
NASA USRP – Internship Final Report

 1 Summer 2008 Session

REVEAL: Software Documentation and Platform Migration

Michael A. Wilson* and Victoir T. Veibell†
Embry-Riddle Aeronautical University, Prescott, Arizona, 86301

Lawrence C. Freudinger‡

NASA Dryden Flight Research Center, Edwards, California, 93523

 The Research Environment for Vehicle Embedded Analysis on Linux (REVEAL) is
reconfigurable data acquisition software designed for network-distributed test and
measurement applications. In development since 2001, it has been successfully demonstrated
in support of a number of actual missions within NASA’s Suborbital Science Program.
Improvements to software configuration control were needed to properly support both an
ongoing transition to operational status and continued evolution of REVEAL capabilities. For
this reason the project described in this report targets REVEAL software source
documentation and deployment of the software on a small set of hardware platforms different
from what is currently used in the baseline system implementation. This report specifically
describes the actions taken over a ten week period by two undergraduate student interns and
serves as a final report for that internship. The topics discussed include: the documentation of
REVEAL source code; the migration of REVEAL to other platforms; and an end-to-end field
test that successfully validates the efforts.

Nomenclature
CF = Compact Flash
CPU = central processing unit
DFRC = Dryden Flight Research Center
FPGA = field-programmable gate array
GPS = Global Positioning System
GTR = Global Test Range
HTML = Hypertext Markup Language
HTTP = Hypertext Transfer Protocol
IWG1 = Inter-agency Working Group 1
KML = Keyhole Markup Language
LDADS = local data acquisition and dissemination system
MVL5 = MontaVista Linux Professional Edition 5.0
OS = operating system
PATA = Parallel Advanced Technology Attachment
PDF = Portable Document Format
PPP = point-to-point protocol
RCS = Revision Control System
REVEAL = Research Environment for Vehicle-Embedded Analysis on Linux
SSL = Secure Sockets Layer
UDP = user datagram protocol
USB = universal serial bus
USRP = Undergraduate Student Research Program
XML = Extensible Markup Language

* Undergraduate Student Research Program (USRP) Student Intern, Summer 2008 (email: wilsoa3b@erau.edu)
† USRP Student Intern, Summer 2008 (email: veibecf8@erau.edu)
‡ USRP Mentor, Lead of Advanced Test Technology Development, Test Systems Directorate (email:

Lawrence.c.freudinger@nasa.gov)

https://ntrs.nasa.gov/search.jsp?R=20110013558 2019-08-30T16:20:44+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10561358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA USRP – Internship Final Report

 2 Summer 2008 Session

I. Introduction
In the summer of 2008, Michael Wilson and Victoir Veibell attended Dryden Flight Research Center (DFRC) for

an Undergraduate Student Research Program (USRP) session. The goal for the summer was to assist mentor
Lawrence Freudinger on the Research Environment for Vehicle-Embedded Analysis on Linux (REVEAL) project.
The following section lists the objectives that were completed during the USRP session.

A. Objectives

1. Set up a repository to serve as a version control system for REVEAL, including related libraries and
utilities. This repository must support multiple developers in different geographical locations.

2. Generate documentation for the REVEAL source code to aid in its continued development.

3. Migrate REVEAL to a different platform.

a) Update the operating system in which REVEAL runs and then recompile REVEAL from source.

b) Test the data gathering and data forwarding capabilities of REVEAL on the new platform.

B. Document Organization
This document will be organized as follows: the next section gives background information about the REVEAL

project. After that, specific actions that were taken in order to satisfy the USRP session objectives listed above will
be given. A field test will then be described, and its results given. Next, some concluding comments about the
project's progress will be given. Finally, some of the next steps for the REVEAL project will be discussed.

II. Background
A. Evolution of Network-Distributed Test Systems

In 1960, computer networking pioneer J.C.R. Licklider envisioned a future where humans and computers in
geographically distributed settings were able to “cooperate in making decisions and controlling complex situations
without inflexible dependence on predetermined programs”. Forty years or so later, the World Wide Web was a
decade old and had forever changed the way in which many people worked and played. Researchers gazing into the
future continued to see the same thing Licklider saw, and the next steps seemed to be directed toward new types of
infrastructure and computational models that scaled in both directions – from networks of small sensors embedded
in just about everything we make to globally-scalable on-demand computing services that are as easy to tap into as
electrical power grids are today.2,3

At NASA, small investments in network-distributed signal processing had resulted in middleware that supported
the development of infrastructure and services for widely distributed test and measurement applications such as
experimental flight test and suborbital airborne science deployments. However, applying this middleware proved to
be ad hoc because there were few if any sensors or data acquisition systems available that were built to feed data in
real-time or near-realtime to the network. Moreover, it was troublesome to observe a lack of tools in academia that
could be applicable to working the long list of technology gaps that lived at the intersection of measurement
acquisition and network processing of those measurements.

Therefore, in 2001 NASA Dryden engineers began to study Linux and Java to see if they were applicable to
building a data acquisition system that was designed to live on a network while supporting low-budget activities in
academic laboratories. It didn’t take long to determine that Java was not ready for general data acquisition systems,
but Linux seemed to be on a path to filling the void.

 In 2003, a proposal was accepted to build on the resulting Linux Data Acquisition and Distribution System
(LDADS) to create a “suborbital telepresence” capability that facilitates situational awareness and cooperative
behavior amongst researches and instruments in airborne science aircraft distributed globally on measurement
campaigns. The LDADS system was renamed the Research Environment for Vehicle Embedded Analysis on Linux
(REVEAL) at that time. The goal of that effort, still in progress, includes delivering operational tools and
capabilities by 2010. This current project specifically supports this larger activity by closing gaps in documenting
REVEAL software, implementing production-class software management tools, and validating the ease at which the
software can be compiled for use on multiple Linux distributions and a variety of hardware configurations.

B. Software

The focus of this project was on REVEAL software that was written in the C programming language for the
MontaVista Real-time Linux OS. Its purpose is to gather data from local sources and then archive and/or forward the
data to other locations. It accomplishes this by spawning real-time “jobs” to carry out the specific tasks of data

NASA USRP – Internship Final Report

 3 Summer 2008 Session

gathering, archiving, and forwarding. These jobs are specified in Extensible Markup Language (XML) documents
which are parsed by REVEAL once at startup and dynamically at runtime. The XML documents contain all of the
configuration information that a job requires in order to function, including job priority, scheduling rate, data
sources, and output format. REVEAL was designed to run jobs independently, which means that jobs cannot
interfere with each other, and the failure of one job will not affect the integrity of other running jobs. 4

REVEAL was written by a single software engineer. In order to satisfy operational needs as well as original
design goals, support for multiple developers, including academia, must be addressed. This would allow new
developers with fresh perspectives to evolve REVEAL in order to make it more viable as a general-purpose tool.
Furthermore, it would increase the hardware compatibility of REVEAL as drivers were written for more devices by
both student and professional researchers. In order to institute such a change, however, effective version control
software had to be employed in order to ensure that changes by other developers could be shown clearly and, if
necessary, discarded. The open-source utility Revision Control System (RCS) was used during the development
phase of the project because it is best suited to single-user situations. In order to meet the new project requirements,
however, a new version control system that supported multiple developers in different geographical locations was
needed (objective 1). A combination of Subversion with the Apache Hypertext Transfer Protocol (HTTP) server was
chosen as a suitable advance over RCS.

Another requirement that was added to the REVEAL project followed from the previous one; with new
developers being exposed to REVEAL’s source code, a suitable system of documentation was needed. The
documentation already in place consisted of comments interspersed throughout the source code. A tool was
therefore needed to convert the existing documentation into a more readable and browsable format (objective 2).
Doxygen was selected to meet this requirement.

C. Hardware

REVEAL was designed to be hardware platform independent. Historically, however, it has been used almost
exclusively on the Suborbital Telepresence platform, which is based on the PC/104 form factor. The Suborbital
Telepresence hardware includes the following: a central processing unit (CPU) to run Linux and the REVEAL
software; input interfaces to get data into REVEAL (such as serial or ethernet); data generating/processing devices
(such as inertial navigation systems, Global Positioning System (GPS) modules, and analog-to-digital converters to
gather data from a whole range of sensors); and output interfaces over which REVEAL can store or send data
(removable memory, hard drives, modems, and ethernet). All of these components are packaged in one relatively
compact unit. Figure 1 shows the hardware of one of the most recent implementations of the Suborbital
Telepresence hardware, REVEAL006*:

* Although the identification tags of the Suborbital Telepresence hardware platforms contain “REVEAL,” the

REVEAL acronym itself technically refers to the software only.

NASA USRP – Internship Final Report

 4 Summer 2008 Session

Figure 1. Suborbital Telepresence hardware (REVEAL006)

In order to demonstrate its hardware independence, it was necessary to migrate REVEAL to a new hardware

platform (objective 3). This included updating the operating system in which REVEAL runs to the latest version of
MontaVista Linux (objective 3a) as well as testing the capability of the new hardware platform (objective 3b).

D. Uses

The potential uses for REVEAL as generic network-ready data acquisition software are numerous, but its
primary application has been in aircraft. It allows real-time streaming of telemetry from aircraft to ground stations
over non-line-of-sight data links, such as through the Iridium satellite network. The modular, XML-based
configuration system allows relatively simple customization for individual missions. REVEAL even allows
reconfiguration during a mission; jobs can be started and stopped, as desired, while an aircraft is flying as long as
there is a connection to a ground station or terminal access to the REVEAL system onboard the aircraft.

Because REVEAL has been associated only with Iridium, there is a misconception that REVEAL is somehow
specific to Iridium-based applications. It turns out that Iridium connectivity is implemented as part of the underlying
Linux networking configuration. Any and all ground-to-aircraft network connections are applicable, regardless of
whether the communications subsystem is housed physically with the REVEAL software or is accessible over the
network.

III. REVEAL Code Repository

The members of the team working on REVEAL needed a server to enable collaboration amongst future
developers of the REVEAL software and to ensure efficiency in the project. This server had the basic requirements
of being remotely accessible, being able to store files under specific project directories, and most importantly, being
able to dynamically update the files so that all team members were working with current versions of projects and
were able to see what other members had done.

The first two requirements were fulfilled by setting up the Global Test Range's (GTR) “Analysis” server as a
code repository running an Apache HTTP server* to provide internet accessibility. This server is located within
NASA's network and as such is subject to the benefits of NASA's firewalls and network protection. For example, all

* http://httpd.apache.org/

NASA USRP – Internship Final Report

 5 Summer 2008 Session

users outside the Laboratory must first pass two-factor authentication challenges. To further keep all project data
secure, the Apache HTTP server running on the Analysis server was outfitted with HTTP authentication and Secure
Sockets Layer (SSL) encryption. The SSL ensures clients that the connection to the server is secure and that the
server is in fact the Analysis server. The HTTP authentication requires users to login via provided usernames and
passwords to ensure that only permitted personnel are able to access the files. All HTTP traffic is redirected to use
the SSL protocol and all users are encouraged to download a self-signed certificate made specifically for the
Analysis server.

The third requirement was satisfied by installing Subversion*, a
version control system, on the Analysis server. Subversion allows for
files to be added to repositories which are then downloadable and
able to be managed by all members of the project with a Subversion
client. When any user changes a file, they can then "commit" a new
revision which updates the server's version of that file. The server
then redistributes that file with its updates to all project members
when they update their local repository. All previous revisions of the
file are saved, however, so that the project can roll back to old files or
undo changes in the event that a change caused a problem. This
allows for a centralized location to hold all project resources and keep
them up-to-date and accessible to team members separated by great
geographical distances. An example of a directory listing of a basic
HTTP-browsable Subversion repository is shown in Fig. 2.

To aid in accessing the repositories, a program called ViewVC†
was installed. ViewVC reads Subversion repositories and outputs
their contents in a browsable HTML interface that allows users to see
the file and folder structures that exist within the repositories, as
shown in Fig. 3. It is important to note that ViewVC only provides
read access to the repository; any changes that are made must be
committed with a Subversion client. ViewVC also has an option to
highlight differences between the separate revisions of any text file, showing lines that have been added, changed, or
deleted from one version to the next to enable users to see what other team members have changed, as well as
allowing for specific, easily identifiable points to be noticed in the even that an error has been made. A screenshot of
a simple difference highlighted file is provided in Fig. 4.

* http://subversion.tigris.org/
† http://www.viewvc.org/

Figure 2. Basic HTTP Subversion

repository

NASA USRP – Internship Final Report

 6 Summer 2008 Session

Figure 3. ViewVC enhanced Subversion repository

Figure 4. Highlighted differences between file revisions

Subversion has the capability to control as many projects as are desired. At the time of writing, there were three

separate projects in the repository, one of which was REVEAL itself and two of which were directly related to the
REVEAL project.

NASA USRP – Internship Final Report

 7 Summer 2008 Session

IV. Reveal Documentation
NASA is working with Erigo Technologies* in the continued development of the REVEAL software. In order to

keep new developers in the loop, it was necessary to generate documentation for the REVEAL source code.
Doxygen†, an open source utility, was used for this purpose. Doxygen is essentially a code parser that gathers
information from specially formatted C comments and subsequently generates documentation in a variety of
forms―Hypertext Markup Language (HTML) and Portable Document Format (PDF) documents in this case. The
specially formatted C comments can be in either the JavaDoc‡ or Qt§ documentation style. Since other projects
related to REVEAL are written in Java, the JavaDoc style was chosen in the interest of consistency. The major step
in generating documentation for REVEAL, then, was to convert existing code comments to the JavaDoc style.
Figure 5a is an example of a file header comment that can be parsed by Doxygen, while Fig. 5b shows the output
generated by Doxygen from the file header.

Figure 5a. Unprocessed file header

* http://www.erigotech.com/
† http://www.doxygen.org/
‡ http://java.sun.com/j2se/javadoc/
§ http://trolltech.com/products/qt/

/** @file
* @brief Function prototypes for the A/D utility functions.
* @version 1.1
*
* @section copyright_sec COPYRIGHT:
* Copyright 2001-2008 National Aeronautics and Space
* Administration.
*
* @section license_sec LICENSE:
* Use and/or release of this software are governed by the
* accompanying Software Usage Agreement.
*
* @section file_sec FILE DESCRIPTION:
* Function prototypes for the A/D utility functions, and any
* handy definitions jobs might want to share.
*
* @section revhist_sec REVISION HISTORY:
* Date By Description

* -------------------------------------

* 01/03/02 Carl Sorenson Created

* 11/07/02 Carl Sorenson Moved A2D_CONFIG here

* 06/29/07 Carl Sorenson Changed to +/-10V range for DC-8 sensors

*
* @section notes_sec NOTES:
* The A/D buffer/fifo/dump sizes and the scan/ISR rates have to be
* integer multiples of each other. See the Diamond Systems Universal Driver
* documentation and our source code that uses it for more info.

*
* Actually it looks like there are some differences between the DMM32 and DMM32X
* models, for instance the gain/range/polarity are now folded together into a
* single code, so the A2D_RANGE code is not used on our older cards.
*/

NASA USRP – Internship Final Report

 8 Summer 2008 Session

Figure 5b. Example Doxygen documentation of REVEAL

As demonstrated by Fig. 5b, Doxygen is

very useful for creating easy-to-read
documentation. Since the process of
converting the comment structure of
REVEAL to the JavaDoc style was trivial,
the entire conversion process was
completed in a matter of days. Doxygen
also supports the open source graph
visualization software package, GraphViz*.
The two utilities can be used together to
automatically generate dependency graphs
in the documentation that show source file dependencies and functional dependencies. Such graphs are valuable
visual representations of code structure. An example of a functional dependency graph is shown in Fig. 6.

V. Platform Migration
As previously mentioned, almost all prior implementations of REVEAL used the Suborbital Telepresence

hardware platform. However, in order to demonstrate REVEAL's hardware independence and to create a reduced-
cost (with reduced capabilities) REVEAL system, it was necessary to migrate REVEAL to a different hardware
platform. Three platforms were tested as possible platforms for REVEAL: the Versalogic EPM-5 “Puma”, the
Lippert “Cool FrontRunner”, and the eBox-2300. The Puma and Cool FrontRunner are PC/104-Plus single board
computers, pictured below in Fig. 7. Both of the platforms met the requirements to run REVEAL and the latest
version of MontaVista Linux was installed on those CPUs as well. However, the time required to design and
assemble PC/104 stacks was outside the constraints for the ten week internship, so they are not discussed further in
this report.

* http://www.graphviz.org/

Figure 6. Functional dependency graph from REVEAL

documentation

NASA USRP – Internship Final Report

 9 Summer 2008 Session

Figure 7. Potential platforms for REVEAL

A. eBox-2300

The eBox-2300 (hereafter referred to as simply the “eBox”) was chosen as a cheap but functional REVEAL
platform. Figure 8 shows front and rear views of the eBox, and Table 1 lists some of its specifications that are
relevant to its use as a platform for REVEAL.

Figure 8. eBox-2300 hardware

NASA USRP – Internship Final Report

 10 Summer 2008 Session

Table 1. eBox-2300 specifications*
Price† $163.00

System architecture x86

Processor clock speed 200 MHz

Memory 128 MB

Input/Output Two RS-232 serial ports
Three USB 1.1 ports
10/100 Mbps ethernet

Storage options Type I/II Compact Flash slot
Internal IDE (Parallel ATA) interface

Power consumption 15 watts

Cooling Passive

Dimensions 4.53 in x 4.53 in x 1.38 in
(115 mm x 115 mm x 35 mm)

Referring to Table 1, the eBox has two serial ports for input and output, has a built-in Compact Flash (CF) card

interface to act as storage space for the OS and/or data, and is passively cooled, meaning there are no fans or other
moving parts to wear out. Also, the eBox is self-contained unlike the two PC/104-Plus computers pictured above.
Finally, the eBox is small, with an overall size slightly larger than two standard PC/104 modules. All of these
features make the eBox an attractive option for a low cost alternative to the Suborbital Telepresence hardware.

B. Configuration of the eBox-2300

The first step in configuring the eBox for REVEAL was to install MontaVista Linux Professional Edition 5.0
(MVL5). Because of difficulties encountered with the MVL5 installer and the eBox's CF card interface, a Parallel
Advanced Technology Attachment (PATA) flash drive was used instead. Also, to avoid issues encountered with
installing MVL5 through the eBox directly (because of its low amount of RAM and lack of a DVD drive), MVL5
was installed on the PATA flash drive using a desktop computer equipped with a 40-to-44-pin PATA adapter and a
DVD drive. The installation type used was “self-hosted” in order to avoid difficulties with cross-platform
development. Self-hosted means that the flash drive contained a fully functional Linux environment with all of the
compilation tools required to build REVEAL from source. The MVL5 installation process was simple; only two
DVDs were required—the “Binaries” and “x86 Linux Support Package” DVDs—and auto-partitioning was used to
configure the PATA drive's partition table.

After MVL5 was installed, the drive was then connected to a PATA interface on the eBox with a 44-pin PATA
cable. Figure 9 shows the drive connected to the eBox, which has its casing removed for access to the internal
PATA interface.

* Information obtained from http://www.embeddedpc.net/Default.aspx?tabid=110
† Price includes power adapter; quoted from http://www.wdlsystems.com/ for a quantity of 1 to 24 units.

NASA USRP – Internship Final Report

 11 Summer 2008 Session

Figure 9. PATA flash drive connected to eBox-2300

C. Compiling and Testing REVEAL

The next step was to compile REVEAL on the eBox. The latest REVEAL source code was downloaded from the
Subversion repository mentioned in the previous section, which included necessary third-party drivers and source
files that were added by Erigo Technologies. The old compilation script was modified to suit the MVL5
environment and REVEAL was compiled successfully.

1. Piccolo II Autopilot

After REVEAL had been compiled, it was necessary to verify
that it was functioning properly on the eBox. The Piccolo II
Autopilot was chosen as a test device for three reasons: it
generates useful, verifiable telemetry; it can communicate over a
serial connection, which the eBox has; and a REVEAL driver for
the device had already been created by previous USRP interns.
Figure 10 shows the Piccolo II without any interface cables
attached.

The Piccolo II was connected to a GPS antenna and a serial
port of the eBox. After the Piccolo II was updated to the
appropriate firmware version and a Piccolo XML job description
was created, REVEAL received a constant stream of data,
including GPS position, altitude, attitude, and temperature. The
values received were verified to be correct.

2. Iridium 9505A Satellite Phone

To verify the data forwarding aspect of REVEAL, an Iridium 9505A satellite phone was used. The 9505A
functions much like a cellular phone, except it uses the Iridium satellite network rather than terrestrial cellular
towers. The 9505A has an internal modem, giving it the ability to send data to a remote Iridium ground station. It is
worth mentioning that the internal circuit card is exactly the same modem used in the Suborbital Telepresence
systems. Another important feature of the 9505A handheld phone is that it has a serial adapter accessory which was
used for serial connectivity to the eBox. The 9505A is shown in Fig. 11 with the serial adapter accessory and
Iridium antenna attached.

Figure 10. Piccolo II Autopilot

NASA USRP – Internship Final Report

 12 Summer 2008 Session

Figure 11. Iridium 9505A Satellite Phone

The eBox was configured to use the Iridium 9505A in two steps. First, a script to establish a PPP link to servers

at the GTR was installed. Second, an XML job specification for REVEAL was created to send user datagram
protocol (UDP) packets over the PPP link. These steps are similar to the way Suborbital Telepresence systems are
configured. Once the satellite link has an established connection with the GTR ground station, data streams and files
could be transferred between the eBox and ground station computers..

D. Additional Modifications

Although the eBox was used with an external
PATA drive in the field test (see next section), a
more portable solution was required. A PATA-CF
adapter was used to install MVL5 on a CF card.
However, rather than use one CF card for both
system and data, the tasks were divided between two
CF cards. This allowed one “system” CF card inside
the eBox case to contain MVL5 and REVEAL and
another “data” CF card in the externally accessible
CF slot to contain all of the data archived by
REVEAL. Such a configuration would make the
tasks of accessing the archived data and providing
more storage space for future data simply a matter of
swapping the full data CF card with an empty one.

This setup was easy to implement because the
eBox has an unused PATA interface inside
specifically for expansion purposes. The eBox was
disassembled and a PATA-CF adapter was mounted
on its baseplate. Rubber was used to provide
electrical insulation between the adapter and the metal base. Also, a custom length 44-pin ribbon cable was made to
attach the adapter to the PATA interface of the eBox. Figure 12 shows the adapter, with the ribbon cable, attached to
the eBox baseplate.

After the new CF interface was fully tested, the eBox was reassembled. The two CF cards functioned separately
as data and system disks. Figure 13 shows a modified eBox with the outermost casing removed to show both CF
card interfaces.

Figure 12. Attachment of PATA-CF

adapter to eBox baseplate

NASA USRP – Internship Final Report

 13 Summer 2008 Session

Figure 13. Modified eBox-2300

VI. Field Test

After the eBox hardware had been configured to run REVEAL, it was necessary to test the setup as it might
actually be used in the real world. A Toyota T-100 truck was used as the test platform. The following two sections
demonstrate the setup of the field test and the field test’s results, respectively.

A. Setup

To test the new REVEAL platform in the field, the eBox was configured to gather telemetry from a Piccolo II
and forward it over an Iridium 9505A satellite phone. The following components were used in the test:

 EBox-2300 , including:
 AC adapter
 CF card
 ATA flash drive
 44-pin PATA cable

 Piccolo II , including:
 Car adapter to banana-jack cable
 Serial interface cable
 Magnetic GPS antenna

 Iridium Handheld Phone, including:
 Car adapter charger
 Antenna connector
 Magnetic Iridium antenna
 Serial interface accessory
 Serial cable

 Car adapter extension cable
 Car adapter splitter
 Car adapter AC inverter
 AC power strip
 PS/2 Keyboard
 Compact flat-panel display

To power the test setup, the 12 volt supply from the vehicle's “car adapter” was used. A DC-to-AC inverter was

used to power the eBox and the display, while the Iridium phone used its own car adapter and the Piccolo II
accepted 12 volts directly through banana plugs. Figure 14 is a photograph of the field test setup sitting on the seat

NASA USRP – Internship Final Report

 14 Summer 2008 Session

of the test vehicle.

Figure 14. REVEAL on eBox-2300 - field test setup

To set up the software aspect of the test, REVEAL was configured using several custom XML job description

files. The test consisted of four jobs: one job to gather data from the Piccolo II, two jobs to forward two subsets of
data over the Iridium PPP link, and one final job to archive the data directly onto a CF card inserted in the eBox. In
addition, the startup scripts in MVL5 on the eBox were modified to start both REVEAL and the Iridium PPP link
automatically with no user intervention required. This allowed REVEAL to function without terminal access, as
would be the case in many real-world applications. It should be noted that a terminal was still used to monitor the
eBox status, although no commands to REVEAL were necessary. The terminal that was used is shown in the
backseat of the test vehicle in Fig. 15.

Figure 15. Field test monitoring terminal

Data flow in the test setup was organized as follows: the Piccolo II sent data over a serial connection to

REVEAL on the eBox, which gathered relevant data, archived it on the CF card, and forwarded it over the Iridium

NASA USRP – Internship Final Report

 15 Summer 2008 Session

phone's PPP link through a front end server at the GTR to a network computing server that is accessible from the
Internet. This test setup is graphically illustrated in Fig. 16.

Figure 16. Diagram of field test setup

B. Processing and Results

The REVEAL software on the eBox was configured to run three jobs, with configuration file dependencies as
shown in Figure 17. These files did the following:

● File “erau.xml” gathered

parameters from Piccolo II and
assembled a comma separated
variable packet that was sent
over Iridium to the ground
station for processing and
distribution

● File “iwg1.xml” gathered
parameters from Piccolo II and
assembled a specific set of
commonly used variables, wrote
them to a UDP packet in a binary
format and sent that to the
ground

● File “scan.xml” gathered
parameters of interest and
outputs to a file in an annotated
form designed for viewing

Figure 17. XML dependency graph

NASA USRP – Internship Final Report

 16 Summer 2008 Session

The data that was sent included two packets: the Inter-agency Working Group 1 (IWG1) binary packet and a

comma separated text packet containing parameters of interest specifically for this field test. The data that was in the
text packet is shown in the “erau-creare-out.xml” file, which is given in the Appendix.

After the eBox was started, it automatically established a PPP link through the Iridium phone and started
REVEAL, which then began the task of gathering, archiving, and forwarding data. The data stream was received on
servers at the GTR as expected. The INDSCore server accepted the UDP packets and cached them in a ring buffer.
This ring buffer is implemented using a DataTurbine server, an open source middleware product designed for
distributed signal processing*. From that point another “plugin” process on another computer would parse each UDP
packet and place individual measurands like Latutude and Longitude into their own buffers. Finally, additional
plugin processes would listen for requests from end-user applications (Google Earth) and dynamically extract, filter,
and deliver the coordinates in dynamically generated “Keyhole Markup Language” (KML) formatted files.

After enough data had been collected through driving around, the eBox was powered down and the data flow
halted. The results included both a file containing a list of collected data variables stored on the CF card in the eBox,
and multiple buffers containing raw data and processed results on INDSCore. The KML file was then opened with
Google Earth† to display the GPS path as an overlay on Google Earth's images of the area. Two views of the field
test path are shown in Fig. 18 and Fig. 19. It should be noted that the KML file included elevation data, but since the
truck was so close to the ground, the elevation was ignored in this view in order to provide a clearly visible path.

Figure 18. Google Earth path overlay (perspective)

* http://www.dataturbine.org
† http://earth.google.com/

NASA USRP – Internship Final Report

 17 Summer 2008 Session

Figure 19. Google Earth path overlay (overhead)

VII. Concluding Comments

All of the objectives described in section I.A were completed. In addition to an effective version control system
for REVEAL, code documentation was also generated to aid future developers of the REVEAL software.
Furthermore, the migration of REVEAL onto the eBox-2300 was a success. The eBox platform is a low-cost
alternative to the Suborbital Telepresence system. It should be noted that Suborbital Telepresence hardware includes
internal data acquisition hardware, including a GPS module and an inertial navigation system, as well as multiple
Iridium modems. However, the size difference between the two platforms is still significant. Figure 20 shows the
Suborbital Telepresence system and the eBox together for size comparison.

NASA USRP – Internship Final Report

 18 Summer 2008 Session

Figure 20. eBox-2300 vs. Suborbital Telepresence system

The potential uses for the eBox REVEAL platform are numerous, but an important possibility is as an easily-

distributable research platform. The low cost means that NASA is able to open up more research opportunities to
universities and corporations for less money. Also, the small size of the eBox increases the number of vehicles in
which it will fit. Finally, the eBox does not require hardware modification to be used with other devices;
communication between the eBox and one or more other devices takes place over the two serial ports and the three
universal serial bus (USB) ports.

VIII. Next Steps
Although a baseline of REVEAL documentation has been established, it is not complete. In addition to

REVEAL's C source code, its XML files must also be documented. First, a detailed description of REVEAL’s XML
schema is needed in order to simplify creation of new XML documents. Second, XML dependencies need to be
graphed to provide developers a visual representation of which XML documents rely on which others. These graphs
should also show how data flows through the XML documents to provide a clear visual image of REVEAL's data
handling process.

The second item discussed above has been partially implemented in the form of a simple XML parser that locates
references to other XML files. This utility, when coupled with GraphViz software, can produce useful dependency
graphs. Figure 17 in field test processing and results section above shows one such graph containing three of the
XML documents used in the field test. The dependency graph is useful, but it does not include data flow paths. More
work is needed to improve such graphs and add a new level of documentation to REVEAL.

In addition to further documentation of REVEAL, another area requiring research is the miniaturization of
REVEAL platforms. The field test described above demonstrated that REVEAL can exist in a hardware
environment as small as that of the eBox. However, the size of REVEAL could potentially be reduced even further.
One option for a future platform is a field-programmable gate array (FPGA). Placing REVEAL on an FPGA would
greatly reduce the overall hardware size, and yet still allow for necessary updates to the software. Another major
advantage to using an FPGA is flexibility; hardware interfaces, such as serial ports, could be reconfigured in
software with relative ease compared to “static” hardware platforms. However, there are many obstacles to be
overcome before such a hardware solution is possible.

Finally, MontaVista Linux is not free. Therefore, the usefulness of REVEAL to research departments that do not
wish to purchase MontaVista could be increased if it were ported to other operating systems, such as RedHat
Enterprise or Fedora*. A Fedora port is of particular interest because Fedora is entirely free. Currently, REVEAL

* http://fedoraproject.org/

NASA USRP – Internship Final Report

 19 Summer 2008 Session

will compile on RedHat Enterprise and Fedora, but there are still issues that prevent it from properly accessing the
shared memory in those operating systems. The REVEAL software starts up without errors, but data cannot move
through the software properly—specifically, none of the data fields are ever updated, so they remain at zero even
while a data-gathering job is running.

NASA USRP – Internship Final Report

 20 Summer 2008 Session

Appendix
Contents of the file “erau-creare-out.xml”:

<?xml version="1.0"?>
<!-- ERAU Summer 2008 - streaming data for Creare -->
<output_format xmlns="urn:xmlns:reveal">
 <target>udp://130.134.183.40:5534</target>
 <delim>,</delim>
 <parameter xml:id="Marker">
 <type>marker</type>
 <format>ERAU</format>
 </parameter>
 <parameter xml:id="Piccolo_Sys_Timestamp">
 <type>time</type>
 <format>%Y-%m-%dT%H:%M:%S.xxx</format>
 </parameter>
 <parameter xml:id="Piccolo_Msg_Timestamp">
 <type>time</type>
 <format>%Y-%m-%dT%H:%M:%S.xxx</format>
 </parameter>
 <parameter xml:id="Latitude">
 <format>%f</format>
 </parameter>
 <parameter xml:id="Longitude">
 <format>%f</format>
 </parameter>
 <parameter xml:id="GPS_Altitude">
 <format>%f</format>
 </parameter>
 <parameter xml:id="Pressure_Altitude">
 <format>%f</format>
 </parameter>
 <parameter xml:id="Ground_Speed">
 <format>%f</format>
 </parameter>
 <parameter xml:id="GPS_Vertical_Speed">
 <format>%f</format>
 </parameter>
 <parameter xml:id="True_Heading">
 <format>%f</format>
 </parameter>
 <parameter xml:id="Track_Angle">
 <format>%f</format>
 </parameter>
 <parameter xml:id="Pitch_Angle">
 <format>%f</format>
 </parameter>
 <parameter xml:id="Roll_Angle">
 <format>%f</format>
 </parameter>
 <parameter xml:id="Static_Pressure">
 <format>%f</format>
 </parameter>
 <parameter xml:id="Acceleration_X">
 <format>%f</format>
 </parameter>
 <parameter xml:id="Acceleration_Y">
 <format>%f</format>
 </parameter>
 <parameter xml:id="Acceleration_Z">
 <format>%f</format>
 </parameter>
</output_format>

NASA USRP – Internship Final Report

 21 Summer 2008 Session

Acknowledgments
The eBox-2300 computers were made available via collaboration with the National Suborbital Education

Research Center (Cooperative Agreement NNG05WC01A). Additional support was provided by NASA’s
Suborbital Science Program via the Suborbital Telepresence/Over the Horizon Networks Project (WBS
389018.02.04.01.05). Carl Sorenson implemented the REVEAL software used as a starting point for this project.
The student authors would like to thank the following people for their invaluable assistance during the USRP
Summer 2008 session: Lawrence C. Freudinger, Sky Yarbrough, Brent Bieber, Jim Murray, Matthew J. Miller, and
John P. Wilson. Finally, this report is dedicated to the memory of Professor Gary Gear without whom this project
would have never materialized.

References

1Licklider, J. C. R. “Man-Computer Symbiosis”, IRE Transactions on Human Factors in Electronics, volume
HFE-1, pages 4-11, March 1960.

2”Embedded, Everywhere: A Research Agenda for Networked Systems of Embedded Computers”, Committee on
Networked Systems of Embedded Computers, National Research Council, ISBN 0-309-07568-8 National
Academies Press, 2001.

3”The Grid: Blueprint for a New Computing Infrastructure”, 2nd Edition. Ian Foster and Carl Kesselman, Editors,
ISBN 1-55860-933-4, 2004.

4Sorenson, C. E., Yarbrough, S. K., Freudinger, L. C., Gonia, P. T., “Research Environment for Vehicle
Embedded Analysis on Linux,” Paper No. 03-11-04, Proceedings of the International Telemetering Conference, Vol.
39, 20-23 October 2003, Las Vegas, Nevada. ISSN 1546-2188

