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1 \	 of Î °	 / \
O	 n	 o

CO	 o	 / \

zQ
©' -0 U	 O O=O

°	 0	 o	 o =	 z

_	 ! \	 ° 0z	 i-- 0
O II /CL	 / \ n

	

\	 \^

	

0	 / \ 0-
O ^^a	 O

/ \ ^n
	

O	 / \

O

I \

zN

Q0

H



U.S. Patent	 Jul. 5, 2011	 Sheet 6 of 10	 US 7,972,536 B2

C	 O
O	 p	 +:

O
CL	 Cll

.0 	C7

o
O

CL	
0 ..
	 ^ «^

> O	 > 0

E	 E

U	 { U	
+ U

	Q 	 O	 O

	

l	
O --^ LO	

/ \

a^

	

O	 o	 O

z¢	 / \
O` O O 0ON O Z O

cv [1	 ©--	 Q	 =
Z-z O	 \

CNr a

	

z	 0c,	 / \ a
CL

/\	 a
O

O^ a a
O	 / \

O

z
r

0
LL



U.S. Patent	 Jul. 5, 2011	 Sheet 7 of 10	 US 7,972,536 B2

c
a Q	 O

N	 O	 0-p	
Cl)

LO	
Q Q

CL
0	 m	 >

>0

C
C

Ep 
	 Q	 =.Q

^ S]

Um	 Uc^	
+

+ U

C7^ U 	 0 z O=-z o

\
0 	 / \

o	 a	 o

	

°	 / \^	 0z	 0Q	 _
C) ° -o	 m	 ° o z ^© t^

	

0-	 o—	 o	 =	 u._
+	 z-z o	 / \

0	 IL

z	 / \	 o^ °a

0c,	 / \
^^	 o

o	 / \

o

zN



U.S. Patent	 Jul. 5, 2011	 Sheet 8 of 10	 US 7,972,536 B2

o

>0	 >o
c	 c

C

Ci7 CJ	 0? O	 ^

^ ^	 + U	 C..) cUl7

=-z o	 D z
04 L0

o

	

a	 Qc
/ \	 U	 / \

	

2	 / \

	

z ¢	 c^

04 0 7:

	

^ n°	 ( L+	 -r-z 0

z	 / \

	

o	 a-/ Q-

^^	 D

O	 / \

r\
zN



U.S. Patent	 Jul. 5, 2011	 Sheet 9 of 10	 US 7,972,536 B2

a	 4

0	 CL
0

Q-0
	 Os

> O	 >	 C

U CE

N p
	 cU O

t U	 + ^	 U U

	

o- ° -°	 z- IIz o	 o z o

o	 o0

/ \o____^	

Z Q	

_	

frt̂^

	

o"'p - ^© U N	 0	 z 	 V

	

c7O	 ^—	 o	 _ LL

z	 / \
0 1110

IL

	

^^	 o
/ \ E

o

z



	

c^	 cr7

	

U	 CJ

Q
Z

+

U.S. Patent
	

Jul. 5, 2011
	

Sheet 10 of 10
	

US 7,972,536 B2

z
	 z

U)

0

LL

0 

0
Q U

LL

1.	 1..._..	 1
0

c7	 c*)

U	 U

1 ^

4

0= U

t

r
d

LL



US 7,972,536 B2
1
	

2
ELECTRICALLY CONDUCTIVE,	 exterior walls (as a means to increase solubility) by various

OPTICALLY TRANSPARENT	 approaches such as electrochemistry and wrapping with a
POLYMER/CARBON NANOTUBE

	
functionalized polymer, the solubility of these modified tubes

COMPOSITES

	

	 was very limited. Other methods of CNT modification
5 include acid treatment (i.e. oxidation) and use of surfactants

CROSS-REFERENCE TO RELATED
	 as a means of improving solubility and compatibility with

APPLICATIONS
	 organic polymers. It has been noted that modifications of the

nanotube chemical structure may lead to changes in intrinsic

	

This application is a divisional application of commonly- 	 properties such as electrical conductivity (X. Gong et al.,
owned patent application Ser. No. 10/288,797, filed Nov. 1, 10 Chem. Mater., 12 1049, 2000). Ultrasonic treatment has also

	

2002, issued as U.S. Pat. No. 7,588,699 which, pursuant to 35
	

been used as a means to disperse CNTs in a solvent. Upon

	

U.S.C. § 119, claimed the benefit of priority from provisional
	 removal of the sonic force, the tubes agglomerate and settle to

	

patent application having U.S. Ser. No. 60/336,109, filed on
	 the bottom of the liquid.

	

Nov. 2, 2001, the contents of which are incorporated herein in
	 Individual SWNTs can exhibit electrical conductivity

their entirety.	 15 ranging from semi-conductor to metallic depending on their
chirality, while the density is in the same range of most

ORIGIN OF INVENTION
	

organic polymers (1.33x 1.40 g/cm 3). In the bulk, they form a
pseudo-metal with a conductivity of approximately 10 5 S/cm

	

The invention described herein was jointly made by
	

(Kaiser et al., Physics Reviews B, 57, 1418 1998). The con-
employees of the U.S. Government, contract employees and 20 ductive CNTs have been used as conductive fillers in a poly-

	

employees of the National Research Council, and may be 	 mer matrix to enhance conductivity, however the resulting

	

manufactured and used by or for the government for govern- 	 nanocomposites exhibited little or no transparency in the

	

mental purposes without the payment of royalties thereon or 	 visible range (400-800 mu). Coleman et al., (Physical Review
therefor.	 B, 58, R7492, 1998) and Curran et al., (Advanced Materials,

25 10, 1091, 1998) reported conjugated polymer-CNT compos-
BACKGROUND OF THE INVENTION

	
ites using multi-wall CNTs, which showed that the percola-
tion concentration of the CNTs exceeded 5 wt %. The result-

1. Field of the Invention	 ing nanocomposites were black with no transparency in the

	

The present invention is directed to methods of preparation 	 visible region. Shaffer and Windle (Advanced Materials, 11,
that effectively disperse carbon nanotubes into polymer 30 937, 1999) reported conductivity of a multi-wall CNT/poly

	

matrices, and the novel nanocomposites that result therefrom. 	 (vinyl alcohol) composite, which also showed percolation
2. Description of the Related Art 	 above 5 wt % nanotube loading and produced a black nano-

	

Since carbon nanotubes (CNTs) were discovered in 1991	 composite. The same group (7. Sandler, M. S. P. Shaffer, T.

	

(S. Iijima, Nature 354 56, 1991), significant interest has been 	 Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer
generated due to their intrinsic mechanical, electrical, and 35 40, 5967, 1999) reported another multi-wall CNT composite

	

thermal properties (P. M. Ajayan, Chem. Rev. 99 1787, 1999).	 with an epoxy, which achieved percolation below 0.04 wt %.

	

Early studies focused on CNT synthesis and theoretical pre-	 An optical micrograph of the CNT/epoxy composite was

	

diction of physical properties. Due to the recent development 	 reported, which revealed that the CNT phase was separated

	

of efficient CNT synthesis (A. Thess et al., Science 273 483,	 from the epoxy resin, showing several millimeters of resin-
1996) and purification procedures (A. G. Rinzler et al., Appl. 40 rich domains. The dispersion of CNTs in this material was

	

Phys. A 67 29, 1998), some applications have been realized. 	 very poor. This agglomeration of CNTs in selected areas in

	

However, these applications have relied on the use of pure 	 the composite could explain the high conductivity observed

	

CNTs, not nanocompo sites. Examples include a carbon nano- 	 since it provides the "shortest path" for the current to travel.

	

probe in scanning probe microscopy (S. S. Wong et al., J. Am.	 Preliminary measurements of the conductivity of a CNT/poly
Chem. Soc. 120 603, 1998), single wall carbon nanotube 45 (methyl methacrylate) (PMMA) composite were measured

	

(SWNT) transistor (S. J. Tans et al., Nature 393 49,1998), and	 on a fiber (R. Haggenmueller. H. H. Gommans, A. G. Rinzler.

	

field emission display (Q. H. Wang et al., Appl. Phys. Lett. 70
	

J. E. Fischer, and K. I. Winey, Chemical Physics Letters, 330,

	

3308, 1997). There have been very few reports on the devel- 	 219, 2000). The level of conductivity was relatively high

	

opment of nanocomposites using CNTs as reinforcing inclu- 	 (1.18x10-3 S/cm) at 1.3 wt % SWNT loading. However, the
sions in a polymer matrix primarily because of the difficulty 50 optical transparency in the visible range was not determined

	

in dispersing the nanotubes. This difficulty is partially due to 	 for the fiber sample. The mechanical properties of these fibers

	

the non-reactive surface of the CNT. A number of studies have 	 were much less than the predicted value, which implies that

	

concentrated on the dispersion of CNTs, but complete disper- 	 the CNTs were not fully dispersed.

	

sion of the CNTs in a polymer matrix has been elusive due to 	 The present invention is directed to methods of preparation
the intrinsically strong van der Waals attraction between adja-  55 that overcome the shortcomings previously experienced with

	

cent tubes. In practice, attempts to disperse CNTs into a 	 the dispersion of CNTs in polymer matrices and the novel

	

polymer matrix leads to incorporation of agglomerates and/or 	 compositions of matter produced therefrom. The resulting

	

bundles of nanotubes that are micron sized in thickness and, 	 nanocomposites exhibit electrical conductivity, improved

	

consequently, they do not provide the desired and/or pre- 	 mechanical properties, and thermal stability with high reten-
dicted property improvements. Most of the dispersion related 60 tion of optical transparency in the visible range.
studies have focused on modifying the CNT surface chemis-

	

try. Many researchers have studied the functionalization of
	

SUMMARY OF THE INVENTION
CNT walls and ends. One example is fluorination of CNT

	

surfaces (E. T. Mickelson et al., J. Phys. Chem. 103 4318,	 Based on what has been stated above, it is an objective of
1999), which can subsequently be replaced by an alkyl group 65 the present invention to effectively disperse CNTs into poly-

	

to improve the solubility in an organic solvent. Although
	

mer matrices. It is a further objective to prepare novel poly-

	

many researchers have tried to functionalize CNT ends and
	

mer/CNT nanocomposites and articles derived therefrom.
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Methods of preparation that were evaluated include: (1) low
shear mixing of a polymer solution with CNTs dispersed in an
organic solvent; (2) high shear mixing (e.g., homogenizer or
fluidizer) of a polymer solution with CNTs dispersed in an
organic solvent; (3) ultrasonic mixing (e.g., sonic horn at
20-30 kHz for 1-10 minutes) of a polymer solution with CNTs
dispersed in an organic solvent; (4) high shear mixing (e.g.,
homogenizer, fluidizer, or high speed mechanical stirrer) of a
polymer solution with CNTs dispersed in an organic solvent
with subsequent ultrasonic mixing (e.g., sonic horn at 20-30
kHz for 1-10 minutes); (5) synthesis of the polymer in the
presence of pre-dispersed CNTs; and (6) synthesis of the
polymer in the presence of pre-dispersed CNTs with simul-
taneous sonication (e.g., 40-60 kHz in a water bath) through-
out the entire synthesis process. Methods (4), (5) and (6) are
applicable to a variety of polymers that can be synthesized in
a solvent in the presence of the CNTs.

The resulting polymer/CNT materials exhibit a unique
combination of properties that make them useful in a variety
of aerospace and terrestrial applications, primarily because of
their combination of improved mechanical properties, ther-
mal stability, electrical conductivity, and high optical trans-
mission. Examples of space applications include thin film
membranes on antennas, second-surface mirrors, thermal
optical coatings, and multi-layer thermal insulation (MLI)
blanket materials. For these applications, materials that do not
build-up electrical charge are preferred. In addition to exhib-
iting electrical conductivity, some of these space applications
also require that the materials have low solar absorptivity and
high thermal emissivity. Terrestrial applications include elec-
trically conductive coatings on a variety of substrates, elec-
trostatic dissipative coatings on electromagnetic displays,
coatings for use in luminescent diodes, antistatic fabrics,
foams, fibers, threads, clothing, carpeting and other broad
goods.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates preparation of an aromatic poly(amide
acid)/CNT and polyimide/CNT nanocomposite.

FIG. 2 illustrates preparation of an aromatic poly(arylene
ether)/CNT nanocomposite.

FIG. 3 illustrates preparation of a 0.1 wt % CNT/polyimide
nanocomposite from 1,3-bis(3-aminophenoxy) benzene
(APB) and 4,4'-perfluoroisopropylidiene dianhydride
(6FDA).

FIG. 4 illustrates preparation of a O.Iwt % SWNT/polyim-
ide nanocomposite from 2,6-bis(3-aminophenoxy) benzoni-
trile [((3-CN)APB] and 3,3',4,4'-oxydiphthalic dianhydride
(ODPA).

FIG. 5 illustrates preparation of a 0.1% wt/wt LA-NT/
polyimide nanocomposite from [2,4-bis(3-aminophenoxy)
phenyl]diphenylphosphine oxide (APB-PPO) and ODPA.

FIG. 6 illustrates preparation of a 0.2% wt/wt LA-NT/
polyimide nanocomposite from APB-PPO and ODPA.

FIG. 7 illustrates preparation of a 0.1 % wt/wt CVD-NT-1/
polyimide nanocomposite from APB-PPO and ODPA.

FIG. 8 illustrates preparation of a 0.2% wt/wt CVD-NT-1/
polyimide nanocomposite from APB-PPO and ODPA.

FIG. 9 illustrates preparation of a 0.1 % wt/wt CVD-NT-2/
polyimide nanocomposite from APB-PPO and ODPA.

FIG. 10 illustrates preparation of a 0.2% wt/wt CVD-NT-
2/polyimide nanocomposite from APB-PPO and ODPA.

FIG. 11 illustrates preparation of a 0.1% wt/wt LA-NT/
poly(arylene ether)/SWNT nanocomposite.

DETAILED DESCRIPTION OF THE INVENTION

The present invention involves the preparation of polymer/
CNT composites with a unique combination of properties.

The methods of preparation effectively disperse the CNTs
into polymer matrices and overcome shortcomings of previ-
ous efforts to effectively disperse CNTs into polymers. The
methods were successful using both single wall carbon nano-

5 tubes (SWNTs) and multi-wall carbon nanotubes (MWNTs).
Within the scope of the present invention, the term CNT(s)
designates both SWNTs and MWNTs. The resulting nano-
composites exhibit a unique combination of properties, such
as high retention of optical transparency in the visible range,

io electrical conductivity, high mechanical properties, and high
thermal stability. Appropriate selection of the polymer matrix
produces additional desirable properties such as vacuum
ultraviolet radiation resistance, atomic oxygen resistance,
high Tg, excellent flexibility and high toughness. Of particu-

15 lar significance is the ability to fabricate freestanding films as
well as coatings that exhibit an excellent and extremely useful
combination of good optical transparency, electrical conduc-
tivity, high mechanical properties, and thermal stability.

Condensation polymers, such as polyimides, poly(arylene
20 ether)s and poly(amide acids) and aromatic copolymers such

as copolyimides, copoly(arylene ether)s and copoly(amide
acids) can be used to prepare nanocomposites containing well
dispersed CNTs. The methods discussed herein effectively
dispersed CNTs into polymer matrices on a nanoscale level

25 such that significant improvements in electrical conductivity
could be achieved without significant darkening or reduction
in optical transmission in the visible region of the resultant
nanocomposite. The following methods of preparation of
polymer/CNT nanocomposites were evaluated: 1) low shear

30 mixing of a polymer solution with CNTs dispersed in an
organic solvent; 2) high shear mixing (e.g., homogenizer,
fluidizer, or high-speed mechanical stirrer) of a polymer solu-
tion with CNTs dispersed in an organic solvent; 3) ultrasonic
mixing (e.g., sonic horn at 20-30 kHz for approximately 1-10

35 minutes) of a polymer solution with CNTs dispersed in an
organic solvent; 4) high shear mixing (e.g., homogenizer,
fluidizer, or high-speed mechanical stirrer) of a polymer solu-
tion with CNTs dispersed in an organic solvent with subse-
quent ultrasonic mixing (e.g., sonic horn at 20-30 kHz for

4o approximately 1-10 minutes); 5) synthesis of the polymer in
the presence of pre-dispersed CNTs; and 6) synthesis of the
polymer in the presence of pre-dispersed CNTs with simul-
taneous sonication (e.g., water bath operating at 40 kHz)
throughout the entire synthesis process. The effects of these

45 different methods of preparation on electrical conductivity
and optical transmission were investigated.
Preparation of Carbon Nanotube Dispersion

Two different types of CNTs were dispersed. The CNTs
differed in their method of preparation [either laser ablation

50 (LA) or chemical vapor deposition (CVD)], as well as the
average lengths and diameters of the tubes. The LA CNTs
were single wall carbon nanotubes (SWNTs) and were
obtained from Tubes@Rice as purified dispersions in toluene.
The CVD CNTs were multi-wall carbon nanotubes

55 (MWNTs) and were obtained from Nanolab, Inc. CNT dis-
persions were prepared by placing the CNTs into an organic
solvent, preferably at concentrations of less than 1 weight
percent (wt %). Although concentrations of less than 1 wt %
are preferred, concentrations of up to about 3% may be used

60 for thin films (i.e., less than approximately 5 µm thick) while
still achieving retention of optical transparency. The liquid to
disperse the CNTs was chosen based on its compatibility and
solvating characteristics with the monomers and polymer of
interest. Preferably, polar aprotic solvents were selected that

65 were also compatible with the polymers to be synthesized.
The CNT dispersion was mixed mechanically, as appropriate,
with a high-speed, high-shear instrument (e.g., homogenizer,
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fluidizer, or high-speed mechanical stirrer) and was subse- 	 organic solvent was conducted by preparing a polymer solu-
quently placed in a glass vessel and immersed in an ultrasonic 	 tion in a solvent and subsequently adding the CNT dispersion
water bath operating at 40-60 kHz for several 1-10 hours to

	
(prepared as previously described). A high power sonic horn

achieve initial dispersion.	 equipped with a 13 mm probe operating at 20 kHz was used
Selection of Polymers	 5 to mix the two components. Experiments were undertaken to

Predominately aromatic and conjugated polymers are gen- 	 study the effect of ultrasonic treatment time on level of dis-
erally preferred for use in the preparation of polymer/CNT

	
persion. Longer ultrasonic treatment times (>10 min.) did not

nanocomposites for long-term aerospace applications owing	 provide significant improvement in mixing and dispersion as
to their high-temperature resistance and high durabilities. 	 compared to shorter ultrasonic treatment times (<10 min.).
Representative aromatic polymers and copolymers, repre-  io This high power ultrasonic treatment appeared to cause sig-
senting the poly(amide acid), polyinride and poly(arylene 	 nificant damage to the polymer as evidenced by a noticeable
ether) families, were selected based upon their solubility in

	
decrease in solution viscosity. This observation suggests that

several polar aprotic solvents of choice and their ability to be 	 chemical bond cleavage is occurring that subsequently leads
synthesized in the presence of the CNTs without any delete- 	 to a reduction in molecular weight. The possibility also exists
rious effects on molecular weight build-up as evidenced by a 15 that this high power ultrasonic treatment may cause damage
noticeable increase in solution viscosity. In some cases, target

	
(i.e., introduction of defect sites through carbon-carbon bond

polymers with polar groups such as carbonyl, cyano, phos-	 cleavage) to the CNTs. Modification of the chemical structure
phine oxide, sulfone and others or conjugated polymers were 	 of CNTs is known to cause bulk property changes, thus this
selected to provide additional compatibility with CNTs. In 	 method was deemed undesirable. Nanocomposite films and/
some cases, polymers with very high optical transmission 20 or coatings prepared from solutions that received relatively
(i.e. greater than approximately 85%) at 500 nm were 	 short exposures (<10 min.) to the high power sonic horn
selected to demonstrate this approach. Particularly good

	
treatment exhibited improvements in electrical conductivity

results, with respect to degree of dispersion, were obtained
	

of 10-12 orders of magnitude; however the nanocomposite
with aromatic polymers containing polar groups.	 films and/or coatings exhibited moderate retention of optical
Methods of Preparation of Composites 	 25 transparency (i.e., 35-50% retention of optical transmission)

Several methods of preparing polymer/CNT composites
	

in the visible range. Optical microscopic examination of the
were evaluated and are described in detail below.	 nanocomposite film showed the presence of agglomerates of
Method (1) (Low Shear Mixing)

	
CNT bundles indicating poor dispersion. Based on a qualita-

Low shear mixing of a pre-synthesized high molecular 	 tive assessment, the nanocomposite film prepared via this
weight aromatic polymer solution with CNTs dispersed in an 30 method exhibited marginally improved dispersion relative to
organic solvent was conducted by preparing a polymer solu- 	 the nanocomposite films prepared via Methods (1) and (2).
tion in a solvent and subsequently adding the CNT dispersion

	
Method (4) (High Shear and Ultrasonic Mixing Using Sonic

(prepared as previously described). A mechanical stirrer was
	

Horn)
used to mix the two components. This approach typically

	
A combination of high shear mixing and ultrasonic treat-

resulted in poor mixing and poor dispersion. The CNTs sepa- 35 ment was conducted by initially preparing an aromatic poly-
rated from solution upon removal of the mechanical agitation. 	 mer solution in a solvent and subsequently adding the CNT
The resulting film and/or coating were black in color and

	
dispersion (prepared as previously described). A homog-

exhibited poorretention of optical transmission (i.e., less than 	 enizer was subsequently used to mix the dispersion, followed
approximately 35% retention of optical transmission) at 500

	
by ultrasonic treatment with a highpower sonic horn operated

mu. Optical microscopic examination of the nanocomposite 4o at 20 kHz. The times of each treatment were varied, but no
film showed the presence of agglomerates of CNT bundles	 significant differences in dispersionwere apparent. This com-
indicating poor dispersion. 	 bination treatment generally gave better dispersion than one
Method (2) (High Shear Mixing)

	
single component mixing. Nanocomposite films and/or coat-

High shear mixing (e.g., using homogenizer, fluidizer, or
	

ings with 0.1 wt % CNT exhibited improvements in electrical
high-speed mechanical stirrer) of a pre-synthesized high 45 conductivity of 10-12 orders of magnitude compared to a
molecular weight aromatic polymer solution with CNTs dis- 	 pristine polymer film. However, the nanocomposite films
persed in an organic solvent was conducted by preparing a 	 and/or coatings exhibited moderate retention of optical trans-
polymer solution in a solvent and subsequently adding the 	 parency (i.e., 35-50% retention of optical transmission) at
CNT dispersion (prepared as previously described). A flat

	
500 mu. Optical microscopic examination of the nanocom-

bottom generator equipped with a homogenizer operating at 50 posite film showed the presence of agglomerates of CNT
about 7500 revolutions per minute (rpm) was used for

	
bundles, indicating poor dispersion. Based on a qualitative

approximately 20 minutes to mix the two components. 	 assessment, the nanocomposite film prepared via this method
Experiments were undertaken to study the effect of homog- 	 exhibited marginally improved dispersion relative to the
enizationtime on level of dispersion. Longer homogenization 	 nanocomposite films prepared via Methods (1) and (2).
times (>1 hour) did not provide significant improvement in 55 Method (5) (Synthesis of the Polymer in the Presence of
mixing and dispersion as compared to shorter times (<1

	
Pre-Dispersed CNTs)

hour). This approach typically resulted in better mixing and
	

Synthesis of an aromatic polymer in the presence of the
dispersion as compared to Method (1), but the resulting nano-	 CNTs was conducted by pre-dispersing the CNTs in the sol-
composite films and/or coatings were black and exhibited

	
vent of interest and subsequently adding the monomers. In the

poor retention of optical transmission (i.e. less than approxi- 60 case of the poly(amide acid)s and polyimides, the diamine
mately 35% retention of optical transmission) at 500 mu. 	 component was added first to the predispersed CNTs and
Optical microscopic examination of the nanocomposite film	 allowed to be stirred until dissolved. The dianhydride com-
showed the presence of agglomerates of CNT bundles indi- 	 ponent was subsequently added as a solid and the progression
cating poor dispersion. 	 of the polymerization was readily observable by a significant
Method (3) (Ultrasonic Mixing with Sonic Horn)

	
65 build-up in solution viscosity. The re-aggregation among the

Ultrasonic mixing of a pre-synthesized high molecular
	

CNTs are inhibited and/or minimized due to the high viscos-
weight aromatic polymer solution with CNTs dispersed in an

	
ity of the solution, which preserves the state of CNT disper-
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sion during further required processing. The polymerization
was allowed to proceed under conditions analogous to those
generally used for the particular polymer type using a
mechanical stirrer (i.e., under low shear). Nanocomposite
films and/or coatings with 0.1 wt % CNT exhibited improve-
ments in electrical conductivity of 10-12 orders of magnitude
compared to a pristine polymer film and a high retention of
optical transparency (greater than 50%) at 500 nm. Optical
microscopic examination of the nanocomposite film showed
the presence of CNT bundles and agglomerates of bundles.
However, the bundles were of a smaller size than those
observed in nanocomposite films prepared by Methods (1)-
(4). Based on a qualitative assessment, the nanocomposite
film prepared via this method exhibited significantly
improved dispersion relative to the nanocomposite films pre-
pared via Methods (1)-(4). Optionally, the solution obtained
by Method (5) may be filtered to remove extraneous particles
or large agglomerates of CNT bundles.
Method (6) (Synthesis of the Polymer in the Presence of
Pre-dispersed CNTs with Simultaneous Ultrasonic Treat-
ment)

A combination method of preparation involving synthesis
of the polymer in the presence of the CNTs while simulta-
neously applying ultrasonic treatment using a low power
waterbath operating at 40 kHz throughout the entire synthesis
process was investigated. This method involved synthesis of
the polymer in the presence of pre-dispersed CNTs as
described in Method (5), but the reaction vessel was
immersed in an ultrasonic bath throughout the entire synthe-
sis. It should be noted that in contrast to Methods (3) and (4),
which used a high power sonic horn operating at 20 kHz
(100-750 Watt/cm2), the ultrasonic bath operates at a much
lower level of power (less than 10 Watt/cm2) and at a higher
frequency (40 kHz). Based on the observed increase in solu-
tion viscosity (indicating high molecular weight polymer for-
mation) and microscopic analysis of the nanocomposite
films, the use of the ultrasonic bath operating at 40 kHz did
not cause any observable degradation of the CNTs, nor did it
affect the formation of high molecular weight polymer. Nano-
composite films and/or coatings with 0.1 wt % CNT exhibited
improvements in electrical conductivity of 10-12 orders of
magnitude compared to a pristine polymer film and a high
retention of optical transparency (i.e., greater than about
50%) at 500 nm. Optical microscopic examination of the
nanocomposite film showed the presence of CNT bundles and
agglomerates of bundles. However, the bundles were of a
smaller size than those observed in nanocomposite films pre-
pared by methods (1)-(4). Based on a qualitative assessment,
the nanocomposite film prepared via this method exhibited
significantly improved dispersion relative to the nanocom-
posite films prepared via Methods (1)-(4). Optionally, the
solution obtained by Method (6) may be filtered to remove
extraneous particles or large agglomerates of CNT bundles.

Performing synthesis of the polymers [i.e., Methods (5)
and (6)] in the presence of the CNTs provided significant
improvement in the dispersion of the CNTs, provided the
smallest decrease in optical transmission, provided an equal
or better electrical conductivity compared to a pristine poly-
mer film and provided a stable solution. Attempts to mix a
pre-synthesized high molecular weight aromatic polymer
solution with a CNT dispersion was unsuccessful in achiev-
ing good dispersion and high retention of optical transmis-
sion. Methods (5) and (6) are applicable to various conden-
sation polymers such as poly(amide acid), polyimide and
poly(arylene ether)/CNT nanocomposites as shown in FIGS.
1 and 2. FIG. 1 illustrates the preparation of polyimide and
poly(amide acid))/CNT nanocomposites, whereinAr andAr'

Example IA

Preparation of 0.1 wt % CNT/polyimide nanocom-
15	 posite from 1,3-bis(3-aminophenoxy)benzene (APB)

and 4,4'-perfluoroisopropylidiene dianhydride
(6FDA) by Method (6)

8
can be any aromatic moiety. FIG. 2 illustrates the preparation
of poly(arylene ether)/CNT composites, wherein Ar" repre-
sents any aromatic moiety, X represents a leaving group such
as a halogen, nitro or other suitable group and Ar"' represents

5 any electron withdrawing group or ring system.

EXAMPLES

The following specific examples are provided for illustra-
10 tive purposes and do not serve to limit the scope of the inven-

tion.

FIG. 3 illustrates preparation of 0.1 wt % LA-NT/polyim-
^^ ide nanocomposite from APB and 6 FDA by Method (6).

Purified SWNTs obtained from Tubes@Rice as a disper-
sion in toluene were used as the conductive inclusions. A
dilute SWNT solution, typically approximately 0.01%

25 weight/volume (w/v) in N,N-dimethylformamide (DMF),
was prepared by replacing the toluene with DMF by centri-
fuging and decanting several (typically three) times. Pure
CNT powders could also be used, eliminating the previous
step. The dilute SWNT solution was homogenized for 10 min.
and sonicated for 1 hour in a ultrasonic bath operating at 40

30 kHz. If a higher power sonic bath is used, sonication time can
be reduced depending on the power. Sonication time should
be also adjusted depending on the quality of CNTs. The
sonicated SWNT solution (2 mL, 0.01 g of the solid SWNT)
was transferred into a 100 mL three neck round bottom flask

35 equipped with a mechanical stirrer, nitrogen gas inlet, and
drying tube outlet filled with calcium sulfate. The flask was
immersed in the ultrasonic bath throughout the entire synthe-
sis procedure. APB (3.9569 g, 1.353x10-2 mol) was added

40 
into the flask along with 20 mL of DMF while stirring under
sonication. After approximately 30 min. of stirring the SWNT
and diamine mixture, 6FDA (6.0432 g, 1.360x10-2 mol) was
added along with additional 30.5 mL of DMF with stirring
under sonication. The dark mixture was stirred in the sonic

45 bath overnight, approximately 12 hours, to give a 0.1% by
weight SWNT/poly(amide acid) solution. During the course
of the reaction, a noticeable increase in solution viscosity was
observed. The concentration of the SWNT/poly(amide acid)
was 16% solids (w/w) in DMF. The SWNT/poly(amide acid)
solution was treated with acetic anhydride (4.1983 g, 4.080x

50 10-2 mol) and pyridine (3.2273 g, 1.360x10 -2 mol) to effect
imidization. The resulting solution was cast onto plate glass
and placed in a dry air box for 24 hours to give a tack-free film.
This film was thermally treated (to remove solvent) for 1 hour
each at 110, 170, 210 and 250° C. in a forced air oven. The

55 film was removed from the glass and characterized.

Example 1 B

Film was prepared in a manner identical to that described
60 for EXAMPLE IA, except that the SWNT concentration in

the polyimide was 0.2% by weight.

Example 1 C

65 Film was prepared in a manner identical to that described
for EXAMPLE IA, except that the SWNT concentration in
the polyimide was 0.5% by weight.
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Example 1 D

Film was prepared in a manner identical to that described
for EXAMPLE IA, except that the SWNT concentration in
the polyimide was 1.0% by weight.

Example IE

Film was prepared in a manner to that described for
EXAMPLE 1D, except that Method (1) was employed
instead of Method (6).

Example 2

Preparation of 0.1 wt % LA-NT/polyimide nano-
composite from 2,6-bis(3-aminophenoxy)benzoni-
trile [((3-CN)APB] and 3,3',4,4'-oxydiphthalic dian-

hydride (ODPA) by Method (6)

FIG. 4 illustrates the preparation of 0.1 wt % LA-NT/
polyimide nanocomposite from 2,6-bis(3-aminophenoxy)
benzonitrile [((3-CN)APB] and ODPA by Method (6).

Purified SWNTs obtained from Tubes@Rice as a disper-
sion in toluene were used as the conductive inclusions. A
dilute SWNT solution, generally about 0.01% w/v in N,N-
dimethylacetamide (DMAc), was prepared by replacing the
toluene with DMAc by centrifuging and decanting several
(typically three) times. The dilute SWNT solution was
homogenized for 10 min. and sonicated for 1 hour in an
ultrasonic bath operating at 40 kHz. The SWNT solution (2
mL, 0.01 g of the solid SWNT) was transferred into a 100 mL
three neck round bottom flask equipped with a mechanical
stirrer, nitrogen gas inlet, and drying tube outlet filled with
calcium sulfate. The flask was immersed in the ultrasonic bath
during the entire reaction. ((3-CN)APB, (5.0776 g, 1.60x10 -2

mol) was subsequently added to the flask along with 20 mL of
DMAc while stirring under sonication. After approximately
30 min., ODPA (4.9635 g, 1.60x10 -2 mol) was added along
with an additional 30.5 mL of DMAc. The dark mixture was
stirred under sonication overnight, approximately 12 hours,
to give a 0.1 wt % SWNT/poly(amide acid) solution. During
the course of the reaction, a noticeable increase in solution
viscosity was observed. The concentration of the solid
SWNT/poly(amide acid) was 16% (w/w) in DMAc. The
SWNT/poly(amide acid) solution was treated with acetic
anhydride (4.1983 g, 4.080x10 -2 mol) and pyridine (3.2273
g, 1.360x10-2 mol) to effect imidization. The resulting solu-
tion was cast onto plate glass and placed in a dry air box for 24
hours to give a tack-free film. This film was thermally treated
(to remove solvent) for 1 hour each at 50, 150, 200 and 240°
C. in a nitrogen oven. The film was removed from the glass
and characterized.

Example 3

Preparation of a 0.1 % wt/'wt LA-NT/polyimide
nanocomposite from

[2,4-bis(3-aminophenoxy)phenyl]diphenylphosphine
oxide (APB-PPO) and ODPA by Method (5)

FIG. 5 illustrates preparation of a 0.1% wt/wt LA-NT/
polyimide nanocomposite APB-PPO and ODPA by Method
(5).

A glass vial containing 0.0060 g of nanotubes and 10 mL
DMF was placed in an ultrasonic bath operating at 40 kHz for
periods ranging from 16 to 24 hours. A 100 mL three neck
round bottom flask equipped with a mechanical stirrer, nitro-

10
gen gas inlet, and drying tube filled with calcium sulfate was
charged with APB-PPO (3.6776 g, 7.467x10-3 mole) and
DMF (5.0 mL). Once the diamine dissolved, the DMF/SWNT
mixture was added and the resulting mixture was stirred for

5 20 mins. ODPA (2.3164 g, 7.467x10-3 mole) was added
along with additional DMF (8.2 mL) to give a solution with a
concentration of 20% (w/w) solids and a nanotube concen-
tration of 0.1% wt/m. The mixture was stirred overnight at
room temperature under a nitrogen atmosphere. During the

l0 course of the reaction a noticeable increase in solution vis-
cosity was observed. The poly(amide acid) was chemically
imidized by the addition of 2.31 g of acetic anhydride and
1.77 g of pyridine. The reaction mixture was stirred at room

15 temperature overnight under a nitrogen atmosphere. The
polyimide/nanomaterial mixture was precipitated in a
blender containing deionized water, filtered, washed with
excess water and dried in a vacuum oven at 150° C. overnight
to afford a light gray, fibrous material. A solution prepared

20 from DMF or chloroform (20% solids w/w) was cast onto
plate glass and allowed to dry to a tack-free state in a dust-free
chamber. The film on the glass plate was placed in a forced air
oven for 1 hour each at 100, 150, 175 and 225° C. to remove
solvent. The film was subsequently removed from the glass

25 and characterized.

Example 4

Preparation of a 0.2% wt/wt LA-NT/polyimide
30	 nanocomposite from APB-PPO and ODPA via

Method (5)

FIG. 6 illustrates preparation of a 0.2% wt/wt LA-NT/
35 polyimide nanocomposite from APB-PPO and ODPA via

method (5).
A glass vial containing 0.0120 g of LA-NT nanotubes and

10 mL of DMF was placed in an ultrasonic bath operating at
40 kHz for periods ranging from 16 to 24 hours. A 100 mL

40 three neck round bottom flask equipped with a mechanical
stirrer, nitrogen gas inlet, and drying tube filled with calcium
sulfate was charged with APB-PPO (3.6776 g, 7.467x10 -3

mole) and DMF (5.0 mL). Once the diamine dissolved, the
45 DMF/SWNT mixture was added and the resulting mixture

was stirred for 20 min. ODPA (2.3164 g, 7.467x10 -3 mole)
was added along with additional DMF (8.2 mL) to give a
solution with a concentration of 20% (w/w) solids and a
nanotube concentration of 0.2% wt/wt. The mixture was

50 stirred overnight at room temperature under a nitrogen atmo-
sphere. The poly(amide acid) was chemically imidized by the
addition of 2.31 g of acetic anhydride and 1.77 g of pyridine.
The reaction mixture was stirred at room temperature over-

55 night, approximately 12 hours, under a nitrogen atmosphere.
During the course of the reaction a noticeable increase in
solution viscosity was observed. The polyimide/SWNT mix-
ture was precipitated in a blender containing deionized water,
filtered, washed with excess water and dried in a vacuum oven

60 at 150° C. overnight to afford a light gray, fibrous material. A
solution prepared from DMF or chloroform (20% solids w/w)
was cast onto plate glass and allowed to dry to a tack-free state
in a dust-free chamber. The film on the glass plate was placed

65 in a forced air oven for 1 hour each at 100, 150, 175 and 225°
C. to remove solvent. The film was subsequently removed
from the glass and characterized.
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Example 5

	

	
washed with excess water and dried in a vacuum oven at 150°
C. overnight to afford a light gray, fibrous material. A solution

Preparation of a 0.1% wt/wt CVD-NT-1/polyimide 	 prepared from DMF or chloroform (20% solids w/w) was cast
nanocomposite from APB-PPO and ODPA by 	 onto plate glass and allowed to dry to a tack-free state in a

Method (5)

	

	
5 dust-free chamber. The film on the glass plate was placed in a

forced air oven for 1 hour each at 100, 150, 175 and 225° C.
FIG. 7 illustrates the preparation of a 0.1% wt/wt CVD- 	 to remove solvent. The film was subsequently removed from

NT-1/polyimide nanocomposite from APB-PPO and ODPA
	

the glass and characterized.
by Method (5).

A glass vial containing 0.0060 g of CVD-NT-1 nanotubes 10	 Example 7
and 10 mL of DMF was placed in an ultrasonic bath at 40 kHz
for periods ranging from 16 to 24 hours. A 100 ml, three neck

	
Preparation of a 0.1% wt/wt CVD-NT-2/polyimide

round bottom flask equipped with a mechanical stirrer, nitro- 	 nanocomposite from APB-PPO and ODPA by
gen gas inlet, and drying tube filled with calcium sulfate was

	
Method (5)

charged with APB-PPO (3.6776 g, 7.467x10-3 mole) and 15

DMF (5.0 mL). Once the diamine dissolved, the DMF/CNT
	

FIG. 9 illustrates the preparation of a 0.1% wt/wt CVD-
mixture was added and the resulting mixture was stirred for

	
NT-2/polyimide nanocomposite from APB-PPO and ODPA

20 min. ODPA (2.3164 g, 7.467x10 -3 mole) was added along
	

by Method (5).
with additional DMF (8.2 mL) to give a solution with a

	
A glass vial containing 0.0060 g of CVD-NT-2 nanotubes

concentration of 20% (w/w) solids and a nanotube concen-  20 and 10 mL of DMF was placed in an ultrasonic bath operating
tration of 0.1% wt/wt. The mixture was stirred overnight at 	 at 40 kHz for periods ranging from 16 to 24 hours. A 100 mL
room temperature under a nitrogen atmosphere. During the	 three neck round bottom flask equipped with a mechanical
course of the reaction, a noticeable increase in solution vis-	 stirrer, nitrogen gas inlet, and drying tube filled with calcium
cosity was observed. The poly(amide acid) was chemically	 sulfate was charged with APB-PPO (3.6776 g, 7.467x10 -3

imidized by the addition of 2.31 g of acetic anhydride and 25 mole) and DMF (5.0 mL). Once the diamine dissolved, the
1.77 g of pyridine. The reaction mixture was stirred at room

	
DMF/CNT mixture was added and the resulting mixture was

temperature overnight # under a nitrogen atmosphere. The	 stirred for 20 minutes. ODPA (2.3164 g, 7.467x10 -3 mole)
polyimide/CNT mixture was precipitated in a blender con- 	 was added along with additional DMF (8.2 mL) to give a
taining deionized water, filtered, washed with excess water 	 solution with a concentration of 20% (w/w) solids and a
and dried in a vacuum oven at 150° C. overnight to afford a 30 nanotube concentration of 0.1% wt/wt. The mixture was
light gray, fibrous material. A solution prepared from DMF or 	 stirred overnight, approximately 12 hours, at room tempera-
chloroform (20% solids w/w) was cast onto plate glass and

	
ture under a nitrogen atmosphere. During the course of the

allowed to dry to a tack-free state in a dust-free chamber. The 	 reaction, a noticeable increase in solution viscosity was
film on the glass plate was placed in a forced air oven for 1

	
observed. The poly(amide acid) was chemically imidized by

hour each at 100,150,175 and 225'C. to remove solvent. The 35 the addition of 2.31 g of acetic anhydride and 1.77 g of
film was subsequently removed from the glass and character- 	 pyridine. The reaction mixture was stirred at room tempera-
ized.	 ture overnight # under a nitrogen atmosphere. The polyimide/

CNT solution was precipitated in a blender containing deion-
Example 6
	

ized water, filtered, washed with excess water and dried in a
40 vacuum oven at 150° C. overnight to afford a light gray,

Preparation of a 0.2% wt/wt CVD-NT-1/polyimide 	 fibrous material. A solution prepared from DMF or chloro-
nanocomposite from APB-PPO and ODPA by 	 form (20% solids w/w) was cast onto plate glass and allowed

Method (5)
	

to dry to a tack-free state in a dust-free chamber. The film on
the glass plate was placed in a forced air oven for one hour

FIG. 8 illustrates the preparation of a 0.2% wt/wt CVD-  45 each at 100, 150,175 and 225° C. to remove solvent. The film
NT-1/polyimide nanocomposite from APB-PPO and ODPA was subsequently removed from the glass and characterized.
by Method (5).

A glass vial containing 0.0120 g of CVD-NT-1 nanotubes
	

Example 8
and 10 mL of DMF was placed in an ultrasonic bath operating
at 40 kHz for periods ranging from 16 to 24 hours. A 100 mL 50	 Preparation of a 0.2% wt/wt CVD-NT-2/polyimide
three neck round bottom flask equipped with a mechanical

	
nanocomposite from APB-PPO and ODPA by

stirrer, nitrogen gas inlet, and drying tube filled with calcium
	

Method (5)
sulfate was charged with APB-PPO (3.6776 g, 7.467x10 -3

mole) and DMF (5.0 mL). Once the diamine dissolved, the
	

FIG. 10 illustrates preparation of a 0.2% wt/wt CVD-NT-
DMF/CNT mixture was added and the resulting mixture was 55 2/polyimide nanocomposite from APB-PPO and ODPA by
stirred for 20 min. ODPA (2.3164 g, 7.467x10-3 mole) was

	
Method (5).

added along with additional DMF (8.2 mL) to give a solution
	

A glass vial containing 0.0120 g of CVD-NT-2 nanotubes
with a concentration of 20% (w/w) solids and a nanotube 	 and 10 mL of DMF was placed in an ultrasonic bath operating
concentration of 0.2% wt/wt. The mixture was stirred over- 	 at 40 kHz for periods ranging from 16 to 24 hours. A 100 mL
night at room temperature under a nitrogen atmosphere. Dur- 60 three neck round bottom flask equipped with a mechanical
ing the course of the reaction, a noticeable increase in solution 	 stirrer, nitrogen gas inlet, and drying tube filled with calcium
viscosity was observed. The poly(amide acid) was chemi- 	 sulfate was charged with APB-PPO (3.6776 g, 7.467x10 -3

cally imidized by the addition of 2.31 g of acetic anhydride 	 mole) and DMF (5.0 mL). Once the diamine dissolved, the
and 1.77 g of pyridine. The reaction mixture was stirred at

	
DMF/nanomaterial mixture was added and the resulting mix-

room temperature overnight, approximately 12 hours, under a 65 ture was stirred for 20 minODPA (2.3164 g, 7.467x10 -3

nitrogen atmosphere. The polyimide/CNT solution was pre- 	 mole) was added along with additional DMF (8.2 mL) to give
cipitated in a blender containing deionized water, filtered, 	 a solution with a concentration of 20% (w/w) solids and a



US 7,972,536 B2
13

nanotube concentration of 0.2% wt/wt. The mixture was
stirred overnight, approximately 12 hours, at room tempera-
ture under a nitrogen atmosphere. During the course of the
reaction, a noticeable increase in solution viscosity was
observed. The poly(amide acid) was chemically imidized by
the addition of 2.31 g of acetic anhydride and 1.77 g of
pyridine. The reaction mixture was stirred at room tempera-
ture overnight, approximately 12 hours, under a nitrogen
atmosphere. The polyimide/CNT solution was precipitated in
a blender containing deionized water, filtered, washed with
excess water and dried in a vacuum oven at 150° C. overnight
to afford a light gray, fibrous material. A solution prepared
from DMF or chloroform (20% solids w/w) was cast onto
plate glass and allowed to dry to a tack-free state in a dust-free
chamber. The film on the glass plate was placed in a forced air
oven for one hour each at 100,150,175 and 225' C. to remove
solvent. The film was subsequently removed from the glass
and characterized.

Example 9

Preparation of a 0.1 % wt/wt. LA-NT/poly(arylene
ether)/SWNT nanocomposite by Method (5)

FIG. 11 illustrates the preparation of a 0.1% wt/wt LA-NT/
poly(arylene ether)/SWNT nanocomposite by Method (5).

A 100 mL three-necked round bottom flask equipped with
a mechanical stirrer, nitrogen inlet and a Dean-Stark trap
topped with a condenser was charged with 1,3-bis(4-fluo-
robenzoyl)benzene (2.0000 g, 6.2052x10 -3 mol), 4,4'-isopro-
pylieienediphenol (1.4166 g, 6.2052x10-3 mol), single-wall
carbon nanotube (from Tubes@Rice) suspension 0.0034 g,
sonicated at 40 kHz for 18 hours in 5.0 g N-methyl-2-pyrro-
lidinone (NMP), potassium carbonate (1.03 g), toluene (10
mL) and 8.7 g NMP. The mixture was stirred under nitrogen
and water was removed via azeotrope at approximately 135°
C. for about 16 hours. The toluene was subsequently removed
and the remaining mixture was heated at 170° C. for 6 hours.
The viscous mixture was cooled to room temperature and
then poured into a 10% aqueous acetic acid solution. A gray
fibrous precipitate was collected via filtration and washed
with excess water. The solid was dried in a vacuum oven at
150° C. for 4 hours. A solution prepared from NMP (20%
solids w/w) was cast onto plate glass and allowed to dry to a
tack-free state in a dust-free chamber. The film on the glass
plate was placed in a forced air oven for 1 hour each at 100,
150, 175 and 250° C. to remove solvent. The film was subse-
quently removed from the glass and characterized. A 27 µm
thick film exhibited a Tg of 250° C. and exhibited an optical
transparency at 500 run of 63%.

Example 10

Preparation of 0.1 wt % CNT/PMMA
nanocomposite from methyl methacrylate (MMA)

monomers by Method (6)

Purified SWNTs obtained from Tubes@Rice were used as
the conductive inclusions. A dilute SWNT solution, typically
approximately 0.01% weight/weight (w/w) in N,N-dimeth-
ylformamide (DMF), was prepared. The dilute SWNT solu-
tion was homogenized for 10 min and sonicated for one hour
in an ultrasonic bath operating at 40 kHz. The sonicated
SWNT solution (2 mL, 0.01 g of the solid SWNT) was trans-
ferred into a 100 mL three neck round bottom flask equipped
with a mechanical stirrer, nitrogen gas inlet, and drying tube
outlet filled with calcium sulfate. The flask was immersed in

14
the 80° C. ultrasonic bath throughout the entire synthesis
procedure. MMA (10 g, xmol) was added into the flask along
with 40 mL of DMF while stirring under sonication at 80° C.
After 30 min of stirring the SWNT and MMA mixture, AIBN

5 (0.04188 g) and 1-dodecanethiol (20 ml) were added with
stirring under sonication as an initiator and a chain extender,
respectively. The darkmixture was stirred in the sonic bath six
hours to give a 0.1% by weight SWNT/PMMA solution.
During the course of the reaction, a noticeable increase in

io solution viscosity was observed. The concentration of the
SWNT/PMMA was 20% solids (w/w) in DMF. The SWNT/
PMMA solution was precipitated in methanol with a high-
speed mixer. The precipitates were filtered with an aspirator
thoroughly with distilled water. A gray powder was collected

15 and dried in an vacuum oven at 60° C. The dried powder was
re-dissolved in DMF and cast onto plate glass and placed in a
dry air box for 24 hours to give a tack-free film. This film was
thermally treated (to remove solvent) for six hours in a
vacuum oven at 60° C. The film was removed from the glass

20 and characterized. The nanocomposite films (SWNT/
PMMA) exhibited high relative retention of optical transmis-
sion at 500 run (>50% at 0.1 wt % SWNT loading) while
exhibiting improvements in electrical conductivities of 10-12
orders of magnitude compared to the pristine polymer film.

25 The above examples are provided for illustrative purposes.
In addition to the specific condensation and addition poly-
mers described herein, other addition and condensation poly-
mers may be used, including polyamides, polyesters, poly-
carbonates, vinyl polymers, polyethylene, polyacrylonitrile,

30 poly(vinyl chloride), polystyrene, poly(vinyl acetate), poly-
tetrafluoroethylene, polyisprene, polyurethane, and poly(m-
ethyl metahcrylate)/polystyrene copolymer.
Characterization

Differential scanning calorimetry (DSC) was conducted on
35 a Shimadzu DSC-50 thermal analyzer. The glass transition

temperature (Tg) was taken as the inflection point of the AT
versus temperature curve at a heating rate of 10° C./min on
thin film samples. UV/VIS spectra were obtained on thin
films using a Perkin-Elmer Lambda 900 UV/VIS/NIR spec-

40 trophotometer. Thin-film tensile properties were determined
according to ASTM D882 using four specimens per test con-
dition. Then nogravimetric analysis (TGA) was performed on
a Seiko Model 200/220 instrument on film samples at a heat-
ing rate of 2.5 o C. min i in air and/or nitrogen at a flow rate of

45 15 cm3 min'. Conductivity measurements were performed
according to ASTM D257 using a Keithley 8009 Resistivity
Test Fixture and a Keithley 6517 Electrometer. Homogeniza-
tion was carried out using PowerGen Model 35 or a Power-
Gen. Model 700 homogenizer at speeds ranging from 5,000

50 to 30,000 rpm. Optionally a fluidizer, such as a M-l0Y High
Pressure Microfluidizer from WIC Corp. (Newton, Mass.)
could be used. Solar absorptivities were measured on a Aztek
Model LPSR-300 spectroreflectometer with measurements
taken between 250 to 2800 nm with a vapor deposited alumi-

55 num on Kapton® as a reflective reference. An Aztek Temp
2000A Infrared reflectometer was used to measure the ther-
mal emissivity. Ultrasonication was carried out using a Ultra-
sonik 57x ultrasonicator water bath operating at 40 kHz or
with a ultrasonic horn (VCX-750, Sonics and Materials. Inc.)

60 equipped with a 13 millimeter probe. Purified, laser ablated
singe wall carbon nanotubes (LA-NT) were used as received
from Tubes@Rice, Rice University, Houston, Tex. Chemical
vapor deposition multi-wall carbon nanotubes (CVD-NT)
were used as received from Nanolab, Inc., Watertown, Mass.

65 Optical microscopy was performed on an Olympus BH-2
microscope. Elemental analysis was performed by Desert
Analytics, Tucson, Ariz.
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The nanocomposite films were characterized for optical,
electrical and thermal properties. CNTs were subjected to
elemental analysis prior to use. The results are summarized in
Table 1. Characterization of the nanocomposite films
described in EXAMPLES IA-IE are presented in Tables 2
and 3. All of these samples were prepared using LA purified
SWNTs obtained from Tubes@Rice.

16
The tan 6 peak decreased and shifted up 10° C. with SWNT
incorporation at 1.0 vol % as seen in Table 4, which suggests
that CNT reinforcement made the nanocomposite more elas-
tic and thermally more stable by increasing the glass transi-
tion temperature.

TABLE 3

TABLE I Temperature of 5 % weight loss of nanocomposite films by TGA'

Elemental analysis ofCNTs	 10 SWNT	 Temp. of5%	 Solar	 Thermal
Loading,	 Weight Loss,	 absorptivity	 emissivity

CNT	 Carbon, % Hydrogen, %	 Iron, %	 Nickel, %	 Cobalt, % Sample Film	 Weight %	 ° C.	 (a)	 (e)

LA-NT	 78.2	 0.94	 0.06	 1.45	 1.54 AP13/6FDA	 0	 444	 0.068	 0.525
Single wall EXAMPLE IA	 0.1	 461	 0.268	 0.578
CVD-NT-1	 96.0	 <0.05	 1.0	 0.002	 <0.001	 15 EXAMPLE 113	 0.2	 474	 0.398	 0.614
Multi-wall EXAMPLE 1C	 0.5	 481	 0.362	 0.620
CVD-NT-2	 97.0	 <0.05	 1.5	 0.002	 <0.001 EXAMPLE 1D	 1.0	 479	 0.478	 0.652
Multi-wall

'By dynamic TGA at a heating rate of 2.5° C./min. in air after holding 30 min. at 100° C.

The polymer matrix was prepared from APB and 6FDA. 20
The control film was of comparable thickness or thinner than TABLE 4
that of the nanocomposite films. The data in Table 2 indicates
that at SWNT weight loadings of 0.1 to 1.0%, the transmis- Dvnamic Mechanical Data
sion at 500 nm as determined by UVNIS spectroscopy indi-
cated a relative retention from less than 1% up to 80%. The Sample Film	 Tan 6 Max, ° C.	 Storage modulus (GPa)25
nanocomposite film prepared via Method (1) exhibited by far AP13/6FDA	 214	 8.5 x 10s
the lowest retention of optical transmission (less than 1%). EXAMPLE IA	 213	 9.2 x 10s
The nanocomposite films prepared via Method (6) exhibited EXAMPLE 1C	 214	 1.2 x 109
significantly higher relative retention of optical transmission EXAMPLE 1D	 224	 1.4 x 109

at 500 mu ranging from 38-80% while exhibiting improve- 30
ments in electrical conductivities of 10-12 orders of magni- Another series of 0.1 and 0.2 wt % nanocomposite films
tude compared to the pristine polymer film. Of particular note were prepared from the polyimide derived from APB-PPO
is the nanocomposite film designated as EXAMPLE IA, and ODPA and three different types of CNTs. Method (5) was
which contained 0.1 wt % SWNT and exhibited high reten-

used for the preparation of the nanocomposite films describedtion of optical transmission (80%) while exhibiting a volume 35
conductivity of 10 -$ S/cm. When the amount of SWNT was in EXAMPLES 3-9. The nanotubes differed in their method

increased five-fold (EXAMPLE 1C), the nanocomposite still of preparation (either LA or CVD) as well as the average

exhibited a high retention of optical transmission and an lengths and diameters of the tubes. In addition, LA-NT are

increase in volume conductivity of 11 orders of magnitude single wall carbon nanotubes (SWNTs) and CVD-NT-1 and

compared to the control. The temperature of 5% weight loss CVD-NT-2 are multi-wall carbon nanotubes (MWNTs).
40

as determined by dynamic TGA increased with increasing Table 5 lists the types, sources and approximate dimensions
SWNT concentration (Table 3) suggesting that the incorpo- of the nanotubes used in the preparation of nanocomposite
ration of SWNTs did not have a significant effect on thermal films described in EXAMPLES 3-8.
stability as measured by this technique.

TABLE 545
TABLE 2

Nanotube Designations, Source and Approximate Dimensions
Optical and electrical properties of select nanocomposite films'.

UV/VIS Optical
SWNT (500 nm) Trans-

Loading, Trans- mission Conductivity
Sample Film' Weight % mission % Retention, % a„3, S/cm

AP13/6FDA 0 85 6.3 x 10-'s
EXAMPLE IA 0.1 68 80 1 x 10-s
EXAMPLE 113 0.2 62 66 1 x 10-1
EXAMPLE 1C 0.5 54 64 2 x 10-'
EXAMPLE 1D 1.0 32 38 >10-5

EXAMPLE IE 1.0 <1 <1 >10-5

Nanotube ID
(Type)

50

Production
Method

Average
Diameter,

nm
Nanotube
Source

Average
Length,

µm

LA-NT Laser ablation 1.2-1.6 Tubes@Rice -3
(SWNT)
CVD-NT-1 CVD <20 Nanolab, Inc. <1
(MWNT)
CVD-NT-2 CVD 10-20 Nanolab, Inc. <20

55 (MWNT)

Table 6 lists physical properties of the nanocomposite
'Films were prepared Method (6) except for EXAMPLE which was prepared	

films, such as T and thin film mechanical properties. The TMethod (1). All films were prepared using LA purified SWNTs (LA-NT)-NT) from Tubes ^a,Riee.e.	 g	 g

3q, (S/cm) =volume conductivity, S: Siemens = ohm-'
UV/V1S transmission was normalized at 34 µm.	 60 ranged from 187 to 212° C. The films exhibited room tem-

perature tensile strengths and moduli from 77 to 99 MPa and
Thermal emissivity (e) and solar absorptivity (a) measure- 	 2.8 to 3.3 GPa, respectively. The elongations at break ranged

ments are also shown in Table 3. In general, the addition of 	 from 3.1 to 4.9%. These values are comparable to other aro-
CNTs to the polyimide material increased both e and a. 	 matic polyimides. The polyimide/CNT nanocomposite films
Dynamic mechanical data shown in Table 4 show that modu- 65 exhibited reductions in Tg of 5-25° C., comparable tensile
lus increased with increasing nanotube concentration, with 	 strengths (except for EXAMPLE 6), increased tensile moduli
up to a 60% improvement at 1.0 vol % SWNT loading level. 	 and comparable or slightly lower elongations to break.
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Imidized thin film samples were measured for optical
transparency using UVNIS spectroscopy. The results are
presented in Table 7. The retention of optical transparency at
500 nm ranged from 52 to 89%. It is well known that for these
polyimide films, the optical transmission is dependent upon
film thickness such that increasing film thickness results in a
decrease in optical transmission. As shown in Table 7, the
films thicknesses of the nanocomposite films were compa-
rable or slightly greater than that of the control. Thus it is
reasonable to compare the results directly without normaliza-
tion. "High", "moderate", and "poor" retention of optical
transparency are defined herein to mean greater than 50%,
35% to 50%, and less than 35%, respectively.

18

TABLES

Solar Absorptivity and Thermal Emissivity
of Polvimide/CNT Nanocomposite Films

5 Film
Sample film, Thermal Solar Thickness,

(CNT cone., wt %) Emissivity (e) Absorptivity (a) µm

APB-PPO/ODPA	 (0.0) 0.560 0.049 25
EXAMPLE 3	 (0.1) 0.579 0.142 32

10 EXAMPLE 5	 (0.1) 0.641 0.253 32
EXAMPLE 7	 (0.1) 0.703 0.362 27
EXAMPLE 4	 (0.2) 0.609 0.151 25
EXAMPLE 6	 (0.2) 0.614 0.443 32

TABLE 6

Thin Film Tensile Pro perties at Room Temperature

Sample Film,
(CNT cone., wt %)

Tv
° C.

Tensile
Strength,

MPa

Tensile
Mod.,
OPa

Elong. @
Break,

APB-PPO/ODPA (0.0) 212 97 2.8 4.7
EXAMPLE 3 (0.1) 187 88 3.2 3.5
EXAMPLE 5 (0.1) 205 99 3.3 4.2
EXAMPLE 7 (0.1) 206 90 3.1 4.0
EXAMPLE 4 (0.2) 200 94 3.2 4.9
EXAMPLE 6 (0.2) 207 77 3.0 3.1
EXAMPLE 8 (0.2) 199

15	 Although the present invention has been described in

detail, it should be understood that various changes, substi-
tutions, and alterations may be readily ascertainable by those
skilled in the art and may be made herein without departing
from the spirit and scope of the present invention as defined

20 by the following claims.

What is claimed as new and desired to be secured by
Letters Patent of the United States is:

1. An electrically conductive, optically transparent poly
25 (amide acid)/carbon nanotube nanocomposite, comprising a

carbon nanotube and a poly(amide acid), wherein the poly
(amide acid) is

	

TABLE 7	 30	 O	 O

^Optical Transparency ofPolyimide/CNT Nanocomposite Films	 Ar-N
	

NNAr'
Relative

CNT	 Trans-	 Retention of	 Film	 HOOC COOH
Loading,	 parency @ Optical Trans- Thickness, 35

Sample film	 Weight % 500 nm, % 	 parency, %	 µm	
wherein Ar is selected from the group consisting of

APB-PPO/ODPA 0 85 25
EXAMPLE 3 0.1 76 89 32
EXAMPLE 5 0.1 66 78 32
EXAMPLE 7 0.1 48 56 27
EXAMPLE 4 0.2 75 88 25
EXAMPLE 6 0.2 44 52 32

Thermal emissivity (e) and solar absorptivity (a) measure-
ments are shown in Table S. In general, the addition of CNTs
to the polyimide material increased both e and a. The solar
absorptivity increased depending upon CNT type, for
example the samples with the laser ablated nanotubes
(SWNTs, EXAMPLES 3 and 4) exhibited the lowest increase
while the chemical vapor deposited nanotubes (MWNTs,
EXAMPLES 5 and 6) exhibited the largest increase.

As mentioned above for optical transmission, a and e are
also dependent upon film thickness. As shown in Table 8, the
nanocomposite film thicknesses were comparable or slightly
greater than that of the control. Thus it is reasonable to com-
pare the results directly without normalization. For some
space applications, the increase in solar absorptivity exhib-
ited by EXAMPLES 3 and 4 would not be detrimental. All
samples exhibited increases in thermal emissivity which for
many space applications is desirable. The term "optically
transparent" is defined herein to mean the relative retention of
greater than 50% of optical transparency (relative to a control
film of comparable thickness) as measured by UVNIS spec-
troscopy at a wavelength of 500 µm. The term "electrically
conductive" is defined herein to mean exhibiting a surface
conductivity ranging from less than 10 -5 S/cm to 10-12 S/cm.

CN
40 
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-continued:::[0_0-0

wherein the number average molecular weight of the poly
(amide acid) can range from approximately 700 g/mole
to approximately 100,000 g/mole; and

wherein the poly(amide acid) is selected from the group
consisting of endcapped and unendcapped.

2. An electrically conductive, optically transparent poly-
imide/carbon nanotube nanocomposite comprising a carbon
nanotube and a polyimide, wherein the polyimide is

0 0

--f-Ar-AArkNt-

YY
0 0

wherein Ar is selected from the group consisting of

20

-continued

DO-0-05
wherein the number average molecular weight of the poly-

imide is between approximately 700 g/mole and
approximately 100,000 g/mole; and

10	 wherein the polyimide is selected from the group consist-
ing of endcapped and unendcapped.

3. An electrically conductive, optically transparent poly
(arylene ether)/carbon nanotube nanocomposite comprising
a carbon nanotube and a poly(arylene ether), wherein the

15 poly(arylene ether) is

-[0 Ar"- Ai.^^^^

wherein Ar" is

CH3

O

C

25	
CH3 O

wherein Ar"' is

30	 CI 

O -0- 11-0-
wherein the number average molecular weight of the poly

(arylene ether) is between approximately 700 g/mole to
approximately 100,000 g/mole;

wherein the poly(arylene ether) is selected from the group
4o	 consisting of endcapped and unendcapped.

4. A nanocomposite product prepared from the nanocom-
posite of claim 1, wherein said product is in a form selected
from the group consisting of a film, fiber, foam, coating,
adhesive, molding and paste.

45 5. A nanocomposite product prepared from the nanocom-
posite of claim 2, wherein said product is in a form selected
from the group consisting of a film, fiber, foam, coating,
adhesive, molding and paste.

6. A nanocomposite product prepared from the nanocom-
so posite of claim 3, wherein said product is in a form selected

from the group consisting of a film, fiber, foam, coating,
adhesive, molding and paste.
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