software system, the system
comprising:

a processor;
an inference engine;
a pattern-matcher operable to receive a plurality of sce-

55 narios of the software system and to generate in refer-
ence to the inference engine a specification encoded in a
formal specification language; and

an analyzer, operable to perform model verification/check-
ing and determine existence of omissions, deadlock,
livelock, and race conditions or other problems and

60	 inconsistencies in the formal specification,
wherein the mathematical properties of the formal specifi-

cation comprise whether the formal specification
implies a system execution trace that includes a dead-
lock condition, whether the formal specification implies

65 a system execution trace that includes a livelock condi-
tion, and whether the formal specification implies a sys-
tem execution trace that exhibits or does not exhibit a

US 7,979,848 B2
33

plurality of other desirable or undesirable behaviors
including, but not limited to safety properties, security
properties, unreachable states, inconsistencies, naming
conflicts, unused variables, unexecuted code.

13. The system of claim 12, wherein the pattern-matching
of the scenarios into a specification is carried out without
human intervention.

14. A non-transitory computer-accessible medium having
executable instructions to validate a system, the executable
instructions capable of directing a processor to perform:

receiving scenarios of the system; pattern-matching the
scenarios of the system to a formal specification; and

translating the formal specification to an implementation,
wherein the executable instructions further comprise ana-

lyzing the formal specification and applying mathemati-
cal logic to the formal specification in order to identify a
presence or absence of mathematical properties of the
formal specification, and

wherein the mathematical properties of the formal specifi-
cation further comprise whether the formal specification
implies a system execution trace that includes a dead-
lock condition, whether the formal specification implies
a system execution trace that includes a livelock condi-
tion, and whether the formal specification implies a sys-
tem execution trace that exhibits or does not exhibit a
plurality of other desirable or undesirable behaviors
including, but not limited to safety properties, security
properties, unreachable states, inconsistencies, naming
conflicts, unused variables, unexecuted code.

15. The non-transitory computer-accessible medium of
claim 14, wherein the executable instructions further com-
prise:

pattern-matching the scenarios of the system to the formal
specification, without the use of an automated inference
engine.

16. The non-transitory computer-accessible medium of
claim 14, wherein the executable instructions further com-
prise:

pattern-matching the scenarios of the system to the formal
specification, in reference to an inference engine.

17. The non-transitory computer-accessible medium of
claim 14, wherein the formal specification further comprises
a process algebra.

18. The non-transitory computer-accessible medium of
claim 17, wherein the process algebra comprises a language
of Communicating Sequential Processes.

19. The non-transitory computer-accessible medium of
claim 14, wherein the executable instructions further com-
prise pattern-matching the scenario to a formal model; and
translating the formal model to at least one scenario.

20. A non-transitory computer-accessible medium having
executable instructions to validate a system, the executable
instructions capable of directing a processor to perform:

receiving a formal model of the system; and
pattern-matching the formal model to a scenario,
wherein the executable instructions further comprise ana-

lyzing the formal model and applying mathematical
logic to the formal model in order to identify a presence
or absence of mathematical properties of the formal
model, and

wherein the mathematical properties of the formal model
comprise whether the formal model implies a system
execution trace that includes a deadlock condition,
whether the formal model implies a system execution
trace that includes a livelock condition, and whether the
formal model implies a system execution trace that
exhibits or does not exhibit a plurality of other desirable
or undesirable behaviors safety properties, security

34
properties, unreachable states, inconsistencies, naming
conflicts, unused variables, unexecuted code.

21. The non-transitory computer-accessible medium of
claim 20, wherein the executable instructions further com-

5 prise translating the formal model to at least one scenario.
22. The non-transitory computer-accessible medium of

claim 20, wherein the formal model further comprises a pro-
cess algebra.

23. The non-transitory computer-accessible medium of
claim 20, wherein the process algebra comprises a language

10 of Communicating Sequential Processes.
24. A non-transitory computer-accessible medium having

executable instructions to validate a system, the executable
instructions capable of directing a processor to perform:

receiving a scenario of the system; and
15	 pattern-matching the scenario to a formal model,

wherein the executable instructions further comprise ana-
lyzing the formal model and applying mathematical
logic to the formal model in order to identify a presence
or absence of mathematical properties of the formal

20	 model, and
wherein the mathematical properties of the formal model

comprise whether the formal model implies a system
execution trace that includes a deadlock condition,
whether the formal model implies a system execution
trace that includes a livelock condition, and whether the

25 formal model implies a system execution trace that
exhibits or does not exhibit a plurality of other desirable
or undesirable behaviors including, but not limited to
safety properties, security properties, unreachable
states, inconsistencies, naming conflicts, unused vari-

30	 ables, unexecuted code.
25. The non-transitory computer-accessible medium of

claim 24, wherein the formal model further comprises a pro-
cess algebra.

26. The non-transitory computer-accessible medium of
35 claim 25, wherein the process algebra comprises a language

of Communicating Sequential Processes.
27. A non-transitory computer-accessible medium having

executable instructions to validate a system, the executable
instructions capable of directing a processor to perform:

40	
pattern-matching a plurality of scenarios to a plurality of

formal models;
combining the plurality of formal models to a singular

formal model;
analyzing the singular formal model;
correcting the absence of mathematical properties in the

45	 singular formal model; and
translating the formal model to an implementation,
wherein the executable instructions further comprise

applying mathematical logic to the singular formal
model in order to identify a presence or absence of

50	 mathematical properties of the singular formal model,
and

wherein the mathematical properties of the singular formal
model comprise whether the singular formal model
implies a system execution trace that includes a dead-

55
lock condition, whether the singular formal model
implies a system execution trace that includes a livelock
condition, and whether the singular formal model
implies a system execution trace that exhibits or does not
exhibit a plurality of other desirable or undesirable
behaviors including, but not limited to safety properties,

60 security properties, unreachable states, inconsistencies,
naming conflicts, unused variables, and unexecuted
code.

	7979848-p0001.pdf
	7979848-p0002.pdf
	7979848-p0003.pdf
	7979848-p0004.pdf
	7979848-p0005.pdf
	7979848-p0006.pdf
	7979848-p0007.pdf
	7979848-p0008.pdf
	7979848-p0009.pdf
	7979848-p0010.pdf
	7979848-p0011.pdf
	7979848-p0012.pdf
	7979848-p0013.pdf
	7979848-p0014.pdf
	7979848-p0015.pdf
	7979848-p0016.pdf
	7979848-p0017.pdf
	7979848-p0018.pdf
	7979848-p0019.pdf
	7979848-p0020.pdf
	7979848-p0021.pdf
	7979848-p0022.pdf
	7979848-p0023.pdf
	7979848-p0024.pdf
	7979848-p0025.pdf
	7979848-p0026.pdf
	7979848-p0027.pdf
	7979848-p0028.pdf
	7979848-p0029.pdf
	7979848-p0030.pdf
	7979848-p0031.pdf
	7979848-p0032.pdf
	7979848-p0033.pdf
	7979848-p0034.pdf
	7979848-p0035.pdf
	7979848-p0036.pdf
	7979848-p0037.pdf
	7979848-p0038.pdf
	7979848-p0039.pdf
	7979848-p0040.pdf
	7979848-p0041.pdf
	7979848-p0042.pdf
	7979848-p0043.pdf

