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Abstract 16 

We compare results from six AOMIP model simulations with estimates of sea ice thickness 17 

obtained from ICESat, moored and submarine-based upward looking sensors, airborne 18 

electromagnetic measurements and drill holes. Our goal is to find patterns of model performance 19 

to guide model improvement. The satellite data is pan-arctic from 2004–2008, ice-draft data is 20 

from moored instruments in Fram Strait, the Greenland Sea and the Beaufort Sea from 1992– 21 

2008 and from submarines from 1975-2000. The drill hole data are from the Laptev and East 22 

Siberian marginal seas from 1982–1986 and from coastal stations from 1998-2009. While there 23 

are important caveats when comparing modeled results with measurements from different 24 

platforms and time periods such as these, the models agree well with moored ULS data. In 25 

general, the AOMIP models underestimate the thickness of measured ice thicker than about 2 m 26 

and overestimate thickness of ice thinner than 2 m. The simulated results are poor over the fast 27 

ice and marginal seas of the Siberian shelves. Averaging over all observational data sets, the 28 

better correlations and smaller differences from observed thickness are from the ECCO2 and 29 

UW models. 30 

1. Introduction  31 

Dramatic decreases in Arctic sea ice are predicted by some climate models to the degree that 32 

multiyear ice may be lost during this century. Critical to the accuracy and reliability of high 33 

latitude climate forecasts and a better understanding of sea ice dynamics and thermodynamics is 34 

the proper simulation of sea ice and its responses to atmospheric forcing across a range of 35 

temporal and spatial scales. Assessment of model performance regarding sea ice would include, 36 

at least, comparisons with observations of the interrelated sea ice characteristics of motion, 37 

strain, deformation, concentration, age, and thickness. Evaluation of modeled sea ice behavior, 38 



however, is limited by incomplete observational data across the scales that characterize sea ice 39 

growth, melt, motion, and divergence.  40 

With the beginning of the satellite record in the late 1970s, sea ice concentration became 41 

widely available as a product derived from passive microwave brightness temperatures 42 

[Gloersen et al., 1992]. However, estimating sea ice thickness is not straightforward although 43 

procedures for estimating thickness as well as velocity from the satellite record have been 44 

developed [Laxon et al., 2003; Kwok et al., 2004]. Thickness is important to estimates of sea ice 45 

survival probability over the melt season [Untersteiner, 1961] and its distribution appears to be 46 

undergoing rapid changes [Wadhams, 1990; Rothrock et al., 1999; Wadhams and Davis, 2000].  47 

The focus of this paper is on the ability of six coupled Arctic Ocean Model Intercomparison 48 

Project (AOMIP) models to simulate sea ice thickness and to identify trends and differences 49 

among the AOMIP model ice thickness results by comparing them with the broad range of 50 

observed sea ice thickness data that is now available. The observational data include a) gridded 51 

ice thickness derived from the ICESat satellite for ten campaigns from fall and winter 2004 52 

through 2008, b) ice thickness transect data from electromagnetic airborne measurements (2001-53 

2009), c) ice draft from 24 moored instruments equipped with upward looking sonars (ULS) and 54 

ice profiling sonars (IPS) from 1992 through 2008 from the Beaufort Sea, Fram Strait and the 55 

Greenland Sea, d) ice draft from submarines equipped with upward-looking sonar (1975-2000), 56 

e) ice thickness in drill-holes through sea ice from 187 sites taken in spring from 1982 through 57 

1986 across the Siberian marginal seas, and f) fast ice thickness from 51 Russian coastal stations  58 

(1998-2009). As described below, all ice-draft data were converted to ice thickness.  59 

For this paper a range of thickness measurements is important to assess model performance. 60 

When and where ice is thin and/or in low concentration there is potential for high speed drift that 61 



may lead to dynamically driven increases in thickness via deformation while at the same time 62 

provide the potential for ice growth thermodynamically. Therefore, it is important to know 63 

whether specific models perform differently when simulating “thin” versus “thick” sea ice. 64 

Because of differences among model forcing, processes, and parameterizations even within a 65 

coordinated modeling project such as AOMIP, our goal here is to identify the agreement between 66 

modeled sea ice and observations in order to provide a foundation for model improvement. 67 

However, the complexity of isolating specific model attributes from among the full suite of 68 

parameterizations, forcing, and boundary conditions is beyond the scope of this paper. In the end, 69 

the utility of comparisons such as those done here may be assessed by the rate of model 70 

improvement. 71 

2. Summary of previous work 72 

Bourke and Garrett [1987] first reported on the mean ice thickness distribution in the Arctic 73 

Ocean from data taken between 1960 and 1982.  Rothrock et al. [1999] showed that that the 74 

mean ice draft in most of the central portion of the Arctic Ocean had declined from 3.1 m in 75 

1958–1976 to 1.8 m in the 1990s (a 40% decrease). The submarine ice draft data in the data 76 

release area (DRA) were fit with multiple linear regression expressions of location, time and 77 

season by Rothrock et al. [2008] for the period 1975-2000. They found the annual mean ice draft 78 

declined from a peak of 3.42 m in 1980 to a minimum of 2.29 m in 2000. ICESat ice thickness 79 

estimates for 2003–2008 for the same area of the Arctic Ocean as represented by the regression 80 

equations match well with the earlier submarine records [Kwok and Rothrock, 2009] and show a 81 

continued decline to less than 1.0 m in the DRA in the fall of 2007. Wadhams and Davis [2000] 82 

also found a decline in the ice draft at the pole of 43% from 1976 to 1996. Winsor [2001], 83 

however, found no trend in six cruises between the pole and the Beaufort Sea from the 1990’s. 84 



Airborne EM surveys by Haas et al. [2009] showed a thinning of 20% in the region of the North 85 

Pole between 1991 and 2004, with a sharp drop to only 0.9 m in the summer of 2007 related to 86 

the replacement of old ice by first-year ice. 87 

Direct comparison of model results to observed sea ice thickness has been limited because 88 

pan-Arctic sea ice thickness data were not widely available at useful resolutions. The lack of 89 

observational data was carefully circumvented by Gerdes and Koberle [2007] who compared 90 

results from several IPCC modeled outputs against sea ice thickness from a hindcast model 91 

(AWI1) positively evaluated against other AOMIP models. They concluded that differences 92 

among the IPCC models were likely due to the different effective wind stress forcing and the 93 

coupling methodologies with the ocean, a conclusion consistent with studies showing that 94 

atmospheric forcing fields essentially drive the results of sea ice simulations [Walsh and Crane, 95 

1992; Bitz et al., 2002; Hunke and Holland, 2007] more so than the details of the sea ice model 96 

itself [Flato et al,. 2004]. 97 

For sea ice concentration, satellite-derived values were compared with several AOMIP 98 

models to show that they reproduced winter-time observations reasonably well when ice 99 

concentration was near 100% but underestimated the September ice concentration minimum 100 

[Johnson et al., 2007]. The variability among model results exceeded the variability among four 101 

satellite-derived observational data sets suggesting the need to further constrain model 102 

performance or reduce sensitivity to prescribed forcing. 103 

Assessment of model performance using sea ice drift and deformation derived from satellite 104 

data indicates little agreement between modeled patterns of sea-ice deformation fields and the 105 

linear features produced from the RADARSAT Geophysical Processor System (RGPS) at days 106 

to seasons and from kilometers to near basin scale [Kwok, et al., 2008]. Compared to the RGPS 107 



products, specific model shortcomings included slow ice drift along coastal Alaska and Siberia, 108 

poor temporal rates of regional ice cover divergence, and low deformation-related ice volume 109 

production. 110 

Assessment of the ice age-thickness relationship using model results shows that for northern 111 

hemisphere–wide averages the notion of thicker ice being older is reasonable at decadal scales, 112 

but for specific years and at scales less than hundreds of kilometers, ice age is not a good proxy 113 

for ice thickness [Hunke and Bitz, 2009]. At interannual time scales, the northern hemisphere 114 

averaged ice age is not well correlated with any of the three common ice descriptors: thickness, 115 

area or volume.  116 

This paper is organized as follows. In the next section we present the six different AOMIP 117 

models followed by a review of the data sets against which they are compared. A section on the 118 

methods used to prepare the model and observational data follow. Comparison between models 119 

and data use a Taylor diagram modified to retain units of ice thickness residuals and model-data 120 

correlations, and also examines the linear regressions between the model and observed data. The 121 

paper concludes with a discussion of options for model improvement and a summary. 122 

3. Models  123 

The AOMIP project and its models were described previously in Holland et al. [2007] with 124 

considerable detail to be found on the AOMIP web site [http://www.whoi.edu/projects/AOMIP]. 125 

The six models used are from the Goddard Space Flight Center (GSFC), Jet Propulsion 126 

Laboratory (Estimating the Circulation and Climate of the Ocean, Phase II -- ECCO2), Institute 127 

of Numerical Mathematics Ocean Model (INMOM) Russian Academy of Science, the National 128 

Oceanography Centre Southampton (ORCA), the Naval Postgraduate School (NPS) Arctic 129 



Modeling Effort (NAME), and the University of Washington (UW). Specific sea ice parameters 130 

for these models are shown in Table 1 131 

3.1 GSFC 132 

The GSFC model is based on the generalized Princeton Ocean Model (POM) which can 133 

accommodate sigma-coordinates (the original POM), but also z-levels and a mixture of sigma 134 

and z-levels, as the vertical coordinate [Blumberg and Mellor, 1987;  Mellor et al. 2002].   The 135 

results presented here are from a version which uses only z-levels. The vertical mixing 136 

coefficients are determined from 2.5 layer turbulence closure (Mellor and Yamada, 1974) which 137 

requires computation of the kinetic energy and kinetic energy times mixing length as additional 138 

prognostic quantities.  The ocean model is coupled to a two-layer dynamic- thermodynamic 139 

snow-ice model where the sea ice is described as a generalized viscous medium [Mellor and 140 

Kantha, 1989; Hakkinen and Mellor, 1992; Hakkinen and Geiger, 2000].   Ice-ocean momentum, 141 

heat and salt exchange is described by a flow over a rough surface based on the theory of Yaglom 142 

and Kader [1974].  The solar radiation can penetrate below the ocean surface to distribute short-143 

wave solar heating.    144 

The model domain covers the Arctic Ocean and the North Atlantic and extending to 15 S, 145 

with a horizontal resolution of 0.35-0.45 degrees. Vertical resolution is 26 levels ranging from 146 

6m to 500m layer depths. Transport at the open boundaries is defined by an inflow of 0.8 Sv 147 

through Bering Strait, which equals the amount that exits through the model’s southern boundary 148 

at approximately 15 S.  The monthly T and S are restored at the open boundary buffer zones, but 149 

no other restoring is used in the GSFC model.    150 

The specifications for AOMIP coordinated model run forcing  are adopted except the 151 

following: P-E from Rasmusson and Mo [1996], and the Sellers formula as in Parkinson and 152 



Washington [1979] for short wave radiation instead of AOMIP recommendations; the model uses 153 

NCEP wind stress instead of AOMIP recommended wind forcing.  The GSFC model results are 154 

from a cold start at January 1948 using daily NCEP Reanalysis data.  155 

3.2 ECCO2 156 

The Arctic domain of ECCO2 uses a regional configuration of the Massachusetts Institute of 157 

Technology general circulation model (MITgcm, [Marshall et al., 1997; Losch et al., 2010, 158 

Nguyen et al., 2011]. The domain has southern boundaries at ~ 55oN in the Atlantic and Pacific 159 

sectors. The grid is locally orthogonal with horizontal grid spacing of approximately 18 km. 160 

There are 50 vertical levels ranging in thickness from 10 m near the surface to approximately 161 

450 m at a maximum model depth of 6150 m. The model employs the rescaled vertical 162 

coordinate “z*” of Adcroft and Campin [2004] and the partial-cell formulation of Adcroft et al. 163 

[1997], which permits accurate representation of the bathymetry. Bathymetry is from the S2004 164 

(W. Smith, unpublished) blend of the Smith and Sandwell [1997] and the General Bathymetric 165 

Charts of the Oceans (GEBCO) one arc-minute bathymetric grid. The non-linear equation of 166 

state of Jackett and McDougall [1995] is used. Vertical mixing follows Large et al. [1994]. A 167 

7th-order monotonicity-preserving advection scheme [Daru and Tenaud, 2004] is employed and 168 

there is no explicit horizontal diffusivity. Horizontal viscosity follows Leith [1996] but is 169 

modified to sense the divergent flow [Fox-Kemper and Menemenlis, 2008]. 170 

The ocean model is coupled to the MITgcm sea ice model described in Losch et al. [2010]. 171 

Ice mechanics follow a viscous-plastic rheology and the ice momentum equations are solved 172 

numerically using the line-successive-over-relaxation (LSOR) solver of Zhang and Hibler 173 

[1997]. Ice thermodynamics are represented using a zero-heat-capacity formulation and seven 174 

thickness categories. Salt rejection during sea-ice formation is explicitly treated with a subgrid 175 



salt plume parameterization [Nguyen et al., 2009]. The model includes prognostic variables for 176 

snow thickness and for sea ice salinity. Boundary conditions are monthly and taken from the 177 

global optimized ECCO2 solution [Menemenlis et al., 2008]. Initial conditions are from the 178 

World Ocean Atlas 2005 [Antonov et al., 2006; Locarnini et al., 2006]. Atmospheric boundary 179 

conditions are from the Japanese 25-year Reanalysis Project (JRA25, [Onogi et al., 2007]. The 180 

integration period is from 1992-2008. A comprehensive assessment of the solution used in this 181 

study can be found in Nguyen et al. [2011] where the model solution is parameter optimized 182 

from 1992 to 2004 using ice thickness data from submarine and mooring ULS, sea ice 183 

concentration and velocity, and ocean hydrography. 184 

3.3 INMOM  185 

The INMOM is a “terrain following” sigma-coordinate ocean model [Moshonkin et al., 2011]. 186 

The global version of the INMOM with low spatial resolution is used as the oceanic component 187 

of the IPCC climate model INMOM [Volodin et al., 2010] presented in the IPCC Fourth 188 

Assessment Report [2007]. The present version of the model covers the North Atlantic (open 189 

boundary at approximately 20°S), Arctic Ocean, and Bering Sea regions including 190 

Mediterranean and Black Seas. A rotation of the model grid avoids the problem of converging 191 

meridians over the Arctic Ocean. The model North Pole is located at the geographical equator, 192 

120°W. The 1/4° horizontal eddy-permitting resolution is used. There are 27 unevenly spaced 193 

vertical sigma-levels. A Laplacian operator along the geopotential surface is used for the lateral 194 

diffusion on the tracers and a bilaplacian operator along sigma-surface is used for the lateral 195 

viscosity on momentum. The vertical viscosity and diffusion coefficients are calculated by 196 

Monin-Obuhov-Kochergin [Kochergin, 1987] parameterization. The elastic-viscous-plastic 197 

(EVP) dynamic - thermodynamic sea ice model [Hunke, 2001; Yakovlev, 2009] is coupled to the 198 



ocean model. Surface forcing is from the CORE forcing dataset [Large and Yeager, 2004]. The 199

surface turbulent fluxes are calculated using the bulk formulae. A climatological monthly runoff 200

from CORE is applied along the coasts. Surface salinity is restored towards monthly climatology 201

with a relaxation scale of approximately 12 days both for the open ocean and under sea-ice. 202

Temperature and salinity restoring towards monthly climatology is used at the open boundaries.  203

3.4 ORCA  204

The ORCA model is a global z-level OGCM based on the NEMO ocean code [Madec, 2006] 205

and uses the global tri-polar ORCA grid at ¼  horizontal resolution. The effective resolution is 206

~27.75 km at the equator increasing to 6-12 km in zonal and ~3 km in meridional directions in 207

the Arctic Ocean, thus the model resolves large eddies in the Arctic Ocean and “permits” smaller 208

ones. The configuration was developed by the DRAKKAR project and is described by Barnier et 209

al. [2006] as the ORCA025-G70 configuration. The version of the model used here has a higher 210

vertical resolution (64 vertical levels) than the ORCA025-G70, with thicknesses of the model 211

levels ranging from ~6 m near the surface to ~204 m at 6000 m. The ‘partial step’ topography 212

[Adcroft et al., 1997, Pacanowski & Gnanadesikan, 1998] is used, whereby the bottom cell is 213

variable and more able to represent small topographic slopes near the Arctic shelves, resulting in 214

the more realistic along-shelf flow [e.g., Barnier et al,. 2006; Penduff et al., 2007]. The ocean 215

model is coupled asynchronously to the sea ice model every five oceanic time steps through a 216

non-linear quadratic drag law [Timmermann et al., 2005]. 217

The sea-ice model LIM2 [Fichefet et al., 1997] is based on the Viscous-Plastic (VP) rheology 218

with an elliptic yield curve [Hibler, 1979] and Semtner’s 2-layer ice, 1-layer snow 219

thermodynamics [Semtner, 1976]. The latter is updated with sea ice thickness distribution 220

[Fichefet et al., 1997]. Other features of the model are the positive-definite, second order, second 221



moments conserving advection scheme [Prather, 1986], ice-thickness dependent albedo [Payne, 222 

1972), lateral ice thermodynamics and a simple snow-ice formation mechanism due to 223 

hydrostatic imbalance [Fichefet et al., 1997]. Sea ice salinity is taken equal to 4, the average 224 

value of sea ice salinity in the Central Arctic Ocean. Heat exchange between the ocean and sea 225 

ice is calculated as a product from the departure of surface temperature from the salinity-226 

dependent freezing point and friction velocity at the ice-ocean interface. Solar radiation 227 

penetrates snowless ice, increasing latent heat storage in brine pockets [Fichefet et al., 1997]. 228 

Surface forcing is provided by the DRAKKAR Forcing Set 3 [Brodeau et al., 2001]. This 229 

dataset is a combination of precipitation and downward longwave and shortwave radiation fields 230 

from the CORE forcing dataset [Large and Yeager, 2004] and 10-m wind, 2-m air temperature 231 

and 2-m specific humidity from the ECMWF ERA40 re-analysis product. The turbulent air/sea 232 

and air/ice fluxes are calculated by the model using the bulk formulae [Large and Yeager, 2004]. 233 

A climatological monthly runoff [Dai and Trenberth, 2002] is applied along the coasts. Surface 234 

salinity is restored towards monthly climatology with a relaxation scale of 180 days for the open 235 

ocean and 12 days under sea-ice. 236 

3.5 Naval Postgraduate School (NPS) Arctic Modeling Effort (NAME) 237 

The NPS pan-Arctic coupled ice-ocean model used in this study consists of a Hibler-type sea 238 

ice model (Zhang and Hibler, 1997) coupled to a regional adaptation of the Parallel Ocean 239 

Program (POP) [Smith et al., 1992; Smith and Gent, 2002]. The sea ice model employs a 240 

viscous-plastic rheology, two ice thickness categories (mean ice thickness and open water), the 241 

zero-layer approximation of heat conduction through ice and a simplified surface energy budget 242 

(Zhang et al., 1999; Maslowski et al., 2000). The ice strength is parameterized in this model as a 243 

function of the mean grid-cell ice thickness, which tends to underestimate ice drift and 244 



deformation [Maslowski and Lipscomb, 2003; Kwok et al., 2008]. The ocean model is a z- 245 

coordinate ocean model with an implicit free surface and 45 vertical levels, with layer thickness 246 

ranging from 5 m near the surface to 300 m at depth.  247 

The model domain includes all sea-ice covered oceans and marginal seas of the northern 248 

hemisphere. It includes the Arctic Ocean, sub-Arctic seas and extends to ~30 N in the North 249 

Pacific and to ~45 N in the North Atlantic. Both components of the coupled model use identical 250 

horizontal grid configured at 1/12  (~9 km) in a rotated spherical coordinate system to eliminate 251 

the North Pole singularity. The model lateral boundaries are solid and no mass flux is allowed 252 

through them however a virtual annual cycle salt flux is prescribed for most major rivers as a 253 

function of river run-off. Surface layer (0-5 m) temperature and salinity are restored toward 254 

monthly climatology [PHC; Steele et al., 2001]) on timescales of 365 and 120 days, respectively. 255 

The model was forced with daily-average atmospheric fields (downward longwave and 256 

shortwave radiation, surface air temperature, specific humidity, wind velocity and stress) from 257 

the European Centre for Medium-range Weather Forecasts (ECMWF) 1979–1993 reanalysis and 258 

1994-2004 operational products. Additional details of model configuration, initialization and 259 

integrations can be found in Maslowski et al. [2004, 2008]. 260 

3.6 University of Washington (UW) 261 

The UW model is the coupled pan-arctic ice–ocean modeling and assimilation system 262 

(PIOMAS), a regional version of the global Parallel Ocean and Ice Model (POIM) [Zhang and 263 

Rothrock, 2003]. The sea ice model is the multi-category thickness and enthalpy distribution 264 

(TED) sea ice model [Zhang and Rothrock, 2001; Hibler, 1980]. It employs a teardrop plastic 265 

rheology [Zhang and Rothrock, 2005], a mechanical redistribution function for ice ridging 266 

[Thorndike et al., 1975; Hibler, 1980], and a LSR (line successive relaxation) dynamics model to 267 



solve the ice momentum equation [Zhang and Hibler, 1997]. The TED ice model also includes a 268 

snow thickness distribution model following Flato and Hibler [1995]. The ocean model is based 269 

on the Parallel Ocean Program (POP) developed at Los Alamos National Laboratory [Smith et 270 

al., 1992]. The model domain of PIOMAS covers the northern hemisphere north of 48ºN. The 271 

POP ocean model has been modified to incorporate open boundary conditions [Zhang and Steele, 272 

2007] so that PIOMAS is able to be one-way nested to a global POIM [Zhang, 2005] with open 273 

boundary conditions along 49ºN. The PIOMAS finite-difference grid is based on a generalized 274 

orthogonal curvilinear coordinate system with the “north pole” of the model grid placed in 275 

Greenland. The model horizontal resolution ranges from 6 to 75 km with a mean resolution of 22 276 

km for the Arctic, Barents, and GIN (Greenland-Iceland-Norwegian) seas, and Baffin Bay. The 277 

TED sea ice model has 12 categories each for ice thickness, ice enthalpy, and snow depth. The 278 

centers of the 12 ice thickness categories are 0, 0.26, 0.71, 1.46, 2.61, 4.23, 6.39, 9.10, 12.39, 279 

16.24, 20.62, and 25.49 m. The POP ocean model has 30 vertical levels of varying thicknesses to 280 

resolve surface layers and bottom topography. The first 13 levels are in the upper 100 m and the 281 

upper six levels are each 5 m thick. The model bathymetry is obtained by merging the IBCAO 282 

(International Bathymetric Chart of the Arctic Ocean) dataset and the ETOPO5 (Earth 283 

Topography Five Minute Gridded Elevation Data Set) dataset [see Holland, 2000]. PIOMAS is 284 

forced by daily NCEP/NCAR reanalysis [Kalnay et al., 1996] surface forcing fields, i.e., 10 m 285 

surface winds, 2 m surface air temperature (SAT), specific humidity, precipitation, evaporation, 286 

downwelling longwave radiation, sea level pressure, and cloud fraction. Cloud fraction and SAT 287 

are used to calculate downwelling shortwave radiation following Parkinson and Washington 288 

[1979]. Model forcing also includes river runoff of freshwater in the Arctic Ocean. 289 

Climatological river runoff (i.e., no interannual variability) is provided as in the work of Hibler 290 



and Bryan [1987]. The calculations of surface momentum and radiation fluxes follow Zhang and 291

Rothrock  [2003] and differ from the specifications for the AOMIP coordinated runs. No climate 292

restoring is allowed. No data assimilation is performed for this study, although PIOMAS is able 293

to assimilate ice concentration and sea surface temperature data. 294

4. Observational data 295

Ice thickness from models is compared with observed thickness, ice draft or freeboard that has 296

been converted to thickness. Conversion for undeformed ice without snow or melt ponds is 297

straightforward. Assuming ice is in hydrostatic equilibrium with seawater, ice thickness is the 298

draft times the ratio of seawater density to sea-ice density. Snow cover, melt ponds and deformed 299

ice provide sources of error. Still, it is not uncommon to use thickness as the product of draft and 300

some constant. We use 1.115 [Bourke and Paquette, 1989] to convert draft to thickness.  301

Much of the data used in this study is available from the new Unified Sea Ice Thickness 302

Climate Data Record [Lindsay, 2010]. This archive has summary statistics for moorings, 303

submarines, aircraft, and satellite measurements of ice draft and ice thickness. The summary 304

statistics include mean, minimum, maximum, and standard deviation of the measurement as well 305

as the full probability density distribution. There are currently over 3000 samples in the archive 306

which can be accessed along with documentation and metadata at 307

http://psc.apl.washington.edu/sea_ice_cdr.  308

4.1 ICESat campaigns 309

Gridded Arctic Ocean sea ice thickness fields with resolution of 25 km  25 km (Figure 1a) 310

from 2004 through 2008 have been created from five fall and five winter ICESat campaigns 311

[Kwok et al., 2009]. There is typically a three to four month separation between the fall and 312

winter campaigns. The duration, start and end dates of the fall and winter campaigns, shown in 313



Table 2, are variable. The five fall campaigns start between September 24th and October 25th and 314 

end between November 8th and November 27th. Winter campaigns start between February 17th 315 

and March 12th and end between March 21 and April 14th. We expect these shifts in the 316 

individual satellite campaign timing to introduce seasonal and interannual variability within the 317 

dataset, although it may not be particularly large as thicknesses represent near maximum end-of-318 

winter and minimum end-of-summer data. 319 

The ICESat thickness data are derived from freeboard (distance above the water line to top of 320 

the snow cover) obtained from the Geoscience Laser Altimeter System (GLAS). The 321 

methodology for determining freeboard, snow depth, and ice thickness from the 70 m footprint 322 

for ICESat is given by Kwok et al. [2007] and Kwok et al. [2009]. The empirical relationship 323 

between thickness and freeboard for the first year (FY) ice in late winter is discussed in 324 

Alexandrov et al. [2010]. 325 

Satellite grid point values were computed and a 50-km Gaussian smoothing applied. The 326 

satellite hole is filled using an interpolation procedure described in Kwok et al. [2009]. ICESat 327 

estimates [Kwok et al., 2009] of ice drafts are consistently within 0.5 m (one standard deviation) 328 

of profiles from a submarine cruise in mid-November of 2005, and four years of ice draft from 329 

moorings (BGEP-WHOI and AIM-IOS) in the Chukchi and Beaufort Seas. The gridded ICESat 330 

ice thickness estimates are available at the Jet Propulsion Laboratory at 331 

http://rkwok.jpl.nasa.gov/icesat/index.html. The error variance of the ICESat thickness data is 332 

(0.37 m2) [Kwok and Rothrock, 2009]. The ICESat measurements, when converted to drafts, are 333 

smaller on average by 0.1±0.42 m than adjusted ULS submarine drafts (see Section 4.4) and by 334 

0.14±0.51 m than ULS moored drafts [Kwok et al, 2009].  335 

4.2 Electromagnetic airborne soundings 336 



Thickness data were obtained using electromagnetic (EM) induction sounding that computes 337 

the distance to the ice/water-interface by evaluating the amplitude and phase of a secondary EM 338 

field induced by eddy currents in the seawater. With airborne measurements, the height of the 339 

EM instrument above the air-snow surface is measured with a laser altimeter. Ice thickness is 340 

then obtained from the difference of the EM distance measurement to the ice/water-interface and 341 

the laser height of the snow [Haas et al., 2009], hence ice thickness from the EM measurements 342 

includes snow thickness. 343 

The accuracy of the EM method is ±0.1 m over level ice under typical summer conditions 344 

[Haas et al., 1997; Pfaffling et al., 2007] with only small effects from melt ponds [Haas et al., 345 

1997; Eicken et al., 2001]. The horizontal extent of induced eddy currents results in a 346 

measurement footprint area of up to 3.7 times the instrument height above the water [Reid et al., 347 

2006]. The measured, unconsolidated ridge thickness can be less than 50% of its “true” thickness 348 

[e.g., Haas and Jochmann, 2003], although the magnitude of this underestimate is uncertain. The 349 

EM thickness distributions are most accurate with respect to modal thickness, while mean 350 

thickness can still be used for relative comparisons between regions and years. Surveys were 351 

performed with helicopters and fixed-wing aircraft using a towed sensor (“EM-Bird”) from 352 

icebreakers and land bases in various regions of the eastern and western Arctic [Haas et al., 353 

2006; Haas et al., 2008; Haas et al., 2009; Haas et al., 2010]. Surveys have generally been 354 

performed in the April/May and August/September periods and data locations used in this paper 355 

are shown in Figure 2. 356 

4.3 Upward looking sonar and ice profiling sensors from moorings  357 

Eleven moorings with upward looking sonars (ULS) deployed in Fram Strait and the 358 

Greenland Sea (Figure 1b) by the Alfred Wegener Institute for Polar and Marine Research, 359 



Bremerhaven, Germany acquired almost 25 station-years of data between 2002 and 2004 as a 360

contribution to the World Climate Research Programme’s Arctic Climate System Study/Climate 361

and Cryosphere (ACSYS/CliC) Project. The ice draft data are available from the Unified Sea Ice 362

Thickness Climate Data Record as well as the National Snow and Ice Data Center web site with 363

data descriptions Witte and Fahrbach [2005].  364

Sea ice draft data are available on the continental shelf of the Eastern Beaufort Sea for the 365

period April 1990 through September 2003 from Ice Profiling Sonar (IPS) instruments deployed 366

by H. Melling at the Institute for Ocean Sciences (IOS), Canada. Data are described in Melling 367

and Riedel [2008] and references therein. Sea ice draft data in the central Beaufort Sea for the 368

period 2003-2008 were acquired through the Beaufort Gyre Exploration Project (BGEP, A. 369

Proshutinsky, PI). The point data are available at the Woods Hole Oceanographic Institute web 370

site (http://www.whoi.edu/beaufortgyre/data.html).  371

Melling and Riedel [2004] estimate for their data an accuracy of 0.050.05 m draft for level ice. 372

Draft will be overestimated on average in rough ice. The ACSYS/CliC Workshop [Steffen, 2004] 373

on sea-ice thickness requires an accuracy of 0.050.05m for draft for ULS and IPS and we use that 374

figure here for all ULS data. We acknowledge that NSIDC has been alerted to an error in the 375

way the bias correction was applied for the AWI data, but pending further clarification these data 376

are used assuming the above accuracy. 377

4.4 Upward Looking Sonar measurements from submarines378

Submarines have traversed the Arctic regularly since 1958 measuring the draft of the 379

overhead sea ice using upward looking sonar (ULS). The processed and publicly available data 380

(archived at NSIDC and available as 50-km averages at the Unified Sea Ice Thickness Climate 381

Data Record) include 42 cruises from 1975 to 2000 covering 120,000 km of data. The cruises 382



took place between April and November, although most of the data were collected in late spring 383 

(April-May) and in late summer-fall (August-October) [Rothrock and Wensnahan, 2007]. 384 

The draft data are produced for periods when the submarine was traveling in a straight line at 385 

constant speed and depth. The basic data product is ice draft along the cruise track (Figure 2). 386 

The data typically have a spacing of 1-8 m with a footprint size of 2-7 m depending on the 387 

submarine depth. Data segments vary in length from a few to several hundred kilometers.  388 

Rothrock and Wensnahan [2007] identify the following submarine ice draft measurement 389 

errors: precision error; error in identifying open water (ice of zero draft); sound speed error; error 390 

caused by sonar footprint size variations; error from uncontrolled gain and thresholds; error due 391 

to vessel trim. There are also differences between analog versus digitally recorded data with 392 

paper charts biased toward thicker ice by over 0.30 m due to their coarser temporal resolution.  393 

The drafts are obtained from the "first return" or from the depth of the deepest ice within the 394 

footprint.  They estimated the overall bias due to this effect of the submarine ULS data from the 395 

actual draft as +0.29 m with a standard deviation of ±0.25 m. A recent paper [Rodrigues, 2010] 396 

finds a bias based on the sonar beam width and ice roughness larger than that found by Rothrock 397 

and Wensnahan [2007].  For this study we have corrected for the submarine draft bias of +0.29 398 

m described in Rothrock and Wensnahan [2007]. 399 

4.5 Pack-ice and fast-ice measurements from drill holes 400 

Historical ice thickness data are available from the “Atlas of ice and snow of the Arctic Basin 401 

and Siberian Shelf Seas” [Romanov, 1995]. This data set contains sea ice and snow Spring (mid 402 

March – mid May) measurements collected during aircraft landings associated with the Soviet 403 

Union's historical Sever airborne and North Pole drifting station programs. The High-Latitude 404 

Airborne Annual Expeditions Sever took place in 1937, 1941, 1948-1952, and 1954-1993 405 



[Konstantinov and Grachev, 2000]. The data set is derived from as few as 7 landings (1937) to 406 

nearly pan-arctic coverage in the 1970s. The data set contains measurements of 23 parameters, 407 

including a) ice thickness and snow depth on the runway and surrounding area, b) ridge, 408 

hummock, and sastrugi dimensions and areal coverage and c) snow density. The data used in this 409 

paper are a subset of those used to create the atlas “Morphometric Characteristics of Ice and 410 

Snow in the Arctic Basin” (self-published by Ilya P. Romanov in 1993 and republished by 411 

Backbone Publishing Company in 1995). Romanov provided these data to NSIDC in 1994 (see 412 

http://nsidc.org/data/g02140.html for full description and data in ASCII format). In this paper we 413 

use ice thickness data in the Spring from 1982 through 1986 (Figure 1b). The data were obtained 414 

at sites adjacent to the aircraft landing areas (undisturbed ice).  415 

We also use data from 51 coastal stations where sea ice thickness was measured monthly 416 

through drill holes. The data represent thicknesses of the fast sea ice in the vicinity of the coastal 417 

station, mostly first-year ice, undeformed by ridging or rafting. Monthly data are available for 418 

1998-2009. The data were provided by the Arctic and Antarctic Research Institute, St. 419 

Petersburg, Russia. Although these data and the data from the Romanov Atlas are unique, and 420 

the accuracy of such direct measurements is likely less than 0.05 m, we cannot make a formal 421 

statement regarding position error and accuracy. 422 

5. Methods 423 

All ice-draft data were converted to thickness as described above. In the following discussion, 424 

model minus observed thickness values are referred to as residuals, and thus the residuals are 425 

positive when the model overestimates the observed thickness. The observed data were monthly 426 

averaged except for the ICESat data which are provided as ~2-month averages. Where model 427 

results temporally overlapped the observed data, model ice thickness was extracted from the 428 



nearest model grid point and averaged into monthly means. We recognize that the observational 429

data have very different spatial resolutions; moored instruments and drill holes produce point 430

data, while the ICESat data were processed using a 50-km Gaussian smoothing, and the Unified 431

Sea Ice Thickness Climate Data Record provides the statistical mean ice thickness at 50 km 432

intervals for the submarine ULS data.  We chose to compare the observed data with the nearest 433

model grid point, an approach perhaps advantageous to models with finer resolution. For models 434

with coarse resolution, a 50-km weighted average, which is used by Rothrock and Wensnahan 435

[2007] might be advantageous. In this paper, we used the nearest model grid point to the 436

observed data, formed monthly averages of model and observational data  (~2 months for 437

ICESat), and then computed residuals and correlations. This approach leads to consistent results, 438

described below, across data sets and models. 439

Record-length correlation coefficients and residuals were computed from the monthly time 440

series for each of the moored ULS and the 51 coastal stations data. Annual correlation 441

coefficients and residuals were computed for the each of the ICESat, airborne EM, Romanov 442

Atlas, and submarine data sets by averaging all data in the given year. Grand mean correlation 443

coefficients and residuals for each observational platform were computed by averaging all 25 444

ULS time series and from all 51 Coastal Station time series, and averaging all years for the 445

ICESat, airborne EM, Romanov Atlas, and submarine data. These differences should be kept in 446

mind in the following discussion. 447

To show the correlation coefficients and residuals, a modified Taylor Diagram [Taylor, 2001] 448

is used. In this diagram, the radial distance from the origin is the correlation coefficient (r=1 falls 449

on the unit circle) and the rotation angle ( )( ) is proportional to residuals with corresponding 450

to residuals of 2 m (Figure 3). 451



A quantitative evaluation arises from the modified Taylor diagram where model performance 452

is proportional to the area swept by the radial “tip”  (1 )r)  rotated from zero to the residual ( ).( ).  453

The result, (1 )r))  is used to rank the model performance.  454

Linear regressions are used to obtain relationships between the observed and modeled time 455

series means and monthly means from the spatial data. We used annually averaged thickness for 456

ICESat and Romanov Atlas, monthly averages using the multiple locations for the airborne EM 457

and submarine ULS data, record-length means from the time series from moored ULS and the 51 458

Coastal Stations. Our purpose is to identify systematic biases in the simulations as a function of 459

observed thickness. Statistical differences among the correlations and residuals are not discussed 460

considering the different platforms, seasons, and instrument types. Our goal, rather, is to find 461

patterns of performance among the different models to guide model improvement.  462

6. Comparisons between Observations and Model results 463

6.1 Drill holes from coastal stations and Romanov Atlas. 464

The residuals from the Romanov drill hole data were averaged from 1982 through 1986 and 465

contoured using a color bar defined so that zero is white (Figure 4). All models, except for the 466

GSFC model, show positive residuals, typically larger in the eastern Siberian marginal seas 467

(East-Siberian and Chukchi Seas) than in the western seas (Kara and Laptev Seas).  468

6.2 ICESat 469

The residuals and correlations show that the models have a large scatter (Figure 5a). The UW, 470

ECCO2, and NPS models are correlated with data above 0.6 and have residuals less than +0.30 471

m. For GSFC, the correlation is larger than 0.6 and the residual is negative, less than -0.40 m. 472

The INMOM correlation is less than 0.5 and residual exceeds 0.40 m. (Post 2001 results from the 473

ORCA model were not available at the time of our analysis.) 474



6.3 Airborne EM  475 

The model and EM correlations are all less than 0.5. All models underestimate ice thickness 476 

except ECCO2 which has positive residuals (Figure 5b). Three models (GSFC, UW and NPS) 477 

demonstrate clustering of the results and have almost identical residuals, approximately -0.50 m. 478 

The negative residual occurs perhaps because the EM measurements include snow depth with the 479 

ice thickness although they underestimate maximum ridge thickness. 480 

6.4 Moored ULS  481 

All six models have similarly moderate correlations with residuals less than 0.25 m (Figure 482 

5c). ECCO2, UW and GSFC have higher correlations with the data, near 0.6, while INMOM, 483 

NPS, and ORCA correlations are weaker. Of the six models, ECCO2 demonstrates the best 484 

agreement with the moored ULS data. Three models, INMOM, NPS and ORCA, show similar 485 

positive residuals. Two models, GSFC and UW, have negative, almost identical residuals. 486 

6.5 Submarine ULS  487 

ECCO2 has the highest correlation of ~0.7 in the suite of models with a residual of about 488 

+0.17 m (Figure 5d). UW, ECCO2 and GSFC models have similar correlations of about ~ 0.7. 489 

INMOM and NPS have positive residuals less than +0.70 m and correlations less than 0.6. 490 

ORCA has the weakest correlation (0.48) and a negative residual of approximately -0.30 m. 491 

6.6 Coastal stations and Romanov Atlas  492 

All models overestimate thickness at the coastal stations except for GSFC (Figure5e). The 493 

residuals are larger and more positive for the Romanov Atlas (symbols with squares in Figure 494 

5e) except for GSFC which has a near zero residual for the station data and moderately negative 495 

residual for the Romanov Atlas data. NPS has the highest correlation with both the datasets 496 



although the residual for the Romanov Atlas data is large. GSFC shows the lowest correlation for 497 

the station data, whereas ORCA has the weakest for the Romanov Atlas data. 498 

7. Basin-wide and regional model performance 499 

We focus on model performance with respect to the ULS data because of (i) their broad 500 

spatial and temporal coverage, (ii) accuracy and biases of the measurements are relatively well 501 

understood, and (iii), like model grid-points, ULS measurements are values at a point sampled 502 

over time. The ULS data used here extend from 1990 through 2008 and cover the Beaufort Sea, 503 

Fram Strait and the Greenland Sea.  504 

Figure 6 portrays correlations and residuals for the data from each model and from the 505 

individual moored ULS instruments. UW and ECCO2 show the smallest scatter of residuals 506 

(Figure 6 a,b).  Residuals for GSFC and NPS are larger (Figure 6 c,d). The largest absolute 507 

residuals are from INMOM and ORCA with values approaching 2m (Figure 6 e,f). All models 508 

exhibit large scatter of the correlations; there is no apparent relationship between the scatter of 509 

the residuals and the correlations. 510 

From Figure 6, the model performance clearly varies regionally. We next focus the analysis 511 

on Fram Strait and the Greenland Sea and on the Beaufort Sea. Figure 7 combines correlations 512 

and residuals for Fram Strait and the Greenland Sea (AWI moorings) and the Beaufort Sea (IOS 513 

and BGEP moorings) for all models. The pattern exhibits a broader range of residuals for the 514 

data acquired in Fram Strait/Greenland Sea compared to the Beaufort Sea. Typically the 515 

residuals for the Beaufort Gyre are more positive and higher than these for the periphery of the 516 

Beaufort Sea (Figure 7). 517 

8. Linear relationships 518 



The linear fit for the models and observations is shown in Figure 8 for a) satellite, b) airborne 519

EM, c) moored ULS, d) submarine ULS, e) Coastal Stations and f) Romanov Atlas. Grey 520

shading along the y xx  line indicates the accuracy of the measurements. In all but four cases, 521

the y-intercepts are greater than zero indicating positive residuals for thin ice. In all but three 522

cases the regression slopes are less than one. The regression lines cross y=x at variable locations 523

with a mean of 2.2 m. For the satellite data (Figure 8a), INMOM, ECCO2, UW, and GSFC 524

overestimate thickness where it is measured less than 1m. INMOM, ECCO2 and UW 525

overestimate ice thinner than 2.0 - 2.5 m. NAME overlapped the satellite record only for 2004 526

and is omitted. For the airborne EM thicknesses (Figure 8b), all models strongly underestimate 527

thickness when the ice is thicker than 3.5 m. ORCA is omitted as it does not have enough data 528

for a meaningful comparison. For the moored ULS data (Figure 8c), GSFC strongly 529

underestimates ice thinner than 2m and NPS, GSFC, and UW overestimate thin ice. All models 530

except INMOM underestimate thick ice. For submarine ULS data (Figure 8d), all models 531

overestimate thickness when measurements are less than 2 to 3 m. All models underestimate ice 532

measured to be thicker than 4 m compared to submarine ULS.  533

Figure 8e shows that all models but NPS and GSFC overestimate near-shore ice thickness 534

when measured to be less than 1.5 m at the Coastal Stations (Figure 8e). GSFC is unable to 535

reproduce the range of the observed fast-ice measurements.  536

For the marginal seas (Romanov Atlas), INMOM, NPS, UW, and ORCA overestimate where 537

observed thickness is less than 3 m, and all models overestimate thickness where it is measured 538

to be less than 1 m (Figure 8f). (ECCO2 simulated 1992-2009 and does not overlap the Romanov 539

Atlas data.) 540

9. Discussion  541



The accuracy, systematic errors of the measurements and cross-platform biases discussed in 542

Section 4 should be taken into account when interpreting model results. Nevertheless, there are 543

consistent results among the models. 544

For all observational platforms, most model regressions have slopes less than one ( 0.7m 0.7 ), 545

positive y-intercepts ( 0.9b 0.9 ), and cross the y=x line (perfect fit) at a mean observed 546

thicknesses of 2.1 m. The regressions indicate that thin ice is overestimated and thick ice is 547

underestimated although each model varies around the 2.1 m mean crossing point (range -3.4 to 548

7.7). Overestimating thin ice is particularly evident with respect to the satellite data (Figure 8a). 549

For the thickest ice (airborne EM and submarine ULS), which is generally the most deformed, all 550

models underestimate thickness (Figure 8 a, b, d). There is thus a consistent pattern across 551

platforms and across models to overestimate thin ice and underestimate thick ice. Below we 552

investigate possible reasons for this bias. 553

The correlations are computed from multiple data sets that include different seasonal and 554

spatial variability. For example, correlations should always be higher if the seasonal cycle is 555

included compared to the correlations for just one season. This may explain why the modified 556

Taylor diagrams suggest that the models perform well compared to the moored ULS (Figure 5).  557

Model performance is a clearly geographically dependent. Figures 5 and 6 demonstrate that 558

the models as a group perform better in the Beaufort Sea than in other areas of the Arctic Ocean. 559

The comparison with the IOS and BGEP moorings shows a smaller range of residuals than the 560

other datasets. Scatter of the residuals for ULS measurements in Fram Strait and the Greenland 561

Sea is larger than in the Beaufort Sea and substantial (Figure 7). Ice conditions in Fram Strait 562

depend on local forcing as well as on conditions “upstream” in the Arctic Ocean making 563

predictions for Fram Strait ice export dependent on many factors. However, the fact that the 564



models do well in the central basin but not in Fram Strait and the Greenland Sea may suggest 565 

regional issues in Fram Strait are driving the poor performance there.  566 

The poorest correlations are with the ice measured from the Airborne EM and the Romanov 567 

Atlas for the marginal Siberian seas. The residuals for the Airborne EM dataset are mostly 568 

negative and for the Romanov Atlas mostly positive and are larger than for the other data (Figure 569 

5).  570 

The models demonstrate reasonably good agreement with the coastal station data, which 571 

partly overlap the area of the Romanov Atlas measurements (Figures 5 and 8). The residuals for 572 

the coastal data have moderate scatter, however there is a positive bias of ~50 cm (Figure 5e). 573 

The bias may be because the station data represent only level sea ice whereas the model data are 574 

the cell-averaged level and ridge ice thicknesses. Note that AOMIP models do not have fast ice 575 

(motionless ice).  576 

There are three aspects of the model biases. First, the biases tend to be smaller for the data 577 

which include several complete seasonal cycles (moored ULS and station data) and larger for the 578 

data covering only part of the year (satellite, Airborne EM, submarine ULS and Romanov Atlas). 579 

Since the latter mostly cover the ice melting period (spring to fall), we speculate that this may be 580 

related to model deficiencies in the thermodynamics of ice melting. The ice thickness threshold 581 

of 2.1 m, which in our analysis discriminates the positive and negative model bias, is the 582 

commonly accepted thickness distinguishing undeformed first- and multi-year Arctic sea ice 583 

[WMO, 1985]. This may indicate insufficient melting of first-year and the excessive melting of 584 

multi-year ice in the models. In our study we did not find any systematic differences between 585 

models with Semtner and energy-conserving thermodynamics.  586 



The mean residual we found after averaging the annual residuals for the submarine ULS 587 

(Figure 5d) is 0.12 m. Recall that the submarine data were corrected for the 0.29 m bias reported 588 

by Rothrock and Wensnahan [2007]. As a group, the AOMIP models do well, overestimating 589 

submarine ULS by 0.12 m. We note that the Louvain-la-Neuve (LIM3) model [Vancoppenolle et 590 

al., 2009a] underestimated submarine draft observations converted to thickness by -0.55±1.04. 591 

However, similar to our results, they obtained positive model bias for the thin ice and a negative 592 

bias for the thick ice. Vancoppenolle et al. [2009b] performed sensitivity study of ice 593 

thermodynamics to the sea ice salinity and demonstrated a 0.30 m reduction in the model bias 594 

when the salt evolution model is used instead of constant or prescribed varying salt profiles. 595 

Second, the model biases indicate a regional dependency. Our analysis shows small residuals 596 

in the Beaufort Sea and the central Arctic Ocean (moored and submarine ULS data) and an 597 

increase of the positive residuals on the Siberian Shelf (station data and Romanov Atlas). 598 

Rothrock et al. [2003] and Vancoppenolle et al. [2009a], comparing model results with 599 

submarine ULS, obtained a persistent pattern of model biases with positive values in the 600 

Beaufort Sea, north of Greenland and towards the Alaskan and East-Siberian Shelves, and with 601 

negative values in the Arctic Transpolar Drift and towards Fram Strait. Wilchinsky et al. [2004] 602 

found a similar pattern in their simulations and demonstrated that using sliding friction in sea ice 603 

rheology can reduce the biases.  604 

The third aspect is the interannual variability in the models and data. Given the errors in 605 

atmospheric temperature, humidity and radiation fields used to force the models, we would 606 

expect large model biases for individual years even though the overall long-term biases could be 607 

moderate. Most of the available Arctic ice thickness data represent a few “samples” per year 608 

when aggregated to a monthly time scale. This poses a large statistical uncertainty of the 609 



analysis. In addition, since the periods of the data collection varied from year to year, this 610 

introduces aliasing in the time series, making interpretation of the interannual variability 611 

difficult. 612 

10. Summary 613 

Sea ice thickness from six AOMIP coupled models is compared with thickness across the 614 

Arctic basin from a) satellites, b) airborne EM, c) moored ULS in Fram Strait, Greenland Sea 615 

and the Beaufort Gyre (ULS, IPS), d) submarine ULS across the central basin, and e) drill holes 616 

through fast along coastal Siberia and within the ice pack. The linear relationship between 617 

models and the different data shows that all models generally overestimates ice thinner than 2.1 618 

m and underestimate the ice thicker than 4.0 m. This is a systematic error consistent among the 619 

models and is likely problematic for forecasting open water as well as in long term forecasts 620 

where the role of multi-year ice is critical. We speculate that this error may be attributed to the 621 

deficiencies in simulating ice melting. We did not find any systematic error with respect to the 622 

type of ice thermodynamics used in the models.  623 

There is a significant scatter of the model biases with respect to the different observational 624 

platforms, which could be partly related to the observational systematic errors. The models agree 625 

best with the moored ULS data. The model skill in simulating sea ice thickness varies from 626 

region to region. Taken together, the models simulate the ice thickness in the Beaufort Gyre 627 

better than in Fram Strait and the Greenland Sea. Some of the observed scatter is also due to 628 

inconsistencies between different observational methods and data products. Averaging over all 629 

observational data sets, the correlations and smaller differences from observed thickness are 630 

better from the ECCO2 and UW models. 631 
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 936 

Figure Captions 937 

Figure 1. (a) ICESat data extent for the February-March and October-December 2004 – 2008 938 

campaigns. (b) Locations of ULS in Fram Strait and the Greenland Sea (AWI, red), Beaufort Sea 939 

(BGEP, blue; IOS, green), Romanov (1995) landing data from subset of High-Latitude Airborne 940 

Annual (Sever) Expeditions (dark red dots), and 51 coastal fast ice stations (dark grey). 941 

 942 

Figure 2. Locations of the airborne EM thickness data (dark) and submarine ULS ice draft data 943 

(light). 944 



Figure 3. Taylor diagram modified so the correlation coefficient is the radial distance from the 945

center. The rotation angle is proportional to the residual (model minus observed thickness) where 946

2 m rotates to with larger residuals rotated away from the positive x-axis. A correlation 947

coefficient of 0.6 is marked by the dashed green circle and residuals of 30 and 75 cm are marked. 948

Figure 4. Residual sea ice thickness from the Romanov Atlas data (stations in Figure 1) from 949

1982 through 1986 for (a) UW, (b) NPS, (c) GSFC, (d) INMOM, and (e) ORCA. No ECCO2 950

model results overlap with the Romanov data. Blue color identifies where model overestimates 951

thickness (UW, NPS, INMOM, ORCA) and red color denotes underestimate (GSFC).952

Figure 5. Correlations and residuals for models and (a)  ICESat, (b) airborne EM, (c) moored 953

ULS (d) submarine ULS, (e) 51 coastal stations and Romanov Atlas (with squares). 954

Figure 6. Correlations and residuals for moored ULS data. UW and ECCO2 have smaller 955

residuals compared to other models. GSFC and NPS have larger residuals. INMOM and ORCA 956

have the largest residuals with some approaching 2 m. AWI instrument data are in red, IOS in 957

green, and BGEP in blue. 958

Figure 7. Correlations and residuals for moored ULS data from (a) Fram Strait and the 959

Greenland Sea  (AWI) and (b) Beaufort Sea (IOS, BGEP). The models simulate better the data 960

from the Beaufort Sea compared to Fram Strait and the Greenland Sea. Colors identifying each 961

model are the same as in Figure 6. 962

Figure 8. Linear fit between observed and model thickness from (a) satellites, (b) airborne EM, 963

(c) moored ULS, (d) submarine ULS, (e) coastal stations, and (f) Romanov Atlas. Each axis limit 964

is set from the maximum observed using the particular platform. Measurement accuracy is 965

shown by the width of the grey area behind the black y xx  line. A width of 10 cm is used for the 966

coastal station data and Romanov Atlas. 967



968

Tables 969

Table 1. Model Configuration and Selected Parametersa 970

 GSFC ECCO2 INMOM NOCS NAME UW 

Domain 

Resolution 

Ice t 

regiona

l 

0.35⁰ - 

045⁰ 

720 s 

regional 

15-22km 

600 s 

regional 

0.25⁰ 

3600 s 

global 

3-6 km 

7200 s 

regional 

9 km 

2800s 

regional 

6-75 km 

1152 s 

Vertical 

coordinate 

z z σ z z z 

Vertical 

levels 

26 50 27 64 45 30 

Minimum 

depth 

25m 5m 5m 6.06 10 5m 

Bering 

Strait 

Restore

d 

Not restored open Fully 

represented 

in global 

domain 

open open 

Equation 

of state 

Mellor Jackett and 

McDougal, 

1995 

Brydon et 

al., 1999 

Jackett & 

McDougall 

(1995) 

UNESCO UNESCO 

Vertical MY2.5 KPP, no Monin and TKE Pacanowsk KPP 



mixing double 

diffusion 

Obukhov, 

(Kochergin

, 1987) 

(Gaspar et 

al.( 1990), 

Blanke & 

Delecluse 

(1993)) 

i and 

Philander 

Tracer 

advection 

Lin et 

al 1994 

Piecewi

se 

parabol

ic 

7th order 

monotonicity-

preserving 

(Direct space 

time with flux 

limiter) [Daru 

and Tenaud, 

2004] 

Central 

diff. 

TVD 

(Lévy et al. 

2001) 

Central 

diff. 

Central 

diff. 

Momentu

m 

advection 

centere

d 

vector 

invariant 

Central 

diff. 

EEN 

(Barnier et 

al. 2006)    

Central 

diff. 

Central 

diff. 

  

Salinity 5 Function of 

surface S 

4 6 4 4 

Thickness 

categoriesd 

2: ice 

and no 

ice 

8 (7 for ice 

and 1 for open 

water) 

1 1 2: mean 

grid cell 

ice 

thickness 

12 



or open 

water 

Advection Centere

d mom. 

Upwin

d 

A+D 

Centered 2nd 

order 

MPDATA Prather, 2nd 

order, 2nd 

moment 

conserving 

Central 

diff. 

Central 

diff. 

Dynamicse General

ized 

viscous 

Viscous 

plastic 

EVP VP Viscous 

plastic 

Teardrop 

plastic 

rheology, 

LSR solver 

Albedos 

Melting 

snow 

Cold 

snow -

0.85 

0.78 – 

melting 

snow 

0.8085 0.7-0.8 

(surface 

temperatur

e 

dependent) 

0.5-0.65 

(clear sky, 

snow 

thickness 

dependent) 

 0.70 

Cold ice 0.74 0.7 0.1-0.65 

(ice 

thickness 

dependent) 

0.1-0.72 

(clear sky, 

ice 

thickness 

dependent) 

0.73 0.75 



Melting ice 0.7 0.7060 0.1-0.575 

(ice 

thickness 

and surface 

temperatur

e 

dependent) 

01.-0.5 

(clear sky, 

ice 

thickness 

dependent) 

 0.64 

Ocean 0.1 0.1556 0.1 0.06 .10 0.1 

                   Surface Momentum Exchange Coefficients  

Atmos.-

iceg 

1.4E-3 1.14 x 10^-3 2.75 x 10-3 1.63 x 10-3  1.1 x 10-3 Surface BL 

Ice-Ocean BL 

model 

5.4 x 10^-3 5.5 x 10-3 5.0 x 10-3  5.5 x 10-3 Cw=0.005

5 

aSee AOMIP web site  for additional details (http://www.whoi.edu/AOMIP)  971 



Table 2. ICESat campaign periods 972 

Laser 
Campaign 

year 
Period Operational Days 

2a 2003 Sep 24 – Nov18 55 

2b 2004 Feb 17 - Mar 21 34 

3a 2004 Oct 03 – Nov 08 37 

3b 2005 Feb 17 – Mar 24 36 

3d 2005 Oct 21 – Nov 24 35 

3e 2006 Feb 22 – Mar 27 34 

3g 2006 Oct 25 – Nov 27 34 

3h 2007 Mar 12 – Apr 14 34 

3i 2007 Oct 02 – Nov 05 37 

3j 2008 Feb 17 – Mar 21 34 

 973 


















