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ABSTRACT
A formulation is proposed for hybrid LES-RANS com-

putations that permits accurate computations during resolu-
tion changes, so that resolution may be changed at will in or-
der to employ only as much resolution in each subdomain as
is required by the physics. The two components of this formu-
lation, establishing the accuracy of a hybrid model at constant
resolutions throughout the RANS-to-LES range and maintain-
ing that accuracy when resolution is varied, are demonstrated
for decaying, homogeneous, isotropic turbulence.

INTRODUCTION
Advances in computing power have made hybrid Large-

Eddy Simulation (LES) - Reynolds-Averaged Navier-Stokes
(RANS) approaches feasible for practical problems where
RANS methods alone yield unsatisfactory results or do not
provide necessary time-dependent information. These meth-
ods have been most successful when the flow is dominated
by rapid production of turbulence in the free shear layers and
there is little interaction between the turbulence of the wall-
bounded and free-shear layers (Travin et al., 1999).

In order for the full potential of hybrid computations to
be realized, the turbulence in the RANS and LES regions must
be coupled. Efforts to do this have met with some success in
certain situations (such as Davidson and Billson, 2006; Keat-
ing et al., 2006; Shur et al., 2008; Choi et al., 2009; Hamba,
2009), but there exists as yet no proven general procedure for a
fully coupled hybrid computation which permits LES-RANS
transitions to be set according to the physics of the prob-
lem rather than the requirements of the modelling technique.
Hamba’s (2009,2011) work points to the need to add correc-
tion terms to the governing equations, as advocated here.

A related question is whether RANS and LES mod-
els may be extended to model the full range of resolutions
between that of RANS and that of LES (Speziale, 1998;
Woodruff et al., 2000; Girimaji and Abdol-Hamid, 2005).
The resulting continuous models would clearly be advanta-
geous for hybrid methods, not least because one could make
RANS-LES transitions gradually, without sacrificing physical
fidelity.

Here, a formulation which addresses these questions is

presented. Its ultimate goal is to provide a modelling capabil-
ity where each portion of the flow is solved only with the res-
olution required by the fluid mechanics and where transitions
between regions of different resolution are free of unphysical
artifacts.

Decaying, homogeneous, isotropic turbulence is em-
ployed as a test case. The flow is solved with a spectral code
and the Detached-Eddy Simulation formulation of Strelets
(2001) is used as a representative hybrid modelling technique.

To investigate the potential for successful modelling
in the range of resolutions between RANS and LES, sev-
eral model coefficients were assumed to be functions of the
spectral-code resolution, N, and a simple gradient-based opti-
mization scheme was employed to determine model-constant
values at each of several resolutions. The optimization scheme
sought to minimize the difference between the temporal evo-
lution of the total kinetic energy as determined by the low-
resolution simulation and the same quantity as determined
from a full-scale LES.

The basic problem with moving between regions of dif-
ferent resolutions is that flow variables change as a result of
the change in resolution. This change in the flow variables is
in addition to that due to the modelled and resolved physics
of the flow. For example, the modelled turbulent kinetic en-
ergy increases while the kinetic energy of the resolved motion
decreases when the resolution is decreased. If left to its own
devices, the simulation will only gradually adapt as the reso-
lution changes and unphysical behavior will result. To avoid
this, resolution-dependent source terms are added to the gov-
erning equations; these correction terms employ the resolution
gradient and the variations of the flow quantities with resolu-
tion to counteract the non-physical effects of changes in res-
olution. The effectiveness of this procedure is demonstrated
by performing a successful decaying, homogeneous, isotropic
turbulence computation with temporally and spatially varying
resolution.

The two parts of the hybrid formulation, establishing the
accuracy of a hybrid model through a range of constant reso-
lutions and establishing that the accuracy is retained when the
resolution is made variable, are described in the next section.
The numerical test case for these ideas is presented in the fol-
lowing section and then two sections address demonstrations
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of the formulation’s two parts. The final section presents con-
clusions.

OUTLINE OF HYBRID FORMULATION
It is not difficult to formulate decompositions for the ve-

locity and the other flow variables that yield various mixtures
of RANS and LES as some parameter, a “blending param-
eter”, is varied. A combined space and time filter, for ex-
ample, could be constructed so that the time constant is very
long for RANS, but very short for LES; the spatial filter width
would vary with resolution as is typical for LES. The blend-
ing parameter has some (possibly implicit) relationship with
the resolution, since a more RANS-like mixture would be ap-
propriate for a coarser resolution and a more LES-like mixture
would be appropriate for a finer resolution.

Unfortunately, it is very difficult to take the next step of
deriving a turbulence model that corresponds to a specific de-
composition of the flow variables. In the present formulation,
the process is reversed: a hybrid model and governing equa-
tions are selected and the decomposition of the flow variables
is that which results when these equations are solved. The
question is then what properties the model and equations must
have so that a useful hybrid computation results.

The goal of coupling the turbulent part of the flow in
regions with different resolutions — and thus different mix-
tures of resolved and modelled turbulence — is to be achieved
by changing resolution continuously, with the accuracy of
mean- and turbulent-flow predictions maintained throughout
the transition. This requirement of maintaining accuracy
throughout the transition may be met by imposing two re-
quirements on the hybrid model and equations: that the model
yield accurate predictions at fixed resolutions throughout the
RANS-to-LES range and that this accuracy be maintained
across spatial or temporal resolution changes in a given com-
putation.

Before considering how to impose these requirements,
it is necessary to understand precisely how accuracy is to be
evaluated in a hybrid computation. This is an issue because
the dependent variables in the equations will naturally depend
on the blending parameter in the hybrid model, but this pa-
rameter, as an artifact of the model, should have no effect on
physically meaningful outputs of the computation. The con-
cept of model-invariant quantities is introduced to address this
issue: a model-invariant quantity is a dependent variable or
combination of dependent variables that is (at least approxi-
mately) independent of the model blending parameter. Model-
invariant quantities thus represent physically meaningful re-
sults and may be used to evaluate the accuracy of a hybrid
computation.

One type of model-invariant quantity is represented by
the mean-flow variables, because for RANS, or for LES, or
for any combination of the two, an average of the resolved
flow variables is defined that corresponds to the physical mean
quantity. A second type of model-invariant quantity involves
a combination of resolved and modelled flow variables, with
information shifting from the resolved part to the modelled
part and back as the model blending parameter varies. The
primary example of such a quantity in a hybrid LES-RANS
computation is the stress tensor, which is comprised of a re-
solved contribution, a modelled contribution and, potentially,

contributions from cross terms, etc. Of particular importance
is the turbulent kinetic energy, the trace of this tensor.

It will be assumed in the present work that the hybrid
model has been constructed so that model-invariant quantities
are at least approximately invariant. In the following, it will
be seen that the model-invariance accuracy may be improved
through the use of resolution-dependent coefficients in the tur-
bulence model. It will also be seen that the requirement that
model invariance be preserved when the resolution changes
provides important insights into the nature of a hybrid formu-
lation. The shear-stress relation of Germano (1992) is based
on a similar observation.

As mentioned in the introduction, continuous models
(models that are accurate throughout the RANS-to-LES range
of resolutions) have been proposed in several forms. In
the present work, a continuous model is sought which has
the structure of the Strelets (2001) hybrid model, but has
resolution-dependent model coefficients. The use of a system-
atic optimization approach for determining the model coeffi-
cients as a function of resolution is described in the following
section.

Having established the accuracy of the continuous model
for constant resolutions in the range between that of LES and
that of RANS, it remains to determine if that accuracy may
be maintained when the resolution varies spatially or tempo-
rally in a given computation. Since validation of the contin-
uous model (for constant resolutions) consisted of compar-
ing model-invariant quantities with some reference computa-
tion or experiment, maintaining accuracy when the resolution
varies is possible only if model invariance is preserved when
the resolution becomes spatially or temporally variable. It will
now be shown that the variable resolution must be introduced
in a particular way in order to preserve model invariance and,
even more fundamentally, to avoid altering the physical bal-
ances in the governing equations.

Consider a typical flow variable in a computation where
the resolution is constant, such as a velocity component u =
u(t ′,x′,∆0). It is a function of time, t ′, space, x′, and of the
constant model blending parameter ∆0. (For simplicity, the
blending parameter is taken here to be simply the resolution,
but the same analysis applies to more sophisticated measures
of the RANS-LES mixture, such as the ratio of turbulence
length scale to local grid resolution.) The standard means of
introducing variable resolution into the formulation (Spalart,
2009) is by replacing the constant blending parameter ∆0 in
the hybrid model with a variable parameter ∆ = ∆(t ′,x′). The
value of a flow variable like u at any point and time now de-
pends on the whole function ∆(t ′,x′) (that is, the values of
∆ at all positions and all previous times). It is convenient to
make the fairly drastic assumption that u depends only on the
local value of ∆: u = u(t ′,x′,∆(t ′,x′)). This assumption is al-
ready made in most LES turbulence models, where the eddy
viscosity is constructed using only the local value of the grid
resolution, so no additional approximation is being made here.

Introducing the variable resolution ∆ in this way pro-
duces a new contribution to the derivatives of u that reflects
the variation of u due not to physical effects, but purely to the
change in the structure of the model as ∆ varies. The time
derivative, for example, is now ∂u

∂ t ′ = u1 + u3
∂∆

∂ t ′ , where u1
and u3 represent the derivatives of u with respect to its first
and third arguments, respectively. Similar expressions hold
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for the spatial derivatives.
These new contributions to the derivatives of the flow

variables disrupt the physical balances in model-invariant
quantities and in the governing equations. The modelled con-
tribution to the stress tensor, for example, contains veloc-
ity derivatives (in the Boussinesq approximation); if model-
invariance holds in the constant-∆ case, it can’t hold in the
variable-∆ case due to the variation in ∆ contained in the new
contributions to the velocity derivatives. Even if the Boussi-
nesq approximation is not employed, some form of gradient-
based model-invariant quantity will be required to validate the
model fully, and this quantity will fail to be model invariant
for the same reason. The governing equations are also af-
fected, as they represent balances between physical quantities
involving spatial and temporal derivatives. The contributions
to the derivatives due to changes in the model structure dis-
turb these balances, too, and spurious, non-physical, effects
are seen in the solutions as a result.

This is all avoided in the present formulation by means
of a simple coordinate transformation between the constant-∆
and variable-∆ cases which guarantees that properties of the
constant-∆ case are mapped onto corresponding properties of
the variable-∆ case. In particular, model-invariant quantities
are guaranteed to transform into model-invariant quantities,
and the requirement that accuracy be maintained as resolution
varies is satisfied.

The transformation takes the form t = t ′, x = x′ and
s = ∆0 − ∆(t ′,x′). The variable s in the unprimed coordi-
nate system corresponds to ∆0 in the primed system. It pro-
vides an unambiguous means of referring to variations due to
model structure now that the blending parameter is a function
of space and time.

Under this transformation, the flow variable u becomes
u = u(t,x,∆(t,x) + s) and the physical solution corresponds
to the surface s = 0. This is, so far, essentially the same as
the standard formulation described above; where it differs is
in the treatment of derivatives in model-invariant quantities,
in the governing equations and anywhere else. The derivatives
must conform to the coordinate transformation and so the time
derivative becomes

∂

∂ t ′
= ∂̃t ≡

∂

∂ t
− ∂∆

∂ t
∂

∂ s
(1)

the gradient operator becomes

∇
′ = ∇̃≡ ∇− (∇∆)

∂

∂ s
(2)

(∇′ is the gradient operator on the primed variables) and the
divergence of a vector v becomes

∇
′ ·v = ∇̃ ·v≡ ∇ ·v− (∇∆) · ∂v

∂ s
(3)

(The work of Hamba (2009,2011), involving a spatially-
varying filtering operation, introduces similar derivatives.)

The new terms introduced by the transformation of the
derivatives have the effect of cancelling the spurious deriva-
tive contributions due to the variable blending parameter,

yielding expressions that reflect the true, physical, derivatives.
This means, ∂̃t , not ∂

∂ t , should be understood as the physical
time derivative, ∇̃ should be understood as the physical gra-
dient operator, etc. The procedure for transforming governing
equations, model-invariant quantities and other expressions
in their original form (in terms of what are here denoted as
primed variables) into a form appropriate for a hybrid compu-
tation (in terms of the unprimed variables) is thus to replace ∆

by ∆+ s, the time derivative by ∂̃t , the gradient operator by ∇̃

and so on.
Derivatives with respect to ∆0 transform to derivatives

with respect to s, which means the relation ∂F
∂∆0

= 0, reflect-
ing the model invariance of a quantity F in the constant-∆
case, transforms to the relation ∂F

∂ s = 0, expressing the model
invariance of F in the variable-∆ case. This is the formal
demonstration that the present formulation preserves model
invariance and thus accuracy is preserved across changes in
resolution.

The presence of derivatives with respect to s in the new
expressions for the physical derivatives means that the new
variable s is not simply a parameter. The governing equa-
tions become partial differential equations in the variables t, x
and s, with appropriate initial and boundary conditions. These
equations must be solved, and the result evaluated at s = 0, to
arrive at the physical solution.

In the present computation, several simultaneous compu-
tations are run with ∆ offset by slightly different amounts and
the s derivatives are determined by finite differencing. This
is equivalent to seeking a solution to the equations as a Tay-
lor series in s near s = 0. Because the mathematical problem
poses boundary values for s rather than initial values, an ex-
act Taylor series expansion is not possible and the present ap-
proximation amounts to assuming higher-order s derivatives
are small and may be neglected. This approach yields good
results for the present test problem, provided the variation in
resolution is not too great.

This is one of a number of promising approximations for
determining the s derivatives, each with its own accuracy char-
acteristics and computational cost. In this case, the accuracy
of the approximation seems to be limited to smaller varia-
tions in resolution and the cost is two additional simultaneous
simulations (yielding the total of three points in the s direc-
tion required to compute first and second derivatives by finite
differences). Other approximations, with significantly better
accuracy and cost characteristics, are explored in Woodruff
(2011).

The remainder of the paper is devoted to demonstrating,
for the case of decaying, homogeneous, isotropic turbulence,
that the two parts of this formulation are achievable: accu-
rate simulations for constant resolutions throughout the LES-
to-RANS range are possible, and employing equations trans-
formed according to the above prescription does allow the ac-
curacy of the constant-resolution computations to be main-
tained in the variable-resolution case.

TEST PROBLEM AND NUMERICS
The test problem chosen for this initial investigation is

decaying homogeneous, isotropic turbulence. While the rel-
ative simplicity of this flow makes it prone to idiosyncratic
behavior (more dependence on initial conditions than is typi-
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cal for turbulent flows, etc.), this flow provides a good, easily
computable, test problem on which to begin the present study.
The equations to be solved are thus the three-dimensional
incompressible Navier-Stokes equations plus a turbulence
model. Following the procedure of the last section, the conti-
nuity and momentum equations become

∇̃ ·v = 0
∂̃tv+(v · ∇̃)v = − 1

ρ
∇̃p+ ∇̃ ·

(
(ν +νt)∇̃v

)
(4)

In these equations, v is the resolved-scale velocity, ρ and ν are
the constant density and molecular viscosity, p is the resolved-
scale pressure, and νt is the turbulent or eddy viscosity.

The model employed in this paper is the Strelets (2001)
Detached-Eddy Simulation hybrid model based on Menter’s
(1994) SST model,

∂̃tkM +(v · ∇̃)kM =
1
ρ

P−
k3/2

M
`H

+ ∇̃ ·
[
(ν +σkνt)∇̃kM

]
∂̃tωM +(v · ∇̃)ωM =

γ

ρνt
P−βω

2
M + ∇̃ ·

[
(ν +σkνt)∇̃ωM

]
+ 2σω

1
ωM

∇̃kM · ∇̃ωM (5)

The production P is expressed as P = νt S̃i jS̃i j, where S̃i j is the
symmetric part of the tensor ∇̃v.

These equations describe the k− ε branch of the Menter
model, active away from walls, which is the only branch of
interest here. The length scale `H switches between the RANS
and LES length scales, and the model constants, following
Menter (1994), are the standard k− ε values.

If `M is regarded as representing the length scale of the
large-scale, energy-containing part of the turbulent motion,
then the switch from RANS to LES takes place when the grid
size ∆ = 1/CDES`M ≈ 1.8 `M . That is, the switch to LES is
made when the cut-off wave number is well to the left of (less
than) the main energy-containing wave numbers. LES is tradi-
tionally interpreted as requiring that the cut-off wave number
be to the right of the energy-containing wave numbers and
well into the inertial range, so it is clear most of the job of
effecting the RANS-to-LES transition falls to the LES mode
of the hybrid model. For this reason, the present work will
focus on the model with `H = `LES =CDES∆. The model con-
sequently makes the transition from pure LES to coarse LES,
without taking the final step to the RANS model. It thus serves
to demonstrate the effectiveness of the present formulation in
dealing with the essential feature of hybrid models: their de-
pendence on a time- and space-varying non-physical parame-
ter. The full LES-to-RANS transition is covered in Woodruff
(2011).

These equations are solved in a periodic three-
dimensional box with sides of length 2π using a pseu-
dospectral code derived from that employed in Shebalin and
Woodruff (1997). In addition to being rewritten in terms of
the primitive velocity variables plus the turbulence variables
kM and ωM , this version of the code employs the software
package rksuite (Brankin et al., 1992) for variable order, vari-
able step-size, time stepping, in addition to a fixed-order, fixed

step-size scheme. While variable order- and step-size meth-
ods have been highly developed and widely used by the ODE
numerical-algorithm community, they have seen limited use
in turbulence computations due to the resolution demands of a
given computation being relatively fixed, making the higher-
overhead variable methods a poor choice. In the present in-
vestigation, however, as described below, computations are
carried out over a range of parameters and it would be time
consuming to determine the step size required to maintain ac-
curacy for each set of parameters. The variable order and step-
size scheme does this automatically; spot checks were per-
formed to verify that the required accuracy was maintained.

An initial velocity field for the computation of decaying
homogeneous, isotropic, turbulence was constructed by cre-
ating a uniformly distributed random velocity field and then
reducing the modes within each wave-number band so the ve-
locity spectrum is E(κ)∼ κ2 exp(−2κ2/κ2

p), where κp = 13
in the present computations. The peak in this initial spectrum
is at κ = 9. The initial velocity field is normalized so that the
total kinetic energy is unity at the initial time. The turbulence-
model variables kM and ωM are initialized as constants.

A 633 computation was performed with this code using
the Smagorinsky model (Cs = 0.17) for validation purposes.
The initial dissipation was 1.39 and the viscosity was 0.00033,
making the initial Reynolds number based on the Taylor mi-
croscale, Reλ , approximately 120. The results of this compu-
tation give asymptotic behavior k ∼ t−m, λ ∼ ta, Reλ ∼ t−b,
with m ≈ 1.3, a ≈ 1.0, and b ≈ 0.4, all consistent with pre-
vious computations and measurements (Mansour and Wray,
1994), as are energy spectra at selected Reλ during the decay.

In order to provide an automated and rapid means for
tuning turbulence models, this code is embedded in an opti-
mization script which generates trial values of model param-
eters, initiates the required simulations, compares the results
with a target simulation and then generates new parameters for
the next repetition. This script runs on a PBS scheduling sys-
tem, providing parallelism for the optimization process. The
optimization technique employed is linear dissection in each
parameter; while not offering the rate of convergence of more
sophisticated techniques, this approach is robust and provides
thorough sampling of the parameter space.

MODELING AT INTERMEDIATE RESOLUTIONS
To investigate the potential for successful modelling

in the range of resolutions between RANS and LES, sev-
eral model coefficients were assumed to be functions of the
spectral-code resolution N. The optimization scheme de-
scribed above was used to minimize the difference between
the temporal evolution of the total kinetic energy (a model-
invariant quantity) as determined by the low-resolution simu-
lation and the same quantity as determined from the 633 vali-
dation full-scale LES mentioned in the previous section.

Determining the total kinetic energy by simply adding
the resolved and modelled kinetic energies has been found
to significantly over-predict the total kinetic energy in some
hybrid computations (eg., Davidson and Billson, 2006). To
accommodate this possibility, the total kinetic energy is con-
structed here as the linear combination of the resolved and
modelled kinetic energy, with coefficients determined as part
of the optimization process. The error is weighted to com-
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pensate for the decay in the kinetic energy, so that the target
kinetic energy (from the 633 validation LES) is O(1) through-
out the simulation.

The initial, constant, value for the turbulent kinetic en-
ergy is chosen so that the destruction term in the kinetic en-
ergy equation, k3/2

M /`LES, equals the dissipation determined
from the initial velocity field. The initial, constant, value for
ωM and the model constant CDES are determined by the opti-
mization process.

Simulations using model constants obtained in this fash-
ion for N = 8,16,20,24,28,32 were performed and results
for the dissipation are compared in Figure 1 with that of
the full-scale LES. While there is clearly room for improve-
ment (through including more model constants in the opti-
mization process, for example), the results are fairly good
even for very low resolutions. The failure of the lower-
resolution simulations to capture the slight rise in dissipation
near t = 0.02 is due to the model not capturing the filling-in of
high-wavenumber energy bands absent from the initial spec-
trum. This illustrates the truism that without either accurate
resolution of a flow feature or an accurate model of it, one
can’t hope to reproduce it.

VARIABLE-RESOLUTION MODELING
The ability to maintain accuracy as the resolution varies

in space and time is demonstrated by introducing an explicit
filter into the equations and then making the filter width a
function of the resolution function ∆. Accordingly, the bi-
harmonic operator C ∆4∇4 was added to the right-hand side
of the transport equations and the constant selected so that
the total resolved kinetic energy at ∆ = 2π/20 was approxi-
mately that of a 203 computation. The actual number of spec-
tral modes employed in all computations of this section was
243.

To test the ability to maintain accuracy through a tem-
poral change in resolution, a computation was set up to be-
gin at ∆ = 2π/20 (resolution equivalent to N = 20) and then
change instantaneously to ∆ = 2π/18 (resolution equivalent to
N = 18) at t = 3. The objective is for the variable-resolution
computation to yield the same results at a point and time
where the resolution is ∆ as a constant-resolution computa-
tion at the same ∆. Thus, the response of the resolved kinetic
energy to this ten percent decrease in resolution is compared
in Figure 2 with the results from a constant N = 18 resolution
computation.

The ability to maintain accuracy across a spatial resolu-
tion change is demonstrated by imposing a sinusoidal varia-
tion in resolution across the computational domain in the y
direction:

∆(t,x,y,z) =
2π

20
+h(t)

(
2π

16
− 2π

20

)(
1
2
− 1

2
sin(y)

)
(6)

with a maximum resolution equivalent to N = 20 at y = π/2
and a minimum resolution equivalent to N = 16 at y = 3π/2.
The function h(t) ramps up the spatial variation: it is zero for
t ≤ 1, changes linearly from zero to one between t = 1 and
t = 5 and is one for t ≥ 5. This ramping is necessary so the
simultaneous computations at offset resolutions can initialize

enough to provide correct s derivatives before the resolution
variations begin.

Plots of the resolved kinetic energy for this computa-
tion averaged over x− z planes at t = 5, with and without
the s-derivative correction terms, are compared with the cor-
responding plots for N = 20 and N = 16 computations in Fig-
ure 3. It is clear that the correction terms dramatically improve
the ability of the computation to maintain the accuracy of the
N = 20 computation at the point (y = π/2) where the resolu-
tion matches that of the N = 20 computation and the accuracy
of the N = 16 computation at the point (y = 3π/2) where the
resolution matches that of the N = 16 computation. This suc-
cess is further demonstrated in Figure 4, where averages over
the y = 3π/2 plane are shown as functions of time for the four
computations. The computation with the correction terms fol-
lows the resolution ramp reasonably well, but the uncorrected
computation does poorly. The slight rises at the end of the
runs are caused by the addition of the biharmonic term.

In further experiments, it was found that increasing the
temporal ramp rate significantly led to reduced accuracy and,
ultimately, numerical instabilities. Increasing the spatial vari-
ation significantly also led to reduced accuracy.

CONCLUSION
The computations described in the preceding sections

demonstrate that the two stages of the present hybrid formu-
lation are feasible: First, by employing a commonly used
hybrid model and allowing the coefficients to be functions
of resolution, accurate results were obtained throughout the
RANS-to-LES range. Second, the coordinate transforma-
tion introduced here to relate constant-resolution and variable-
resolution equations permits variable-resolution computations
to be carried out that maintain the accuracy of constant-
resolution computation at the same resolution.

These successes are encouraging, but were achieved for
one, simple, flow. They were also achieved at the cost of
running two additional simulations to provide the inputs for
the correction terms, and accuracy diminished significantly if
changes in resolution were made too rapidly. Much work thus
remains to be done to extend the theory and practice of this ap-
proach to more complex flows. In the next phase (Woodruff,
2011), the approach is successfully applied to plane channel
flow turbulence, at improved accuracy and reduced cost.
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Figure 1. Target (black line) and computed dissipation.
From bottom to top, resolutions N = 8,16,20,24,28,32.
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Figure 2. Kinetic energy of resolved scales: simulation be-
ginning at N = 20 and switched to N = 18 at t = 3, thick red
line; simulation at N = 18 throughout, thin blue line.
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Figure 3. Plane-averaged resolved kinetic energy for
spatially-varying resolution computation at t = 5: simula-
tion with correction terms, solid red line; simulation without
correction terms, dotted green line; simulation with constant
N = 20 resolution, dot-dashed blue line; simulation with con-
stant N = 16 resolution, double-dot-dashed purple line.
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Figure 4. Time evolution of total resolved kinetic energy for
spatially-varying resolution computation: same line types as
Figure 3.
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