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Abstract—Model-based prognostics approaches employ do-
main knowledge about a system, its components, and how
they fail through the use of physics-based models. Compo-
nent wear is driven by several different degradation phenom-
ena, each resulting in their own damage progression path,
overlapping to contribute to the overall degradation of the
component. We develop a model-based prognostics method-
ology using particle filters, in which the problem of charac-
terizing multiple damage progression paths is cast as a joint
state-parameter estimation problem. The estimate is repre-
sented as a probability distribution, allowing the prediction
of end of life and remaining useful life within a probabilistic
framework that supports uncertainty management. We also
develop a novel variance control mechanism that maintains an
uncertainty bound around the hidden parameters to limit the
amount of estimation uncertainty and, consequently, reduce
prediction uncertainty. We construct a detailed physics-based
model of a centrifugal pump, to which we apply our model-
based prognostics algorithms. We illustrate the operation of
the prognostic solution with a number of simulation-based
experiments and demonstrate the performance of the chosen
approach when multiple damage mechanisms are active.
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1. INTRODUCTION

Model-based prognostics approaches employ domain knowl-
edge about a system, its components, and how they fail
through the use of physics-based models that capture the
underlying physical phenomena [1–3]. Component wear is
driven by several different degradation phenomena. Each of
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these degradation phenomena results in its own damage pro-
gression path, which all combine to contribute to the over-
all degradation of the component. Due to manufacturing
variances and differences in usage and environmental con-
ditions, the damage progression rates for the different dam-
age mechanisms vary among components of the same type.
This poses considerable challenges to data-driven (model-
free) approaches, which use run-to-failure data to train ma-
chine learning algorithms to make end of life and remaining
useful life predictions [4], because often the training data to
cover a sufficient portion of such cases is lacking. In the ab-
sence of such data, model-based approaches are better-suited,
since they use underlying physical models to help estimate
the amount of damage and the rates of damage progression.

Extending previous work in [1], we develop a model-based
prognostics methodology using particle filters, in which the
problem of characterizing multiple damage progression paths
is cast as a joint state-parameter estimation problem. The
estimate is represented as a probability distribution, allow-
ing the prediction of end of life and remaining useful life
within a probabilistic framework that supports uncertainty
management. In particle filter-based parameter estimation,
an artificial random walk evolution is assigned to the parame-
ters, which is necessary for convergence of the estimates and
proper tracking afterwards. But, the optimal variance of the
random walk depends on the unknown parameter value. To
reduce the amount of this artificial uncertainty, we introduce
a novel variance control mechanism that maintains an uncer-
tainty bound around an unknown parameter being estimated.

We demonstrate our prognostics methodology on a centrifu-
gal pump. Centrifugal pumps are used in a wide range of
applications, from water supply to spacecraft fueling systems.
Because pumps typically see high usage, they can particularly
benefit from prognostics and health management solutions to
ensure satisfactory system performance, extended component
lifetime, and limited downtime. Model-based diagnosis has
been investigated previously with centrifugal pumps [5–7].
However, most prognostics approaches for pumps have been
data-driven, usually based on pump vibration signals. A
principal component analysis method is applied for condi-
tion monitoring of a pump using vibration signals in [8]. A
model-based approach is presented in [9], however it consid-
ers only a single degradation mode. We illustrate here our
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model-based prognostic approach for centrifugal pumps us-
ing a number of simulation-based experiments when multiple
damage mechanisms are active. We evaluate algorithm per-
formance using established prognostics metrics [10].

The paper is organized as follows. Section 2 formally defines
the prognostics problem and describes the prognostics archi-
tecture. Section 3 describes the modeling methodology and
develops the centrifugal pump model for prognostics. Sec-
tion 4 describes the particle filter-based damage estimation
method and develops the variance control scheme. Section 5
discusses the prediction methodology. Section 6 provides
results from a number of simulation-based experiments and
evaluates the approach. Section 7 concludes the paper.

2. PROGNOSTICS APPROACH

The problem of prognostics is to predict the EOL and/or the
RUL of a component. In this section, we first formally de-
fine the problem of prognostics. We then describe a general
model-based architecture for prognostics.

Problem Formulation

In general, a system model may be defined as

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))
y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the
parameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv

is the process noise vector, f is the state equation, y(t) ∈ Rny

is the output vector, n(t) ∈ Rnn is the measurement noise
vector, and h is the output equation. This form represents a
general nonlinear model with no restrictions on the functional
forms of f or h. Further, the noise terms may be coupled in a
nonlinear way with the states and parameters. The parameters
θ(t) evolve in an unknown way, but are typically considered
to be constant in practice.

The goal is to predict EOL (and/or RUL) at a given time
point tP using the discrete sequence of observations up to
time tP , denoted as y0:tP . EOL is defined as the time point
at which the component no longer meets a functional re-
quirement (e.g., a pump is overheated). This point is often
linked to a damage threshold, beyond which the component
fails to function properly. In general, we may express this
threshold as a function of the system state and parameters,
TEOL(x(t),θ(t)), which determines whether EOL has been
reached, where

TEOL(x(t),θ(t)) =
{

1, if EOL is reached
0, otherwise.

The EOL threshold is linked to a boundary in the
multi-dimensional damage space. Inside the bound-
ary, TEOL(x(t),θ(t)) = 0, and outside the boundary,
TEOL(x(t),θ(t)) = 1. Fig. 1 illustrates this concept with

Figure 1. EOL threshold in the damage space.

a two-dimensional example, with damage dimensions d1 and
d2. The dimensions are normalized such that d1 = 1 cor-
responds to the maximum allowable damage for d1 when
d2 = 0, and d2 = 1 corresponds to the maximum allowable
damage for d2 when d1 = 0. If the different damage mech-
anisms are considered independently, then the space where
TEOL(x(t),θ(t)) = 0 would be defined by the space within
the dashed lines in the figure. In higher dimensions, this
space forms a hypercube. However, in general, the different
damage mechanisms cannot be considered independently in
defining EOL, because increased damage along one dimen-
sion may either allow a greater amount of damage or restrict
the allowable amount of damage along another damage di-
mension. For example, in a normally-closed valve, where
EOL is defined by opening and closing times, friction damage
will cause the valve to open more slowly, but a weakening of
the return spring will allow the valve to open more quickly.
So, the actual EOL threshold may take on a more complex
form, as shown by the shaded area in Fig. 1. In the regions
of the space where TEOL(x(t),θ(t)) = 0 that extend beyond
the hypercube, more damage is allowed, and in the regions
that fall within the hypercube, damage is restricted further.

Using TEOL, we can formally define EOL with

EOL(tP ) , arg min
t≥tP

TEOL(x(t),θ(t)) = 1,

i.e., EOL is the earliest time point at which the damage
threshold is met. RUL may then be defined with

RUL(tP ) , EOL(tP )− tP .

Note that we are interested in the EOL formed by the com-
bined effects of all damage progressions paths, so they must
be considered simultaneously, rather than independently.

In practice, many sources of uncertainty exist that affect the
prediction. Noise is inherent in the process and the mea-
surements, represented by the noise terms v(t) and n(t), re-
spectively. Further, the future inputs of the system, which
affect the evolution of the state, and therefore the progres-
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Figure 2. Prognostics architecture.

sion of damage, are not always known. Certain input pro-
files may also excite some damage mechanisms more than
others. Thus, it is much more useful to compute a proba-
bility distribution of the EOL or RUL, rather than a single
prediction point. The goal, then, is to compute, at time tP ,
p(EOL(tp)|y0:tP ) or p(RUL(tP )|y0:tP ).

Prognostics Architecture

In our model-based approach, we develop detailed physics-
based models of components and systems that include de-
scriptions of how fault parameters evolve in time. These
models depend on unknown and possibly time-varying wear
parameters, θ(t). Therefore, our solution to the prognostics
problem takes the perspective of joint state-parameter estima-
tion. In discrete time k, we estimate xk and θk, and use these
estimates to predict EOL and RUL at desired time points.

We employ the prognostics architecture in Fig. 2. The sys-
tem is provided with inputs uk and provides measured out-
puts yk. Prognostics may begin at t = 0, with the dam-
age estimation module determining estimates of the states
and unknown parameters, represented as a probability dis-
tribution p(xk,θk|y0:k). In parallel, a fault detection, iso-
lation, and identification (FDII) module may be used to de-
termine which damage mechanisms are active, represented as
a fault set F. The damage estimation module may then use
this result to limit the space of parameters that must be esti-
mated. Alternatively, prognostics may begin only when diag-
nostics has completed. The prediction module uses the joint
state-parameter distribution, along with hypothesized future
inputs, to compute EOL and RUL as probability distributions
p(EOLkP |y0:kP ) and p(RULkP |y0:kP ) at given prediction
times kP . In this paper, we focus on the damage estimation
and prediction modules, and assume that the FDII module
does not inform the prognostics, i.e., all possible damage pro-
gression paths must be tracked starting from t = 0.

3. PUMP MODELING

We apply our prognostics approach to a centrifugal pump,
and develop a physics-based model of its nominal and faulty
behavior. Centrifugal pumps are used in a variety of do-
mains for fluid delivery. A schematic of a typical centrifugal
pump is shown in Fig. 3. Fluid enters the inlet, and the rota-
tion of the impeller forces fluid through the outlet. The im-

Figure 3. Centrifugal pump.

peller is driven by an electric motor, typically a three-phase
alternating-current induction motor. The radial and thrust
bearings help to minimize friction along the pump shaft. The
bearing housing contains oil which lubricates the bearings. A
seal prevents fluid flow into the bearing housing. Wear rings
prevent internal pump leakage from the outlet to the inlet side
of the impeller, but a small clearance is typically allowed to
minimize friction (a small internal leakage is normal).

The state of the pump is given by

x(t) =
[
ω(t) Tt(t) Tr(t) To(t)

]T
,

where ω(t) is the rotational velocity of the pump, Tt(t) is the
thrust bearing temperature, Tr(t) is the radial bearing temper-
ature, and To(t) is the oil temperature.

The rotational velocity of the pump is described using a
torque balance,

ω̇ =
1
J

(τe(t)− rω(t)− τL(t)) ,

where J is the lumped motor/pump inertia, τe is the electro-
magnetic torque provided by the motor, r is the lumped fric-
tion parameter, and τL is the load torque. In an induction mo-
tor, a voltage is applied to the stationary part, the stator, which
creates a current through the stator coils. With a polyphase
supply, this creates a rotating magnetic field which induces
a current in the rotating part, the rotor, causing it to turn. A
torque is produced on the rotor only when there is a differ-
ence between the synchronous speed of the supply voltage,
ωs and the mechanical rotation, ω. This difference, called
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Figure 4. Induction motor equivalent circuit.

slip, is defined as

s =
ωs − ω
ωs

.

The expression for the torque τe is derived from an equiva-
lent circuit representation for the three-phase induction mo-
tor, shown in Fig. 4, based on rotor and stator resistances and
inductances, and the slip s [11]:

τe =
npR2

sωs

V 2
rms

(R1 +R2/s)2 + (ωsL1 + ωsL2)2
,

where R1 is the stator resistance, L1 is the stator inductance,
R2 is the rotor resistance, L2 is the rotor inductance, n is
the number of phases (typically 3), and p is the number of
magnetic pole pairs. For a 3600 rpm motor, p = 1. The de-
pendence of torque on slip creates a feedback loop that causes
the rotor to follow the rotation of the magnetic field. The ro-
tor speed may be controlled by changing the input frequency
ωs, e.g., through the use of a variable-frequency drive.

The load torque τL is a polynomial function of the flow rate
through the pump and the impeller rotational velocity [5, 6]:

τL = a0ω
2 + a1ωQ− a2Q

2,

where Q is the flow, and a0, a1, and a2 are coefficients de-
rived from the pump geometry [6].

The rotation of the impeller creates a pressure difference from
the inlet to the outlet of the pump, which drives the pump
flow, Q. The pump pressure is computed as

pp = Aω2 + b1ωQ− b2Q2,

where A is the impeller area, and b1 and b2 are coefficients
derived from the pump geometry. Flow through the impeller,
Qi, is computed using the pressure differences:

Qi = c
√
|ps + pp − pd|sign(ps + pp − pd),

where c is a flow coefficient, ps is the suction pressure, and
pd is the discharge pressure. The small (normal) leakage flow
from the discharge end to the suction end due to the clearance
between the wear rings and the impeller is described by

Ql = cl
√
|pd − ps|sign(pd − ps),

where cl is a flow coefficient. The discharge flow, Q, is then

Q = Qi −Ql.

Pump temperatures are often monitored as indicators of pump
condition. The oil heats up due to the radial and thrust bear-
ings and cools to the environment:

Ṫo =
1
Jo

(Ho,1(Tt − To) +Ho,2(Tr − To)−Ho,3(To − Ta)),

where Jo is the thermal inertia of the oil, and the Ho,i terms
are heat transfer coefficients. The thrust bearings heat up due
to the friction between the pump shaft and the bearings, and
cool to the oil and the environment:

Ṫt =
1
Jt

(rtω2 −Ht,1(Tt − To)−Ht,2(Tt − Ta)),

where Jt is the thermal inertia of the thrust bearings, rt is the
friction coefficient for the thrust bearings, and the Ht,i terms
are heat transfer coefficients. The radial bearings behave sim-
ilarly:

Ṫr =
1
Jr

(rrω2 −Hr,1(Tr − To)−Hr,2(Tr − Ta))

where Jr is the thermal inertia of the radial bearings, rr is the
friction coefficient for the radial bearings, and the Hr,i terms
are heat transfer coefficients. Note that rt and rr contribute
to the overall friction coefficient r.

The overall input vector u is given by

u(t) =
[
ps(t) pd(t) Ta(t) V (t) ωs(t)

]T
.

The measurement vector y is given by

y(t) =
[
ω(t) Q(t) Tt(t) Tr(t) To(t)

]T
.

Fig. 5 shows nominal pump operation. The input voltage (and
frequency) are varied to control the pump speed. The electro-
magnetic torque is produced initially as slip is 1. This causes
a rotation of the motor to match the rotation of the magnetic
field, with a small amount of slip remaining, depending on
how large the load torque is. As the pump rotates, fluid flow
is created. The bearings heat up as the pump rotates and cool
when the pump rotation slows.

Damage Modeling

The most significant forms of damage for pumps are impeller
wear, caused by cavitation and erosion by the flow, and bear-
ing failure, caused by friction-induced wear of the bearings.
In each case, we map the damage to a particular parameter in
the nominal model, and this parameter becomes a state vari-
able in x(t) that evolves by a damage progression function.
These functions are parameterized by a set of unknown wear
parameters, forming the unknown parameter vector θ(t).
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Figure 5. Nominal pump operation.

Impeller wear is represented as a decrease in impeller area
A [7, 9]. We use the erosive wear equation [12]. The ero-
sive wear rate is proportional to fluid velocity times friction
force. Fluid velocity is proportional to volumetric flow rate,
and friction force is proportional to fluid velocity. We lump
the proportionality constants into the wear coefficient wA to
obtain

Ȧ = −wAQ
2
i .

A decrease in the impeller area will decrease the pump pres-
sure, which, in turn, reduces the delivered flow, and, there-
fore, pump efficiency. The pump must operate at a certain
minimal efficiency. This requirement defines an EOL crite-
ria. We define A− as the minimum value of the impeller
area at which this requirement is met, hence, TEOL = 1 if
A(t) < A−.

Bearing wear is captured as an increase in friction. Sliding
and rolling friction generate wear of material which increases
the coefficient of friction [1, 12]:

ṙt(t) = wtrtω
2

ṙr(t) = wrrrω
2,

where wt and wr are the wear coefficients. The slip com-
pensation provided by the electromagnetic torque generation
masks small changes in friction, so it is only with very large
increases that a change in ω will be observed. These changes
can be observed much more readily through the bearing tem-
peratures. Limits on the maximum values of these tempera-
tures define EOL for bearing wear. We define r+t and r+r as
the maximum permissible values of the friction coefficients,

Algorithm 1 SIR Filter
Inputs: {(xik−1,θ

i
k−1), wik−1}

N
i=1,uk−1:k,yk

Outputs: {(xik,θ
i
k), w

i
k}
N
i=1

for i = 1 to N do
θik ∼ p(θk|θ

i
k−1)

xik ∼ p(xk|x
i
k−1,θ

i
k−1,uk−1)

wik ← p(yk|xik,θ
i
k,uk)

end for

W ←
N∑
i=1

wik

for i = 1 to N do
wik ← wik/W

end for
{(xik,θ

i
k), w

i
k}
N
i=1 ← Resample({(xik,θ

i
k), w

i
k}
N
i=1)

before the temperature limits are exceeded over a typical us-
age cycle. So, TEOL = 1 if rt(t) > r+t or rr(t) > r+r .
Vibration and acceleration sensors have also been used in
pumps for bearing monitoring, e.g., in [8], however, when
using such methods it is difficult to map changes in vibra-
tion back to changes in the thrust bearings, radial bearings, or
both, while also quantifying the amount of damage.

4. DAMAGE ESTIMATION

In model-based prognostics, damage estimation reduces
to joint state-parameter estimation, i.e., computation of
p(xk,θk|y0:k). A general solution to this problem is the
particle filter, which may be directly applied to nonlinear
systems with non-Gaussian noise terms [13]. In particle fil-
ters, the state distribution is approximated by a set of discrete
weighted samples, called particles.

With particle filters, the particle approximation to the state
distribution is given by

{(xi
k,θ

i
k), wi

k}Ni=1,

where N denotes the number of particles, and for particle i,
xi

k denotes the state vector estimate, θi
k denotes the parameter

vector estimate, and wi
k denotes the weight. The posterior

density is approximated by

p(xk,θk|y0:k) ≈
N∑

i=1

wi
kδ(xik,θik)

(dxkdθk),

where δ(xik,θik)
(dxkdθk) denotes the Dirac delta function lo-

cated at (xi
k,θ

i
k).

We use the sampling importance resampling (SIR) particle fil-
ter, using systematic resampling [14]. The pseudocode for a
single step of the SIR filter is shown as Algorithm 1. Each
particle is propagated forward to time k by first sampling
new parameter values, and then sampling new states using the
model. The particle weight is assigned using yk. The weights
are then normalized, followed by the resampling step [13].

Here, the parameters θk evolve by some unknown process
that is independent of the state xk. However, we need to
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Figure 6. ξ adaptation scheme.

assign some type of evolution to the parameters. The typi-
cal solution is to use a random walk, i.e., for parameter θ,
θk = θk−1 + ξk−1, where ξk−1 is sampled from some dis-
tribution (e.g., zero-mean Gaussian). With this type of evolu-
tion, the particles generated with parameter values closest to
the true values should be assigned higher weight, thus allow-
ing the particle filter to converge to the true values.

The selected variance of the random walk noise determines
both the rate of this convergence and the estimation perfor-
mance once convergence is achieved. Therefore, it is very
desirable to tune this parameter to obtain the best possible
performance. A large random walk variance will yield quick
convergence but tracking with too wide a variance, whereas
too small a random walk variance will yield a very slow con-
vergence, if at all, but, once achieved, tracking will proceed
with a very small variance. One approach is to use kernel
shrinkage, in which the random walk noise is diminished over
time [15]. This approach assumes that the parameter is con-
stant, but in reality, this may not be the case, so some amount
of noise should still be included to account for unmodeled de-
viations in the parameter value over time. In [16], this noise
(viewed as a hyper-parameter) is tuned using outer correction
loops based on prediction error. In this case, the underlying
prognostic model is assumed to contain only a single fault
dimension, therefore it cannot be applied in our case.

We develop a ξ adaptation method similar to [16], but with
some key distinguishing features. First, we consider a multi-
dimensional damage space, therefore, we must simultane-
ously adapt the random walk noise for multiple parameter
values. Second, we cannot use prediction error to drive the
adaptation, because we cannot, in general, map errors in pre-
diction to specific wear parameters, since each output is de-
pendent on multiple damage mechanisms. Instead, we try to
control the variance of the hidden wear parameter estimate to
a user-specified range by modifying the random walk noise
variance. Since the random walk noise is artificial, we should
reduce it as much as possible, because this uncertainty prop-
agates into the EOL predictions. So, controlling this uncer-
tainty helps to control the uncertainty of the EOL prediction.
Reducing the variance of the wear parameter can reduce the
variance of the EOL prediction by several factors, and the im-
provement is substantial over long time horizons.

The algorithm for the adaptation of the ξ vector is given as

Algorithm 2 ξ Adaptation
Inputs: {(xik,θ

i
k), w

i
k}
N
i=1, ξk−1

State: a
Outputs: ξk
if k = 0 then

a← 0
end if
for all j ∈ {1, 2, . . . , nθ} do
vj ← RMAD({θik(j)}

N
i=1)

if a(j) = 0 and vj < T then
a(j)← 1

end if
if a(j) = 0 then
v∗j ← v∗j0

else
v∗j ← v∗j∞

end if
ξk(j)← ξk−1(j)

(
1 + P

vj−v∗j
v∗j

)
end for

Algorithm 2, and Fig. 6 shows how it interacts with the parti-
cle filter. We assume that the ξ values are tuned initially based
on the maximum expected wear rates, e.g., if the pump is ex-
pected to fail no earlier than 100 hours, then this corresponds
to particular maximum wear rate values. The initial wear rate
estimate values may start at 0. We use the relative median
absolute deviation (RMAD) as the measure of variance:

RMAD(X) = 100
Mediani (|Xi −Medianj(Xj)|)

Medianj(Xj)
,

where X is a data set and Xi is an element of that set. We
use RMAD because it is statistically robust, and, since it is a
relative measure of spread, it can be treated equally for any
wear parameter value. The adaptation scheme resembles a
proportional control law, where the error between the actual
RMAD of a parameter θ(j), denoted as vj in the algorithm,
and the desired RMAD value (e.g., 10%), denoted as v∗j in the
algorithm, is normalized by vj . The error is then multiplied
by a factor P (e.g., 1×10−3), and the corresponding variance
ξ(j) is increased or decreased by that percentage. We utilize
two different setpoints. First, we allow for a convergence pe-
riod, with setpoint v∗j0 (e.g., 50%). Once vj reaches T (e.g.,
1.2v∗j0), we mark it using the a(j) flag, and begin to control
it to a new setpoint v∗j∞ (e.g., 10%).

Because there is some inertia to the process of vj changing
in response to a new value of ξ(j), the gain P cannot be too
large, otherwise vj will not converge to the desired value, in-
stead, it will continually shrink and expand. In our experi-
ments, P = 1 × 10−3 worked well over the entire range of
values considered for each wear parameter. Ideally, the wear
parameter variance would be zero, but the particle filter needs
some amount of noise to accurately track the parameter. So,
v∗j cannot be too small, and we have found that controlling to
an RMAD of 10% introduces an acceptable amount of uncer-
tainty while allowing for accurate tracking.
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Algorithm 3 EOL Prediction
Inputs: {(xikP ,θ

i
kP

), wikP
}Ni=1

Outputs: {EOLikP , w
i
kP
}Ni=1

for i = 1 to N do
k ← kP
xik ← xikP
θik ← θikP
while TEOL(xik,θ

i
k) = 0 do

Predict ûk
θik+1 ∼ p(θk+1|θik)
xik+1 ∼ p(xk+1|xik,θ

i
k, ûk)

k ← k + 1
xik ← xik+1

θik ← θik+1
end while
EOLikP

← k

end for

5. PREDICTION

Prediction is initiated at a given time kP . Using the cur-
rent joint state-parameter estimate, p(xkP ,θkP |y0:kP ), which
represents the most up-to-date knowledge of the system
at time kP , the goal is to compute p(EOLkP |y0:kP ) and
p(RULkP |y0:kP ). As discussed in Section 4, the particle fil-
ter computes

p(xkP ,θkP |y0:kP ) ≈
N∑

i=1

wi
kP δ(xikP ,θikP

)(dxkP dθkP ).

We can approximate a prediction distribution n steps forward
as [17]

p(xkP+n,θkP+n|y0:kP ) ≈
N∑

i=1

wi
kP δ(xikP+n,θikP+n)(dxkP+ndθkP+n).

So, for a particle i propagated n steps forward without new
data, we may take its weight as wi

kP
. Similarly, we can ap-

proximate the EOL as

p(EOLkP |y0:kP ) ≈
N∑

i=1

wi
kP δEOLikP

(dEOLkP ).

To compute EOL, then, we propagate each particle forward
to its own EOL and use that particle’s weight at kP for the
weight of its EOL prediction.

If an analytic solution exists for the prediction, this may be di-
rectly used to obtain the prediction from the state-parameter
distribution. An analytical solution is rarely available, so the
general approach to solving the prediction problem is through
simulation. Each particle is simulated forward to EOL to ob-
tain the complete EOL distribution. The pseudocode for the
prediction procedure is given as Algorithm 3 [1]. Each parti-
cle i is propagated forward until TEOL(xi

k,θ
i
k) evaluates to

1; at this point EOL has been reached for this particle.

Note that prediction requires hypothesizing future inputs of
the system, ûk, because damage progression is dependent on
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Figure 7. Simultaneous prediction of impeller wear and
thrust bearing wear in the pump. The damage trajectories are
coming out of the page, increasing in rt, decreasing inA, and
increasing in t.

the operational conditions. For example, in the pump, an in-
creased rotation speed will cause bearing friction to increase
at a faster rate, and will cause an increased pump flow, which,
in turn, will cause impeller wear to increase at a faster rate.
The choice of expected future inputs depends on the knowl-
edge about operational settings and the type of information
the user is interested in, e.g., for a worst-case scenario, one
would consider the pump running at its maximum rotation.

Fig. 7 shows results from the simultaneous prediction of im-
peller wear and thrust bearing wear for N = 100 (not all
trajectories are shown in the lower plot). Initially, the parti-
cles have a very tight distribution of friction and impeller area
damage values, but the distribution of the wear parameters,
wA and wrt , is relatively large. As a result, the individual
trajectories are easily distinguishable as EOL is approached.
Because the damage threshold is multi-dimensional, we show
also the projections of the trajectories onto the damage-time
planes. The projection onto the A-t plane (right) shows the
progression of A towards the A− threshold as a function of
time. The projections stop when EOL is reached, and the ver-
tical dotted lines connecting the projections to the time axis
indicate individual EOL predictions. Similarly, the projec-
tion onto the rt-t plane (bottom) shows the progression of rt
towards the r+t threshold as a function of time. The dotted
lines connecting to the time axis indicate EOL predictions.
For some particles, A− is reached first, while for others, r+t
is reached first. The different EOL values along with parti-
cle weights form an EOL distribution approximated by the
probability mass function shown in the upper plot.
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6. RESULTS

In this section, we present simulation-based experiments to
analyze the performance of the prognostics algorithm in the
case of multiple damage progression paths. We first define the
metrics used to evaluate the algorithm performance. We then
provide detailed results for a single experiment to demon-
strate the approach, followed by results summarized over a
large number of experiments.

Evaluation Metrics

We evaluate the performance of the wear parameter estima-
tion by quantifying estimation accuracy and spread. Accu-
racy is calculated using the percentage root mean square error
(PRMSE), which expresses relative estimation accuracy of w
as a percentage:

PRMSEw = 100

√√√√Meank

[(
ŵk − w∗k
w∗k

)2
]
,

where ŵk denotes the estimated wear parameter value at time
k, w∗k denotes the true wear parameter value at k, and Meank

denotes the mean over all values of k. In computing PRMSE,
we ignore the initial time frame associated with convergence
of the wear parameter estimate (from 0 hours up to 30% of
the true EOL).

We calculate the spread using RMAD as defined in Section 4.
For estimation spread, for time k, we compute for wear pa-
rameter w, RMADw,k using the distribution of wear param-
eter values given by the particle set at k as the data set. We
denote the average RMAD over multiple k using:

RMADw = Meank(RMADw,k).

In computing estimation spread, we also ignore the initial
time frame associated with convergence of the wear parame-
ter estimate.

For a particular prediction point kP , we compute measures of
accuracy and spread for the prediction. For accuracy, we use
the relative accuracy (RA) metric [10]:

RAkP = 100

(
1− |RUL

∗
kP
−Meani(RULi

kP
)|

RUL∗kP

)
.

RA is averaged over each prediction point to obtain a single
value that characterizes the overall accuracy, denoted as RA.

We calculate prediction spread using RMAD, which we de-
note as RMADRUL for the RUL prediction. To obtain a sin-
gle value for overall spread, RMAD is averaged over all pre-
diction points starting from the prediction at which a prog-
nostics horizon (where RA is within a specified bound) is
first reached, denoted using RMADRUL. Prognostics perfor-
mance is summarized using the α-λ metric which requires
that for a given prediction time λ, at least β of the RUL prob-
ability mass lies within α of the true value [10].
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Figure 8. Simultaneous estimation of pump wear parameters
for N = 500, T = 60%, v∗0 = 50%, v∗∞ = 10%, and P =
1× 10−3.

Demonstration of Approach

We first provide an example scenario to illustrate the ap-
proach. Fig. 8 shows the estimation results for the hidden
wear parameters, with w∗A = 2×10−3, w∗t = 4×10−11, and
w∗r = 2×10−11. Initially, the estimate bounds are very large,
however, as the estimates begin to converge, the RMAD of
each is reduced to 50% through the adaptation scheme, and
then to 10%. Once convergence has occurred, tracking pro-
ceeds very well. The RMAD is maintained around 10% to the
end of the experiment. The PRMSE of the different wear pa-
rameters are correspondingly low, with PRMSEwA = 4.36
PRMSEwt = 3.60, and PRMSEwr = 5.51. The mean
RMADs of the wear parameters are RMADwA = 8.60,
RMADwt = 8.42, and RMADwr = 8.29, which are less
than the controlled value of 10%.

Prediction performance is shown by the α-λ plot of Fig. 9.
Impeller wear damage dominates the EOL prediction. The
accurate and precise wear parameter estimates yield corre-
spondingly accurate and precise RUL predictions. Here,
α = 0.1 and β = 0.5, so the α-λ test requires that 50%
of the probability mass lies within 10% of the true value at
each prediction point. The test succeeds at all but the last pre-
diction point, although the probability mass contained within
the α-bounds, 49.6%, is very close to the requirement of 50%.
The average RA is 97.16%. The average RMAD of the RUL
distribution is 9.14%. Maintaining the variance of the wear
parameter estimates maintains also the RMAD of the RUL
(though not necessarily to the same setpoint).
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Table 1. Estimation and Prediction Performance

n PRMSEwA PRMSEwt PRMSEwr RMADwA RMADwt RMADwr RA RMADRUL

1 6.44 6.64 4.45 8.44 8.38 8.30 96.17 10.24
10 5.38 2.64 3.25 8.55 8.76 8.53 96.79 10.68
100 4.60 2.71 2.40 9.12 8.82 8.88 95.99 11.65
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Figure 9. α-λ performance with α = 0.1 and β = 0.5 for
N = 500, T = 60%, v∗0 = 50%, v∗∞ = 10%, and P =
1× 10−3.

Simulation Results

We performed a number of simulation experiments in which
combinations of wear parameter values were selected ran-
domly within a range, with N = 500. We selected values in
[0.5×10−3, 4×10−3] at increments of 0.5×10−3 for wA, in
[0.5×10−11, 7×10−11] at increments of 0.5×10−11 for wt,
and in [0.5× 10−11, 7× 10−11] at increments of 0.5× 10−11

for wr, such that the maximum wear rates corresponded to a
minimum EOL of 20 hours. In order to confirm that the wear
parameter variance could still be maintained with additional
sensor noise, we varied the sensor noise variance by factors of
1, 10, and 100, and performed 20 experiments for each case.
We considered the case where the future input of the pump is
known, and it is always operated at a constant RPM. Hence,
the only uncertainty present is that involved in the noise terms
and that introduced by the particle filtering algorithm.

The averaged estimation and prediction performance results
are shown in Table 1. In all experiments, we used T = 60%,
v∗0 = 50%, v∗∞ = 10%, and P = 1 × 10−3. In each of
the cases, the PRMSE for the different wear parameter esti-
mates remained at most around 6.6% for the normal amount
of noise, and under 5% for increased noise. We attribute the
higher PRMSE of the normal noise cases to a couple out-
lier scenarios where convergence was slower, throwing off
the estimate early on. In these cases, the median PRMSEs
were under 5%. The PRMSE for wA is on average higher

than that for the bearing wear parameters because the flow
measurement Q is relatively more noisy than the temperature
measurements Tt and Tr.

The RMAD of each wear parameter was successfully con-
trolled to 10%, averaging around 8 to 9%. This trans-
lated to good prediction performance, with the RA averaging
around 96% and the RMAD of the RUL prediction averaging
around 11%. Even as the noise increases, the variance con-
trol scheme was able to maintain the RMAD setpoint, and so
RMADRUL increased only slightly as sensor noise increased.

Fig. 10 shows the RMAD of the wear parameters as a function
of wear parameter value. Here, it is clear that the RMAD can
be controlled well independently of the wear parameter value.
Performance is similar across different wear parameters and
their values, translating to the similar prediction performance
observed across different wear parameter values.

7. CONCLUSIONS

We investigated the issues of multiple damage progression
paths and developed a model-based prognostics methodology
to accommodate them. Damage progression paths are char-
acterized by a fault or damage variable and a set of wear pa-
rameters that describe how they evolve in time. Particle filters
perform joint state-parameter estimation in order to estimate
the health state of the component. The state-parameter dis-
tribution is then extrapolated to the EOL threshold to com-
pute EOL and RUL predictions in the presence of multiple
damage progression paths. A novel variance control mecha-
nism keeps the uncertainty necessary for proper functioning
of the particle filter in check, in order to maintain the uncer-
tainty of the unknown wear parameters at a desired level. The
framework was applied to a centrifugal pump, and the results
demonstrated good performance over a range of wear param-
eter values and sensor noise levels.

In higher dimensional systems, the particle filter requires a
very large number of particles to track successfully. Using
only 500 particles was sufficient for good results here, but
as the number of states or damage mechanisms needed to
be tracked increases, the number of particles must increase
also. For large N , the particle filter approach may not be
efficient enough. In future work, we would like to investi-
gate alternative approaches with reduced computational bur-
den for high-dimensional state spaces. Also, the model-based
approach presented here could possibly be complemented by
data-driven methods that utilize pump vibration or accelera-
tion sensors.
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