

May 2011

NASA/CR–2011-217090

Probabilistic Analysis of Distributed Fault-
Tolerant Systems

Bruno Dutertre
Computer Science Laboratory, SRI International
Menlo Park, California

https://ntrs.nasa.gov/search.jsp?R=20110011564 2019-08-30T15:34:55+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10560149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

 The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

� TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

� TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

� CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

� CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

� SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

� TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

 Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

 For more information about the NASA STI
program, see the following:

� Access the NASA STI program home page at
http://www.sti.nasa.gov

� E-mail your question via the Internet to
help@sti.nasa.gov

� Fax your question to the NASA STI Help Desk
at 443-757-5803

� Phone the NASA STI Help Desk at
443-757-5802

� Write to:
 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NNL10AB32T

May 2011

NASA/CR–2011-217090

Probabilistic Analysis of Distributed Fault-
Tolerant Systems

Bruno Dutertre
Computer Science Laboratory, SRI International
Menlo Park, California

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Abstract

An approach is documented for analyzing probabilistic properties of fault-tolerant distributed systems using

the PRISM model checker.

1

Contents

1 Introduction 3

2 PRISM Overview 4
2.1 Modules . 4

2.2 Property Specification . 6

2.3 The PRISM Tools . 8

2.4 Other Features of PRISM . 10

3 Probabilistic Analysis of SPIDER Using PRISM 10
3.1 SPIDER . 10

3.2 Maximal Fault Assumption . 11

3.3 Reliability Models in PRISM . 12

3.3.1 Baseline Model . 12

3.3.2 Properties . 14

3.3.3 Analysis Results . 15

3.3.4 Revised Model . 17

3.4 Protocol Models in PRISM . 18

3.4.1 SPIDER’s Broadcast Service . 21

3.4.2 PRISM Model . 21

3.4.3 Protocol Properties . 24

3.4.4 Analysis Results . 25

4 Conclusion 25

A Reliability Models of SPIDER 29
A.1 Baseline Model . 29

A.2 Revised Model . 34

B Model of SPIDER’s Broadcast Service 39

2

1 Introduction

A method for probabilistic analysis of fault-tolerant distributed systems using a probabilistic model checker

is presented. This description includes several example analyses based on the Scalable Processor-Independent

Design for Enhanced Reliability (SPIDER) architecture.

A long history exists in applying probabilistic models to estimate the reliability of redundant systems.

Methods based on Markov chain analysis are prevalent in this context as they enable modeling of state-

dependent stochastic phenomena, which is necessary to represent dynamic system features such as reconfig-

uration and component repair. The general principles behind these methods, and many examples of Markov

(and semi-Markov) models of fault-tolerant systems, are presented by Butler and Johnson in [5].

Different software tools have been developed to solve the Markov or semi-Markov chains encountered

when modeling fault-tolerant systems. Geist and Trivedi survey several tools available in the early 1990s and

present the solution techniques that they employ [10]. All these tools attempt to address two fundamental

issues. First, Markov models of fault-tolerant systems can have very large state spaces. This large size is

caused both by the number of components in such systems and by the complex reconfiguration and diagnosis

strategies fault tolerance often requires. Second, the transition rates encountered in the Markov models can

vary widely in magnitude—since fault-arrival rates are slow but system reconfiguration is fast—which leads

to difficulties for numerical algorithms. The Semi-Markov Unreliability Range Evaluator (SURE) [4] is

dedicated to the analysis of fault-tolerant systems that exhibit low fault rates and fast reconfiguration. It

relies on approximation theorems to give lower and upper bounds on system reliability. The Symbolic

Hierarchical Automated Reliability and Performance Evaluator (SHARPE) [27] uses hierarchical modeling

to mitigate the state-explosion problem. Simulation-based methods that rely on importance sampling have

also been proposed [9, 30].

More recent tools such as Möbius [8] or the Symbolic Model checking Analyzer for Reliability and

Timing (SMART) [6] are general frameworks for assessing reliability, performance, and other properties of

complex computer systems. They employ sophisticated techniques for compactly representing the model

state space and they use decomposition methods for reducing the analysis cost. These tools are generic and

have been applied to a variety of computer systems and networks. Example applications to fault-tolerant

systems include [3] and [31]. A more complete survey of recent modeling formalisms and analysis tools can

be found in [28].

Typically, the probabilistic analysis of Markovian models focuses on computing transient or steady-state

distributions of a Markov chain. Thus, the previous tools can typically answer questions of the form “what

is the probability of reaching a set of states S?” or “what is the steady-state probability of being in state S?”.

Probabilistic model checkers are a related class of tools that provide a richer language for querying models,

which allows one to consider not just reachability properties but also properties of execution paths in an

underlying Markov model [17]. Properties are expressed in probabilistic temporal logics, most of which

are extensions of the Probabilistic Computational Tree Logic (PCTL) or the Continuous Stochastic Logic

(CSL) introduced in [12] and [2], respectively. As the name indicates, probabilistic model checking is an

extension of traditional, nonprobabilistic model checking to probabilistic and, more generally, quantitative

system properties. For example, a probabilistic model checker can be used to formally verify that a system

model, usually given as a finite Markov chain or Markov decision process, satisfies properties such as “the

failure probability is less than 10−k” or “the probability that component A will fail before component B is

more than p”.

Several probabilistic model checkers are available, including PRISM [15], the Markov Reward Model

Checker (MRMC) [16], the Erlangen-Twente Markov Chain Checker (ETMCC) [13], Ymer [34], and

VESTA [29]. Among these, PRISM is recognized as the leading software tool. It has been continuously

3

developed and maintained since 2000, and it has been applied to a wide range of case studies. It can be

downloaded for free at http://www.prismmodelchecker.org/. In this report, we investigate the

use of PRISM to the analysis of high-reliability, fault-tolerant systems.

We give an overview of the PRISM modeling language and logic. We then present several PRISM

models and analysis of a representative high-reliability system—namely, the SPIDER fault-tolerant archi-

tecture [21, 33].

2 PRISM Overview

PRISM is a tool for the formal modeling and verification of stochastic systems. The current release (i.e.,

PRISM 3.3.1) supports three types of probabilistic models: discrete-time Markov chains (DTMCs), continuous-
time Markov chains (CTMCs), and discrete-time Markov decision processes (MDPs). Support for proba-
bilistic timed automata (PTAs) has been announced for the next release (i.e., PRISM 4.0) [18]. PTAs are

an extension of MDPs with special real-valued variables called clocks that measure time progress. PTAs

are then intended for modeling and analysis of real-time, probabilistic systems. A preliminary version of

PRISM 4.0 is available as a beta release, but all the work and experiments described in this report were

performed using PRISM 3.3.1.

2.1 Modules

A PRISM system is specified as the composition of one or more elementary systems called modules. Each

module is defined by its state variables, which must all have a finite type, and by a set of guarded commands

that describes state transitions and the associated probabilities.

Figure 1 shows a PRISM specification that defines a simple fault model. The specification starts with

the keyword ctmc to indicate that the model is a continuous-time Markov chain. Alternatively, one can

use the keywords dtmc or mdp for a discrete-time Markov chain or Markov decision process, respectively.

The model then declares three parameters named lambda1, lambda2, and lambda3 that define three

transition rates. In this particular example, lambda1 is intended to be the transient-fault rate; lambda2 is

the permanent-fault rate; and lambda3 is the recovery rate from transient faults.

The module has a single state variable called state whose value is an integer in the set {0, 1, 2}. The

intended interpretation is that 0 is the fault-free state of the system, 1 is the state after a transient fault, and

2 is the state after a permanent fault. Initially, the system is fault free: state is initialized to 0.

The rest of the module consists of three guarded commands, which define the transition rates of the

underlying Markov chain. The first command is

[fault] (state = 0) -> lambda1: (state’=1) + lambda2: (state’=2);

It defines the transitions originating from state 0: with rate lambda1 the system moves to state 1 and with

rate lambda2 the system enters state 2. This command is labeled by the identifier fault, which is used

later in specifying rewards. The other two guarded commands in Figure 1 do not have a label. The transition

rates such as lambda are optional. If they are not given in the guarded command, then PRISM will assume

a default rate of 1 (as in the transition from state 2). The Markov chain corresponding to module c1 of

Figure 1 is depicted in Figure 2.

The other parts of the PRISM model in Figure 1 include the definition of a set of states, identified by the

label failed, that corresponds to the faulty states of the system (i.e., when state is different from 0).

Also, three rewards are attached to the model. In general, a reward is a numerical quantity that is assigned to

particular states or transitions of the system. In this example, the reward functional is equal to 1 when

state=0 and 0 otherwise. The PRISM logic includes several constructs to express properties of these

4

ctmc

const double lambda1; // transient faults
const double lambda2; // permanent faults
const double lambda3; // recovery from transient faults

module c1
state: [0..2] init 0;

[fault] (state = 0) -> lambda1: (state’=1) + lambda2: (state’=2);
[] (state = 1) -> lambda3: (state’=0);

[] (state=2) -> (state’=2);
endmodule

label "failed" = (state=1) | (state=2);

// Rewards: 1 for state 0, 0 in all other states
rewards "functional"

state = 0 : 1;
state != 0: 0;

endrewards

// For computing expected times
rewards "total_time"

true: 1;
endrewards

// For computing number of faults
rewards "num_failures"

[fault] true: 1;
endrewards

Figure 1. Example PRISM Model

5

1 0 2

lambda3

lambda1

lambda2
1

Figure 2. Markov Chain Corresponding to the PRISM Model in Figure 1

reward functions—for example, the expected cumulative reward in a bounded interval [0, t]. In the case of

the functional reward, this is the average fraction of time during which the system is fault free. The

reward function total time can be used in a similar fashion—for example, to define the expected time to

the first failure. As illustrated by num failures, rewards can also be attached to state transitions. In this

case, num failures is equal to 1 every time the transition fault is taken, and to 0 on other transitions.

2.2 Property Specification

PRISM uses an extension of PCTL for expressing properties of Markov chains. The logic includes the

traditional Computational Tree Logic (CTL) [7] operators that describe possible execution trees of a state-

transition system and new operators that express probability constraints on these execution trees. The un-

derlying semantics is then based on a probability space defined over the execution traces of a Markov

chain [17, 25, 26].

Figure 3 shows example logical formulas related to the PRISM model defined previously and their

informal interpretation. The first five examples illustrate a very common pattern of queries one makes about

PRISM models. These queries are all of the form

P =? [path-property]

Such formulas ask for the probability that the Markov chain’s execution path satisfies the given path property.

The path properties are themselves written using the CTL operators G (always), F (eventually), and U (until).

For example, the path property F state=1 means “eventually the system reaches state 1”. It is satisfied

by all paths that pass through state 1, and the formula P=? [F state=1] asks for the probability of

this set of paths.

Formula P=? [G<=10.0 !"failed"] uses a bounded form of the CTL operator G to make a query

about failure probability for a bounded mission time. It uses the label failed defined in Figure 1 to

refer to the faulty states. Property G<=10 !"failed" is satisfied by all paths that spend at least 10 time

units in the fault-free state—that is, all paths where the first fault occurs after time 10. Hence, formula

P=? [G<=10.0 !"failed] asks for the probability that no fault occurs in the first 10 time units of the

system behavior.

Rather than asking PRISM to compute probabilities of interest, one can also assert bounds on the proba-

bility of certain sets of paths and verify with PRISM whether these bounds actually hold. This is illustrated

by the sixth property of Figure 3. The formula P>0.9 [G<=10.0 (state!=2)] is true in a state s
of the Markov chain if the set of paths that start from s and do not reach state 2 in the first 10 time units has

probability at least 0.9. Then property

"init" => P>0.9 [G<=10.0 (state!=2)]

holds for the system if all initial states satisfy the probability constraint.

6

// What’s the probability of eventually experiencing a transient fault?
P=? [F state=1]

// What’s the probability of a eventually experiencing a permanent fault?
P=? [F state=2]

// What’s the probability that the first fault is transient?
P=? [state=0 U state=1]

// What’s the probability that the first fault is permanent?
P=? [state=0 U state=2]

// What’s the probability that the system doesn’t fail in a 10 hour run?
P=? [G<=10.0 !"failed"]

// Is the probability of no permanent failure at least 0.9
// (in a 10 hour run)?
"init" => P>0.9 [G<=10.0 (state!=2)]

// If we run for 10 hours, what’s the expected amount of functional time
R{"functional"} =? [C<=10.0]

// What’s the expected number of failures
R{"num_failures"} =? [C<=10.0]

// What’s the expected time to the first failure
R{"total_time"} =? [F "failed"]

Figure 3. Example PRISM Formulas for the Model in Figure 1

7

Property Result

P=? [F state=1] 0.90909
P=? [F state=2] 1.00000

P=? [state=0 U state=1] 0.90909
P=? [state=0 U state=2] 0.09091
P=? [G<=10.0 !"failed"] 0.99989

"init" => P>0.9 [G<=10.0 (state!=2)] true

R{"functional"} =? [C<=10.0] 9.99994
R{"num_failures"} =? [C<=10.0] 1.098 × 10−4

R{"total_time"} =? [F "failed"] 90909.1

Parameters: lambda1 = 10−5, lambda2 = 10−6, lambda3 = 10

Table 1. Model Checking Results for the Properties in Figure 3

Finally, Figure 3 shows how PRISM can express quantitative properties using reward structures. For

example, formula R{"functional"} =? [C<= 10.0] asks for the expected cumulated value of

the reward function functional over the first 10 time units of a run. More examples of queries and

formulas, and the exact semantics of the PRISM logical operators, are given in the PRISM manual [25].

2.3 The PRISM Tools

To answer the previous queries or check formulas, PRISM can be used either as a command-line tool or

via a graphical user interface. For example, one can check the properties listed in Figure 3 by using the

following command.

prism simple-fault-model.sm simple-continuous.pctl
-const ’lambda1=1e-5,lambda2=1e-6,lambda3=10’

This invokes the prism model checker on the model defined in file simple-fault-model.sm, for

the set of properties stored in file simple-continuous.pctl, and with specific values assigned to the

model parameters lambda1, lambda2, and lambda3.

For each property it evaluates, the tool prints statistics and results, as follows

Model checking: P=? [F state=1]
Model constants: lambda1=0.00001, lambda2=0.000001, lambda3=10
...
Starting iterations...

Jacobi: 2 iterations in 0.00 seconds (average 0.000000, setup 0.00)

Time for model checking: 0.0020 seconds.

Result (probability): 0.9090909090909091

This shows the probability of experiencing a transient failure for the Markov model of Figure 1. Table 1

summarizes the prism results for the properties of Figure 3.

PRISM also provides a graphical user interface (cf. Figure 4). This tool can be used for editing models,

and specifying and verifying properties. More information on this tool and the prism command-line tool

can be found in the PRISM manual [25].

8

Figure 4. PRISM Graphical User Interface

9

2.4 Other Features of PRISM

In the example so far, we have considered only a PRISM model that consists of a single module. It is much

more common to build PRISM systems by composing several modules. PRISM provides several module-

combination operators, but the default parallel composition appears to be the most common: the modules

perform transitions independently of each other, except that transitions having the same labels must be

synchronized. This is a standard form of asynchronous product of labeled transition systems. The PRISM

semantics document [26] explains how the transition probabilities are combined in such products.

Another useful feature is the ability to define identical modules by renaming. This allows one to define

a module B as a copy of another module A, while optionally changing the names of variables, parameters,

or transition labels.

In addition to building systems by combining modules, PRISM allows systems to include global state

variables that can be read and written by all the modules. Some restrictions on the use of such variables

ensure that only one module writes to a global variable at a time.

3 Probabilistic Analysis of SPIDER Using PRISM

We present applications of PRISM to the analysis of the SPIDER fault-tolerant distributed system. The

standard reliability-estimation method for such a system starts with identifying a set of assumptions about

the number and type of faulty components the system is designed to tolerate. Then, overall system reliability

can be established in two steps: prove that the system actually remains functional under the given fault

assumptions and estimate the probability that these assumptions hold.

We first describe how this technique can be supported by the PRISM tool, and then we investigate the

application of PRISM to other analysis of SPIDER, including protocol properties.

3.1 SPIDER

SPIDER [22,33] is a distributed computer architecture that provides a communication service for integrated

modular avionics. The system relies on hardware replication, Byzantine-fault-tolerant protocols, and diag-

nosis and reconfiguration to achieve very high reliability. The core of SPIDER is a Reliable Optical Bus

(ROBUS) whose architecture is shown in Figure 5. ROBUS consists of N bus interface units (BIUs) and

M redundancy management units (RMUs). Each BIU is connected to each RMU via a bidirectional com-

munication link. Each BIU is also connected to a single processing element (PE). The goal of ROBUS is to

provide a highly reliable communication medium to the PEs.

More precisely, ROBUS implements a fault-tolerant clock synchronization algorithm to ensure that all

the fault-free BIUs and RMUs are synchronized. This enables the PEs to access the bus by following

the time-division multiple access (TDMA) strategy. All components in the system agree and enforce a

system-wide communication schedule that prevents bus collisions. The redundant RMUs and BIUs provide

a fault-tolerant consistent broadcast service by means of a Byzantine fault-tolerant voting algorithm. In

addition, BIUs and RMUs implement an online diagnosis protocol to detect and exclude faulty components.

Other important protocols used by ROBUS include a fault-tolerant startup and a reintegration protocol that

enables nodes that are subject to transient failures to rejoin the system. The ROBUS protocols are described

in detail in [33] and [11]. Formal modeling and verification of these protocols are presented in a series of

publications, including [21, 23, 24].

10

1 2 M

1 2 N

1 2 N

PEs

RMUs

BIUs

Figure 5. ROBUS Architecture

3.2 Maximal Fault Assumption

ROBUS provides correct service to the PEs under a specific set of assumptions about the number and severity

of faulty components in the system. Following the hybrid fault model introduced in [32] (see also [23]), we

assume that a BIU or RMU can be in one of the following four states:

• Good: A node is good if it is free of faults.

• Benign: A node is benign if it sends only messages that are manifestly wrong. This means that the

recipients of such messages can accurately recognize that the message is incorrect. Since SPIDER

components can detect that a message is missing, benign nodes includes fail-silent nodes.

• Symmetric: A node is symmetric if it sends the same possibly incorrect message to all recipients, and

the recipients may not detect that the message is incorrect.

• Asymmetric: A node is asymmetric if it may send different, possibly incorrect, messages to each

recipient. As previously, the recipients may not recognize that the message is incorrect.

More refined fault classifications are possible (e.g., [1]) but we follow this taxonomy since it is used in the

majority of the publications on SPIDER.

Based on this taxonomy, we can partition the BIUs and the RMUs into four sets. Let GB, BB, SB,

and AB denote the sets of good, benign, symmetric, and asymmetric BIUs, respectively. Similarly, let GR,

BR, SR, and AR denote the sets of good, benign, symmetric, and asymmetric RMUs. Then, the SPIDER

protocols provide correct services to the PEs provided the following constraints are satisfied [21]:

1. |GB| > |AB| + |SB|
2. |GR| > |AR| + |SR|
3. |AR| = 0 or |AB| = 0

11

Less formally, SPIDER can tolerate asymmetric components as long as they are all BIUs or all RMUs,

and the system remains functional as long as there are enough good BIUs and RMUs to outvote the faulty

components.

The three conditions above are SPIDER’s maximal fault assumption. They describe the maximal number

and types of faults that SPIDER has been proven to tolerate.

3.3 Reliability Models in PRISM

Our first reliability model of SPIDER follows the system architecture. It is given in the appendix (A.1). The

particular instance of SPIDER used in this study consists of three BIUs and three RMUs (i.e., N = M = 3).

We then developed a more general model in which the numbers N and M are parameters. This second model

is also given in the appendix (A.2).

3.3.1 Baseline Model

Our baseline model is a continuous-time Markov chain that closely follows the SPIDER architecture. This

model includes three BIUs and three RMUs, each of them represented as a separate PRISM module. The

PRISM specification of BIU1 is described in Figure 6. The modeling follows the fault classification pre-

sented previously. It also distinguishes between permanent and transient faults.

The state of a BIU is encoded as two variables: A variable specifies whether the BIU is good, benign,

symmetric, or asymmetric, and a Boolean variable records whether the current fault is permanent or tran-

sient. These two variables are named biu1 state and biu1 permanent in Figure 6. As indicated in

the figure, the possible error states are represented by integers between 0 and 3.

To model fault occurrences, we use two sets of parameters:

• Transition rates: Two parameters define the fault-arrival rates for transient and permanent faults.

They are called trans lambda and perm lambda, respectively. A third parameter is the rate of

recovery from transient faults (called repair lambda). All rates are assumed to be measured in

number of faults per hour.

• Probabilities: Three parameters define the probability that a fault is benign, symmetric, or asymmet-
ric. The first two probabilities are given by parameters benign ratio and symmetric ratio
in PRISM, with the third probability defined as

const double asymmetric_ratio = (1 - benign_ratio - symmetric_ratio);

Obviously, the actual values of benign ratio and symmetric ratio must be between 0 and

1, and their sum must also be in the interval [0, 1]. PRISM cannot enforce these constraints, since it

does not know the parameters’ interpretation.1

We have assumed that these probabilities are independent of whether the fault is transient or perma-

nent, but it is easy to adjust the model to a different hypothesis.

The PRISM module then specifies in a straightforward fashion the transitions from fault free to one of the

possible error states. For example, a benign, transient fault occurs with a rate equal to trans lambda

* benign ratio. If a fault is transient, then the BIU returns to the good state with a rate equal to

repair lambda.

1PRISM does not currently support assertions on system parameters, so there is no easy way to encode these constraints in

PRISM.

12

// Error states of each component
const int good = 0;
const int benign = 1;
const int symmetric = 2;
const int asymmetric = 3;

// Parameters: fault arrival rates for each component
const double perm_lambda; // permanent faults (e.g., 10ˆ-6)
const double trans_lambda; // transient faults (e.g., 10ˆ-5)
const double repair_lambda; // recovery from transient faults (e.g., 10)

// Fractions of benign/symmetric/asymmetric faults
const double benign_ratio; // 0.5
const double symmetric_ratio; // 0.3
const double asymmetric_ratio = (1 - benign_ratio - symmetric_ratio);

// Fault arrival rates for the BIUs
const double biu_perm_lambda = perm_lambda;
const double biu_trans_lambda = trans_lambda;
const double biu_repair_lambda = repair_lambda;

// Fractions
const double biu_benign = benign_ratio;
const double biu_symmetric = symmetric_ratio;
const double biu_asymmetric = asymmetric_ratio;

// Error model for BIU1
module biu1

biu1_state: [0..3] init good;
biu1_permanent: bool init false;

[] biu1_state = good ->
(biu_perm_lambda * biu_benign): (biu1_state’=benign) &

(biu1_permanent’=true)
+ (biu_perm_lambda * biu_symmetric): (biu1_state’=symmetric) &

(biu1_permanent’=true)
+ (biu_perm_lambda * biu_asymmetric): (biu1_state’=asymmetric) &

(biu1_permanent’=true)

+ (biu_trans_lambda * biu_benign): (biu1_state’=benign) &
(biu1_permanent’=false)

+ (biu_trans_lambda * biu_symmetric): (biu1_state’=symmetric) &
(biu1_permanent’=false)

+ (biu_trans_lambda * biu_asymmetric): (biu1_state’=asymmetric) &
(biu1_permanent’=false);

// recovery from transient faults
[] (!biu1_permanent & biu1_state != good) ->

biu_repair_lambda: (biu1_state’=good) & (biu1_permanent’=false);

endmodule

Figure 6. Baseline PRISM Model: A BIU

13

The other components of ROBUS—that is, the other BIUs and the RMUs—are modeled in the exact

same way as BIU1. Their PRISM specification is identical to module biu1 of Figure 6, with state variables

and parameters renamed appropriately. The details are shown in the appendix (A.1).

3.3.2 Properties

The remainder of the PRISM model introduces various abbreviations and definitions to describe SPIDER’s
maximal fault assumption. The model includes three BIUs, so part (1) of the fault assumption states that
either at least two of them are good, or that one of them is good and the other two are benign. It is straight-
forward to express these two conditions in PRISM:

formula two_good_bius =
(biu1_state=good & biu2_state=good)

| (biu1_state=good & biu3_state=good)
| (biu2_state=good & biu3_state=good);

formula one_good_two_benign_bius =
(biu1_state=good & biu2_state=benign & biu3_state=benign)

| (biu1_state=benign & biu2_state=good & biu3_state=benign)
| (biu1_state=benign & biu2_state=benign & biu3_state=good);

Clauses (2) and (3) of the fault assumptions are specified in a similar way, and the set of states that satisfy
the maximal fault assumption is defined by

label "functional" =
(two_good_bius | one_good_two_benign_bius)

& (two_good_rmus | one_good_two_benign_rmus)
& (no_asymmetric_bius | no_asymmetric_rmus);

Then, the properties we examined include

P1: probability that the system is always functional for a given mission time T . For example, for T = 10
hours, this is written

P=? [G<=10 "functional"]

This PRISM query asks for the probability that the maximal fault assumption is satisfied at all times

in the interval [0, T].

P2: The probability of system failure for a mission time of 1 hour is less than a bound p0. For example, if
p0 is 10−9, this is written

"all_good" => P<=1e-9 [F<=1 !"functional"]

In this formula, label "all good" denotes the set of system states where all components are good.

P3: The probability of system failure within one hour after a component fails symmetric is less than a
bound p1. For example, with p1 = 10−6,

"one_fault"=>P<=1e-6 [F<=1 !"functional"]

This last property allows us to investigate the reliability of a 3×3 ROBUS instance after the symmetric

failure of a single BIU or RMU.2

The complete list of properties that we evaluated with PRISM is given in the appendix (A.1).

2The PRISM model described here does not include the diagnosis and reconfiguration features of ROBUS, which are intended

to help survive such a component failure. However, the PRISM model can be extended to take diagnosis into account, as done

in [22] or [19].

14

Property Parameter Result Run time

P1 T = 5 0.99999999814 0.41 s

P1 T = 10 0.99999999359 0.59 s

P1 T = 100 0.99999945515 4.15 s

P2 p0 = 10−8 true 0.28 s

P2 p0 = 10−9 true 0.29 s

P2 p0 = 10−10 false 0.29 s

P3 p1 = 10−3 true 0.29 s

P3 p1 = 10−4 true 0.29 s

P3 p1 = 10−5 false 0.28 s

P3 p1 = 10−6 false 0.28 s

P3 p1 = 10−7 false 0.31 s

Table 2. Example Analysis Results (3 BIUs, 3 RMUs)

3.3.3 Analysis Results

Table 2 shows the results and the runtime of the PRISM model checker on different instances of properties

P1 to P3. This experiment was run on a 64bit Intel Core 2 computer, with 4 GB RAM, and running Linux 2.6

(Ubuntu 8.04). All the analysis was done using PRISM’s default settings. Memory consumption was not

very large in this example, so we do not include memory usage data in the table. We used the following

model parameters:

• Rates: trans lambda = 10−5, perm lambda = 10−5, repair lambda = 10

• Probabilities: benign ratio = 0.5, symmetric ratio = 0.3

As can be seen from the table, the model checker is fast in this example. The results are as one would expect.

There is enough redundancy in this ROBUS instance to achieve very high reliability, of the order of 10−9

system failures per hour. Reliability decreases significantly if one RMU or BIU suffers a (nondiagnosed)

symmetric fault.

It is easy to extend the PRISM model to larger versions of ROBUS by adding more copies of the BIU

and RMU modules. Tables 3 and 4 show experimental results for a 4 × 3 instance (4 BIUs and 3 RMUs),

and for a 4 × 4 instance. The rate and probability parameters were set as in the previous experiment.

On these examples, one observes a significant increase in the model checker’s runtime. This is caused by

the well-known state-explosion problem, as the number of states in the PRISM model (and the Markov

chain) grows exponentially with the number of system modules. PRISM employs data structures based on

decision diagrams [14] and sparse matrix representations, to attempt to store the Markov chain compactly,

but scalability to systems with a large number of modules remains an issue.

The model checker also uses iterative methods to compute transient probability distributions, and one

observes that the number of iterations required increases with the number of modules. An increase in the

number of iterations also explains why evaluating property P1 for T = 100 takes much longer than for

T = 10 or T = 5.

15

Property Parameter Result Run time

P1 T = 5 0.99999999838 8.99 s

P1 T = 10 0.99999999443 14.56 s

P1 T = 100 0.99999952577 98.90 s

P2 p0 = 10−8 true 5.318 s

P2 p0 = 10−9 true 5.314 s

P2 p0 = 10−10 false 5.298 s

P3 p1 = 10−3 true 5.315 s

P3 p1 = 10−4 true 5.32 s

P3 p1 = 10−5 false 5.317 s

P3 p1 = 10−6 false 5.34 s

P3 p1 = 10−7 false 5.318 s

Table 3. Experiment: 4 BIUs and 3 RMUs

Property Parameter Result Run time

P1 T = 5 0.99999999861 59.09 s

P1 T = 10 0.99999999520 103.03 s

P1 T = 100 0.99999959193 732.9148 s

P2 p0 = 10−8 true 33.057 s

P2 p0 = 10−9 true 33.052 s

P2 p0 = 10−10 false 33.037 s

P3 p1 = 10−3 true 33.042 s

P3 p1 = 10−4 true 33.074 s

P3 p1 = 10−5 false 33.045 s

P3 p1 = 10−6 false 33.048 s

P3 p1 = 10−7 false 33.077 s

Table 4. Experiment: 4 BIUs and 4 RMUs

16

module spider_bius
good_bius: [0..N] init N;
benign_transient_bius: [0..N] init 0;
symmetric_transient_bius: [0..N] init 0;
asymmetric_transient_bius: [0..N] init 0;
benign_permanent_bius: [0..N] init 0;
symmetric_permanent_bius: [0..N] init 0;
asymmetric_permanent_bius: [0..N] init 0;

[] good_bius>0 &
benign_transient_bius<N & benign_permanent_bius<N &
symmetric_transient_bius<N & symmetric_permanent_bius<N &
asymmetric_transient_bius<N & asymmetric_permanent_bius<N

->
(biu_trans_lambda * good_bius * biu_benign) :

(good_bius’=good_bius-1) &
(benign_transient_bius’= benign_transient_bius+1)

+ (biu_trans_lambda * good_bius * biu_symmetric) :
(good_bius’=good_bius-1) &
(symmetric_transient_bius’= symmetric_transient_bius+1)

...

+ (biu_perm_lambda * good_bius * biu_asymmetric) :
(good_bius’=good_bius-1) &
(asymmetric_permanent_bius’=asymmetric_permanent_bius+1);

[] (benign_transient_bius>0 & good_bius<N) ->
(biu_repair_lambda * benign_transient_bius) :

(good_bius’=good_bius+1) &
(benign_transient_bius’=benign_transient_bius-1);

...
endmodule

Figure 7. Revised Model for N BIUs

3.3.4 Revised Model

Rather than representing each component of the system as a separate PRISM module, a more traditional

approach is to count the number of BIUs and RMUs in each fault class (cf. [5] for example). This modeling

method takes advantage of the symmetries present in SPIDER to reduce the number of states in the Markov

chain and increase scalability. We describe how such a model can be constructed and analyzed with PRISM.

As previously, the PRISM system is parameterized by fault rates and by the probabilities of each type of

fault. In addition, this new model is parameterized by N and M—that is, the number of BIUs and RMUs,

respectively. The system consists of two similar modules; one describes the set of BIUs and the other models

the RMU faults. The BIU model is sketched in Figure 7.

This module has seven state variables with values in the interval [0, N]. Variable good bius is the

number of good BIUs, benign transient bius counts the number of BIUs that have suffered a benign,

transient fault, and so forth. Then, a fault can occur as long as the number of good BIUs is non-zero, and the

effect of a fault is to decrement good bius and increment one of the other counters. The rate for a fault

17

type is the product of the fault arrival rate, the probability of the fault type, and the number of good BIUs.

For example, the rate of asymmetric, permanent faults is given by

biu_perm_lambda * good_bius * biu_asymmetric

as shown in Figure 7. The PRISM model then includes one probabilistic transition to model the occurrence

of faults. For technical reasons, the guard of this transition is the conjunction

good_bius>0 &
benign_transient_bius<N & benign_permanent_bius<N &
symmetric_transient_bius<N & symmetric_permanent_bius<N &
asymmetric_transient_bius<N & asymmetric_permanent_bius<N

Intuitively, the constraint good bius>0 should be sufficient: faults can occur as long as there are non-

faulty BIUs. But PRISM requires additional constraints such as benign transient bius<N for type

checking. Without this constraint, it is not possible to increment benign transient bius since this

variable’s value must be in the interval [0, N]. Adding such constraints does not change the underlying

Markov chain, as all states of the chain satisfy the following invariant

good_bius + benign_transient_bius + benign_permanent_bius +
symmetric_transient_bius + symmetric_permanent_bius +
asymmetric_transient_bius + asymmetric_permanent_bius = N.

Recovery from transient faults is modeled in a similar fashion, as shown in Figure 7.

The fault model for the set of RMUs is identical to the BIU model (cf. the appendix [A.2]), and the

maximal fault assumption is specified as shown in Figure 8.

We analyzed the same properties as previously using this revised model. The exact PRISM formulas

used in this study are listed in the appendix (A.2). Since the model is now parameterized by N and M , we

can ask PRISM to check these properties for different instances of ROBUS, by giving ranges of values for

N and M (see [25] for details).

Table 5 shows the runtimes and results of PRISM verification of property P1 for different ROBUS

instances, where N varies from 3 to 15 and M from 3 to 5, and for different values of the mission time T .

In this experiment, the rates and fault probability parameters were set as in the previous section:

• Rates: trans lambda = 10−5, perm lambda = 10−5, repair lambda = 10

• Probabilities: benign ratio = 0.5, symmetric ratio = 0.3

As expected, this revised model is much more scalable than the previous model and can be used to analyze

much larger instances of SPIDER. One can also observe that for the chosen fault rates, this model predicts

that maximal reliability is achieved with about five RMUs and BIUs. With more components, the system

reliability decreases slightly. This can be explained by the fact that SPIDER cannot tolerate Byzantine

failures in both RMUs and BIUs, and with more system components, the probability that a least one RMU

and one BIU are asymmetric increases.3

3.4 Protocol Models in PRISM

A tool such as PRISM has been applied to the verification of randomized leader-election algorithms and

other distributed protocols. Here, we describe an attempt to model one of SPIDER’s protocols and analyze

it with PRISM.

3This phenomenon may be more pronounced in this model than in real SPIDER implementations, since component diagnosis

and reconfiguration are not modeled.

18

formula symmetric_bius =
symmetric_transient_bius+symmetric_permanent_bius;

formula asymmetric_bius =
asymmetric_transient_bius+asymmetric_permanent_bius;

formula bad_bius = symmetric_bius + asymmetric_bius;

formula symmetric_rmus =
symmetric_transient_rmus+symmetric_permanent_rmus;

formula asymmetric_rmus =
asymmetric_transient_rmus+asymmetric_permanent_rmus;

formula bad_rmus = symmetric_rmus + asymmetric_rmus;

//
// Maximal fault assumption:
// - number of good BIUs > number of bad BIUs
// - number of good RMUs > number of bad RMUs
// - no asymmetric BIU or no asymmetric RMU
//
label "functional" =

(good_bius > bad_bius) & (good_rmus > bad_rmus)
& (asymmetric_bius = 0 | asymmetric_rmus = 0);

Figure 8. Maximal Fault Assumption in PRISM

19

T = 5 T = 10 T = 100
M N Result Time Result Time Result Time

3 3 0.999999994380 0.023 s 0.999999985032 0.021 s 0.999999360021 0.047 s

3 4 0.999999995108 0.051 s 0.999999986972 0.052 s 0.999999442968 0.135 s

3 5 0.999999996704 0.107 s 0.999999991222 0.114 s 0.999999624638 0.334 s

3 6 0.999999996565 0.205 s 0.999999990853 0.223 s 0.999999608883 0.731 s

3 7 0.999999996427 0.396 s 0.999999990484 0.444 s 0.999999593130 1.543 s

3 8 0.999999996288 0.886 s 0.999999990114 1.006 s 0.999999577341 3.561 s

3 9 0.999999996149 1.956 s 0.999999989745 2.281 s 0.999999561553 9.076 s

3 10 0.999999996010 3.075 s 0.999999989375 3.693 s 0.999999545767 15.215 s

3 11 0.999999995872 4.539 s 0.999999989005 5.521 s 0.999999529981 23.911 s

3 12 0.999999995733 6.858 s 0.999999988636 8.422 s 0.999999514197 37.450 s

3 13 0.999999995594 10.021 s 0.999999988266 12.343 s 0.999999498414 57.240 s

3 14 0.999999995455 14.194 s 0.999999987897 17.565 s 0.999999482633 83.052 s

3 15 0.999999995316 19.949 s 0.999999987527 24.896 s 0.999999466852 121.887 s

4 3 0.999999995108 0.067 s 0.999999986973 0.055 s 0.999999442968 0.137 s

4 4 0.999999995791 0.142 s 0.999999988790 0.129 s 0.999999520647 0.377 s

4 5 0.999999997340 0.290 s 0.999999992916 0.290 s 0.999999697038 0.942 s

4 6 0.999999997155 0.620 s 0.999999992424 0.677 s 0.999999676016 2.266 s

4 7 0.999999996970 1.418 s 0.999999991931 1.582 s 0.999999654995 5.688 s

4 8 0.999999996785 2.826 s 0.999999991438 3.259 s 0.999999633939 12.819 s

4 9 0.999999996600 4.510 s 0.999999990946 5.430 s 0.999999612886 21.825 s

4 10 0.999999996415 7.003 s 0.999999990453 8.329 s 0.999999591833 36.572 s

4 11 0.999999996230 10.813 s 0.999999989960 13.298 s 0.999999570783 58.089 s

4 12 0.999999996045 16.394 s 0.999999989467 20.056 s 0.999999549734 92.057 s

4 13 0.999999995860 24.324 s 0.999999988975 29.980 s 0.999999528687 140.312 s

4 14 0.999999995675 34.667 s 0.999999988482 43.105 s 0.999999507641 206.737 s

4 15 0.999999995490 48.679 s 0.999999987989 61.488 s 0.999999486597 302.655 s

5 3 0.999999996704 0.112 s 0.999999991222 0.120 s 0.999999624638 0.347 s

5 4 0.999999997340 0.267 s 0.999999992916 0.289 s 0.999999697038 0.930 s

5 5 0.999999998843 0.713 s 0.999999996919 0.805 s 0.999999868138 2.680 s

5 6 0.999999998612 1.947 s 0.999999996304 2.179 s 0.999999841838 8.154 s

5 7 0.999999998381 3.298 s 0.999999995688 3.860 s 0.999999815539 15.385 s

5 8 0.999999998150 5.613 s 0.999999995072 6.633 s 0.999999789207 27.815 s

5 9 0.999999997918 9.382 s 0.999999994456 11.140 s 0.999999762876 47.858 s

5 10 0.999999997687 14.847 s 0.999999993840 17.993 s 0.999999736547 79.659 s

5 11 0.999999997456 23.451 s 0.999999993224 28.736 s 0.999999710220 131.086 s

5 12 0.999999997225 35.189 s 0.999999992608 43.689 s 0.999999683896 206.533 s

5 13 0.999999996993 51.936 s 0.999999991992 65.307 s 0.999999657573 313.023 s

5 14 0.999999996762 74.964 s 0.999999991376 94.072 s 0.999999631253 463.504 s

5 15 0.999999996531 106.132 s 0.999999990760 134.989 s 0.999999604934 677.744 s

Table 5. Example Analysis Results for the Revised SPIDER Model

20

3.4.1 SPIDER’s Broadcast Service

SPIDER provides a broadcast service to the PEs by means of a two-round interactive consistency protocol

described in [33]. If SPIDER’s maximal fault assumption is satisfied, then this protocol is guaranteed to

achieve consistent broadcast:

• If at the end of the protocol, a fault-free PE receives message m, then all fault-free PEs receive the

exact same m.

• If the BIU and originating PE are fault free, then m is identical to the message broadcast.

We consider a simplified version of this protocol that does not take diagnosis and group membership

into account. This simplified protocol works as follows. When a PE is scheduled to transmit data, it sends a

message m to its BIU. This BIU checks that the message is well-formed (e.g., whether the CRC is valid). If

the message m is valid, the BIU forwards it to all the RMUs; otherwise, the BIU sends the special message

PE ERROR. Every RMU checks the validity of the message it receives. If the message is valid, the RMU

resends it to all BIUs. Otherwise, the RMU sends SOURCE ERROR to all BIUs. At this point, each BIU

receives M messages m1, . . . , mM and it performs a vote on this set of messages. If more than half of these

messages are identical, then the majority copy is selected by the BIU and is relayed to the attached PE.

Otherwise, the BIU forwards a special message NO MAJORITY to the PE.

Our goal is now to examine the probability that this protocol achieves consistent broadcast, under some

assumptions about the rates and types of failure of BIUs and RMUs.

3.4.2 PRISM Model

We have developed a PRISM model of the interactive consistency protocol, for a ROBUS instance with three

BIUs and three RMUs. The PRISM model is actually even more simplified: it describes a single execution

of the protocol, where PE1 is the broadcast source. The full model is given in the appendix (B).

Unlike all the PRISM examples described previously, this model is a discrete-time Markov decision

process. It mixes probabilistic state transitions that model failure probabilities, and nondeterministic transi-

tions that model the behavior of faulty components. A nonfaulty component executes the protocol properly,

but may become either benign, symmetric, or asymmetric faulty with some probability. Once a component

is symmetric or asymmetric, it can exhibit a range of incorrect behaviors. We model the set of possible

behaviors as a nondeterministic choice between alternatives, to let the PRISM model checker discover the

worst-case scenarios.

The modeling follows a few general principles. Each communication link is modeled as a one-place

buffer, represented as a global system variable in PRISM. Protocol components are modeled as state-

transition systems (i.e., PRISM modules). The transmission of a message is modeled by writing the message

into the global variable representing the appropriate channel. Conversely, the reception of a message is mod-

eled by reading the channel variable. To properly coordinate the read and write operations, the transmitting

and receiving modules synchronize using transition labels.

The constant and global variables shown in Figure 9 model the protocol messages and the communica-

tion channels. Messages are represented by integers in the interval [0, 7]. There are three types of messages:

normal data, special control messages, and the special value bad message that represents any manifestly

incorrect message. This special value is intended to model missing messages, messages with a wrong CRC,

or any other other type of error that can be recognized by the recipient.

Because PRISM requires all types to be finite, we represent the possible valid data by the three constants

data1, data2, and data3. At least three good values are necessary to model fault scenarios such as the

21

const int data1 = 0;
const int data2 = 1;
const int data3 = 2;
const int pe_error = 4;
const int source_error = 5;
const int no_majority = 6;
const int bad_message = 7;

// Global variables = communication links
global pe1_biu1: [0..7] init 0;
global pe2_biu2: [0..7] init 0;
global pe3_biu3: [0..7] init 0;

global biu1_rmu1: [0..7] init 0;
global biu1_rmu2: [0..7] init 0;
global biu1_rmu3: [0..7] init 0;
global biu2_rmu1: [0..7] init 0;
global biu2_rmu2: [0..7] init 0;
global biu2_rmu3: [0..7] init 0;
global biu3_rmu1: [0..7] init 0;
global biu3_rmu2: [0..7] init 0;
global biu3_rmu3: [0..7] init 0;

// Source data that PE1 will broadcast
const int source = data3;

Figure 9. Messages and Communication Channels

transmission of distinct messages by an asymmetric BIU to the three RMUs, without any of these messages

being recognized as incorrect by the recipient.4

The global variables such as pe1 biu1 represent bidirectional channels between two components (e.g.,

between PE1 and BIU1).

The protocol processes are modeled as illustrated in Figure 10. The figure shows a fragment of the PE1

model, which consists of two modules: pe1 error is the fault model for PE1, and pe1 models protocol

execution.

Module pe1 error specifies that PE1 may suffer a single fault at an arbitrary time during protocol

execution. The time of occurrence is nondeterministic, but the fault type is randomly selected according to

the probability distribution defined by the parameters pe benign and pe symmetric.

Module pe1 has a main control variable pe1 ctrl that specifies successive steps of the protocol. For

example, from state 0, the process initiates a broadcast by transmitting the source message to BIU1 and

then transitions to the next step, where pe1 ctrl=1. The actual message transmitted depends on PE1’s

current fault status. If PE1 is fault free, then the source data is sent; if PE1 is benign, then the bad message
is sent (BIU1 will recognize this message as incorrect); otherwise, PE1 has suffered a symmetric fault and it

may send arbitrary data to BIU1. We model the latter case, as a nondeterministic choice between three state

transitions, as shown in Figure 10.

In all cases, the broadcast action sets pe1 ctrl to 1, and the only possible transition of process pe1

4One could argue that more good data values would allow us to model more general faulty behaviors, such as, an asymmetric

RMU sending three distinct messages that are also different from the message it receives. Unfortunately, we were not able to add

an extra data4 value, as this causes PRISM to run out of memory.

22

module pe1_error
pe1_faulted: bool init false;
pe1_error: [0..2] init fault_free;

[] (!pe1_faulted) ->
pe_benign: (pe1_error’=benign_faulty) & (pe1_faulted’=true)

+ pe_symmetric: (pe1_error’=symmetric_faulty) & (pe1_faulted’=true)
+ pe_nofault: (pe1_error’=fault_free) & (pe1_faulted’=true);

endmodule

module pe1
pe1_ctrl: [0..4] init 0;
pe1_out: [0..7] init 0;

// broadcast
[] (pe1_ctrl=0) & (pe1_error=fault_free) -> (pe1_ctrl’=1) &

(pe1_biu1’ = source);
...

[] (pe1_ctrl=0) & (pe1_error=symmetric_faulty) -> (pe1_ctrl’=1) &
(pe1_biu1’=data1);

[] (pe1_ctrl=0) & (pe1_error=symmetric_faulty) -> (pe1_ctrl’=1) &
(pe1_biu1’=data2);

[] (pe1_ctrl=0) & (pe1_error=symmetric_faulty) -> (pe1_ctrl’=1) &
(pe1_biu1’=data3);

[pe1_broadcast] (pe1_ctrl=1) -> (pe1_ctrl’=2);
...

endmodule

Figure 10. Broadcast Protocol: Process PE1

23

// BIU1
module biu1

biu1_ctrl: [0..6] init 0;

// wait for broadcast from pe1
[pe1_broadcast] (biu1_ctrl=0) -> (biu1_ctrl’=1);

// Fault-free case: consume the message and forward it to all rmus
[] (biu1_ctrl=1) & (biu1_error=fault_free) & (pe1_biu1!=bad_message) ->

(biu1_ctrl’=2) & (biu1_rmu1’=pe1_biu1) &
(biu1_rmu2’=pe1_biu1) & (biu1_rmu3’=pe1_biu1);

[] (biu1_ctrl=1) & (biu1_error=fault_free) & (pe1_biu1=bad_message) ->
(biu1_ctrl’=2) & (biu1_rmu1’=pe_error) &
(biu1_rmu2’=pe_error) & (biu1_rmu3’=pe_error);

Figure 11. Broadcast Protocol: Process BIU1

after the broadcast increments pe1 ctrl. This transition has the label pe1 broadcast, and its role

is to synchronize pe1 and biu1, so that the latter can consume the message just transmitted. Figure 11

shows the corresponding specification fragment for module biu1. Initially, biu1 is in state 0. It stays in

that state until it can execute the transition labeled with pe1 broadcast, which increments biu1 ctrl
so that the next transitions from biu1 are enabled. Since all transitions that share the same label must

execute simultaneously, both pe1 and biu1 perform this transition: that is, just after pe1 has transmitted

a message, and just before biu1 reads that message. A similar mechanism, based on synchronized labeled

transitions is used throughout the PRISM specification to model all communication.

3.4.3 Protocol Properties

The full protocol model is specified in the appendix (B). For scalability reasons, we have included fault

models for only two components—pe1 and biu1. All the other PEs and BIUs, and all the RMUs are

assumed to be fault free. Several sets of states are identified and used in property specifications:

label "done" = pe1_ctrl=4 & pe2_ctrl=2 & pe3_ctrl=2;

label "all_good" = (pe1_out=source) & (pe2_out=source)
& (pe3_out=source);

label "unanimous" = (pe1_out=pe2_out) & (pe1_out=pe3_out);

label "nonfaulty_agree" = (pe2_out=pe3_out);

label "nonfaulty_valid" = (pe2_out=source) & (pe3_out=source);

The set of states called done indicates protocol termination. The other sets of states capture two variants

of the consistency and validity properties that the protocol is intended to achieve. For example, all good
means that all PEs receive the source message, whereas unanimous is the weaker property that all PEs

receive the same thing.

We examined the protocol properties listed in the appendix (B). First, we expect that the protocol always

terminates, so the following PRISM property should be true:

"init"=>P>=1 [F "done"]

24

Then, we investigate the probabilities of agreement and validity. Since the PRISM model is a Markov

decision process, the actual probabilities depend on how the nondeterministic choices are resolved. For

example, we can consider two variants of the same property:

Pmin =? [G("done" => "all_good")]

Pmax =? [G("done" => "all_good")]

In the first line, we ask for the minimal probability that the protocol ends in a state where all PEs receive the

broadcast as transmitted. This is the probability of success under the worst possible fault scenario allowed

in our model. Conversely, the second line asks for the maximal probability of success (which should be 1).

3.4.4 Analysis Results

Table 6 shows the results and runtime we observed when running the PRISM model checker on the above

example. It also shows model-construction time and the amount of memory consumed by the PRISM

process. This data was measured on a 64bit Linux 2.6 system, with an Intel Core 2 CPU, and 4 GB of RAM.

The results show that it is possible to analyze these example properties in about 8 minutes. However, the

performance numbers are disappointing given the size of the example model. Most of the verification time

is spent by PRISM in building an internal representation of the MDP. The internal representation is based on

multi-terminal binary decision diagrams (MTBDDs), which appear to be a very poor representation for this

model. In particular, the amount of memory used to store the MTBDDs and other internal data structures is

enormous; it requires more than 3 GB. This seems to be a serious limitation of the MTBDD representation,

as the statistics displayed by PRISM indicate that the actual size of the underlying MDP is not that large: it

contains 15446 states and 50357 transitions.5

It is well-known that the variable ordering used by an MTBDD can have a major impact on the size

of this MTBDD. But there is no obvious way to control which ordering PRISM will use. All our efforts

at reorganizing the specifications by changing module and declaration order did not have an impact on

the analysis time or memory usage. There has been some work on heuristics for obtaining good variable

ordering for MTBDDs in PRISM [20], but these heuristics were not implemented in the PRISM version that

we used.

4 Conclusion

We have described several applications of the PRISM probabilistic model checker to fault-tolerant dis-

tributed systems.

We first investigated the use of PRISM in reliability modeling, as an alternative to other tools such

as SURE or Möbius. In this study, we considered two different approaches to modeling the reliability of

the SPIDER system. Both approaches relied on continuous-time Markov chains. The main result of this

experiment is that PRISM is perfectly adequate as a reliability analysis tool. The PRISM specification

language is expressive enough and enables easy modeling. The model checker performance is also good,

and PRISM can be used to analyze relatively large and detailed models. There is still a limitation to this

approach, since PRISM cannot encode or analyze non-Markovian models, unlike other tools that support

semi-Markovian models or more general classes of stochastic systems.

In a second experiment, we examined application of PRISM to the analysis of a more detailed SPIDER

protocol, encoded as a state machine. The PRISM model developed for this purpose was a Markov decision

5We have observed very high memory usage (gigabytes) on much smaller MDPs with fewer than a hundred states and a few

hundred transitions.

25

Property Result Runtime

"init"=>P>=1 [F "done"] true 1.801 s

P>=1 [G ("done"=>"all_good")] false 3.041 s

P>=1 [G ("done"=>"unanimous")] false 1.950 s

Pmin =? [G("done" => "unanimous")] 0.7 1.620 s

Pmax =? [G("done" => "unanimous")] 1.0 0.727 s

Pmin =? [G ("done" => "nonfaulty_agree")] 1.0 0.021 s

Pmax =? [G ("done" => "nonfaulty_agree")] 1.0 0.060 s

Pmin =? [G ("done" => "nonfaulty_valid")] 0.56 2.195 s

Pmax =? [G ("done" => "nonfaulty_valid")] 1.0 0.473 s

Model Construction: 450.023 s

Virtual Memory Used: 3676 Mb

Resident Memory Used: 2358 Mb

Table 6. Broadcast Protocol: Analysis Results

process, in which fault occurrence and the behavior of faulty components are modeled via nondeterministic

choices, while the type of fault is determined by a probability distribution given a priori. This experiment

showed that it is possible to model and analyze a fault-tolerant protocol using PRISM, but it also showed

some limits of the PRISM tool. Although the protocol modeled was quite small, PRISM required a very

large amount of memory to build and store its internal data structures for this Markov decision process.

Scalability to more complex protocols or systems is then questionable.

References

1. M. H. Azadmanesh and R. M. Kieckhafer. Exploiting Omissive Faults in Synchronous Approximate

Agreement. IEEE Transactions on Computers, 48(10):1031–1042, October 2000.

2. Adnan Aziz, Kumud Sanwak, Vigyan Singhal, and Robert Brayton. Verifying Continuous Time Markov

Chains. In Computer-Aided Verification (CAV’96), volume 1102 of Lecture Notes in Computer Science,

pages 269–276. Springer-Verlag, 1996.

3. Andrea Bondavalli, Manuela Nelli, Luca Simoncini, and Giorgio Mongardi. Hierarchical Modeling

of Complex Control Systems: Dependability Analysis of a Railway Interlocking. Computer Systems
Science and Engineering, 16(4):249–261, July 2001.

4. Ricky W. Butler. The SURE Approach to Reliability Analysis. IEEE Transactions on Reliability,

41(2):210–218, June 1992.

5. Ricky W. Butler and Sally C. Johnson. Techniques for Modeling the Reliability of Fault-Tolerant Sys-

tems with the Markov State-Space Approach. Reference Publication NASA RP-1348, NASA Langley

Research Center, September 1995.

6. C. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. Logical and Stochastic Modeling with

SMART. Performance Evaluation, 63(6):578–608, June 2006.

26

7. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State Concurrent

Systems Using Temporal Logic Specifications. ACM Transactions on Programming Languages and
Systems, 8(2):244–263, April 1986.

8. Tod Courtney, Shravan Gaonkar, Ken Keefe, Eric W. D. Rozier, and William H. Snaders. Möbius 2.3:

An Extensible Tool for Dependability, Security, and Performance Evaluation of Large and Complex

System Models. In International Conference on Dependable Systems and Networks (DSN’09), pages

353–358, June 2009.

9. R. M. Geist and M. Smotherman. Utlrahigh Reliability Estimates through Simulation. In Proceedings
of the Annual Reliability and Maintainability Symposium, pages 350–355, January 1989.

10. Robert Geist and Kishor Trivedi. Reliability Estimation of Fault-Tolerant Systems: Tools and Tech-

niques. IEEE Computer, 23(7):52–61, July 1990.

11. Alfons Geser and Paul S. Miner. A New On-Line Diagnosis Protocol for the SPIDER Family of Byzan-

tine Fault Tolerant Architectures. Technical Memorandum NASA/TM-2004-212432, NASA Langley

Research Center, December 2004.

12. Hans Hansson and Bengt Jonsson. A Logic for Reasoning about Time and Reliability. Formal Aspects
of Computing, 6(5):512–535, September 1994.

13. Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus Siegle. A Tool for Model

Checking Markov Chains. International Journal on Software Tools for Technology Transfer, 4(2):153–

172, February 2003.

14. Holger Hermanns, Marta Kwiatkowska, Gethin Norman, David Parker, and Markus Siegle. On the

Use of MTBDDs for Performability Analysis and Verification of Stochastic Systems. Journal of Logic
and Algebraic Progamming: Special Issue on Probabilistic Techniques for the Design and Analysis of
Systems, 56(1–2):23–67, June 2003.

15. Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: A Tool for Automatic

Verification of Probabilistic Systems. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’06), volume 3920 of Lecture Notes in Computer Science, pages 441–444. Springer-

Verlag, 2006.

16. Joost-Pieter Kaoten, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns, and David N. Jansen.

The Ins and Outs of the Probabilistic Model Checker MRMC. In Quantitative Evaluation of Systems
(QEST), pages 167–176. IEEE Computer Society, 2009.

17. Marta Kwiatkowska, Gethin Norman, and David Parker. Advances and Challenges of Probabilistic

Model Checking. In Proc. 48th Annual Allerton Conference on Communication, Control, and Comput-
ing. IEEE Press, 2010.

18. Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of Probabilistic

Real-Time Systems. In Computer-Aided Verification (CAV’11), 2011. To appear. Preprint available at

http://www.prismmodelchecker.org/publications.php.

19. Elizabeth Latronico, Paul Miner, and Philip Koopman. Quantifying the Reliability of Proven SPIDER

Group Membership Service Guarantees. In International Conference on Dependable Systems and Net-
works (DSN’04), pages 275–284, 2004.

27

20. Vivien Maisonneuve. Automated Heuristic-Based Generation of MTBDD Variable Orderings for

PRISM Models. Internship report, École Normale Supérieure de Cachan, 2009. Available at http:
//www.prismmodelchecker.org/.

21. Paul Miner, Alfons Geser, Lee Pike, and Jeffrey Maddalon. A Unified Fault-Tolerance Protocol. In For-
mal Techniques, Modeling and Analysis of Timed and Fault-Tolerant Systems, volume 3253 of Lecture
Notes in Computer Science, pages 167–182. Springer-Verlag, 2004.

22. Paul S. Miner, Mahyar Malekpour, and Wilfredo Torres. A Conceptual Design for a Reliable Optical

Bus (ROBUS). In Digital Avionics Systems Conference (DASC), volume 2, pages 13D3–1–13D3–11,

October 2002.

23. Lee Pike, Jeffrey Maddalon, Paul Miner, and Alfons Geser. Abstractions for Fault-Tolerant Distributed

System Verification. In Theorem Proving in Higher Order Logics (TPHOLs 2004), volume 3223 of

Lecture Notes in Computer Science, pages 257–270. Springer-Verlag, 2004.

24. Lee Pike, Paul Miner, and Wilfredo Torres-Pomales. Model-Checking Failed Conjectures in Theorem

Proving: A Case Study. Technical Memorandum NASA/TM-2004-213278, NASA Langley Research

Center, October 224.

25. PRISM Manual. Version 3.3.1, 2009. Available at http://www.prismmodelchecker.org/
manual/.

26. The PRISM Language: Semantics. Available at http://www.prismmodelchecker.org/doc/
semantics.pdf.

27. Robin A. Sahner and Jishor S. Trivedi. Reliability Modeling using SHARPE. IEEE Transactions on
Reliability, 36(2):186–193, June 1987.

28. William H. Sanders. Integrated Frameworks for Multi-Level and Multi-Formalism Modeling. In Pro-
ceedings of the 8th International Workshop on Petri Nets and Performance Models (PNPM’99), pages

2–9, September 1999.

29. Koushik Sen, Mahesh Viswanathan, and Gul Agha. VESTA: A Statistical Model Checker and Ana-

lyzer for Probabilistic Systems. In Second International Conference on the Quantitative Evaluation of
Systems (QEST’05), pages 251–252, September 2005.

30. Perwez Shahabuddin. Importance Sampling for the Simulation of Highly Reliable Markovian Systems.

Management Science, 40(3):333–352, March 1994.

31. Frederick T. Sheldon and Kshamta Jerath. Assessing the Effect of Failure Severity, Coincident Failures

and Usage Profiles on the Reliability of Embedded Control Systems. In ACM Symposium on Applied
Computing, pages 14–17, March 2004.

32. Philip Thambidurai and You-Keun Park. Interactive Consistency with Multiple Failure Modes. In

Seventh Symposium on Reliable Distributed Systems, pages 93–100, 1988.

33. Wilfredo Torres-Pomales, Mahyar R. Malekpour, and Paul S. Miner. ROBUS–2: A Fault-Tolerant

Broadcast Communication System. Technical Memorandum NASA/TM-2005-213540, NASA Langley

Research Center, March 2005.

34. Hakøan L. S. Younes. Ymer: A Statistical Model Checker. In Computer-Aided Verification (CAV’2005),
volume 3576 of Lecture Notes in Computer Scinece, pages 429–433. Springer-Verlag, 2005.

28

Appendix A

Reliability Models of SPIDER

A.1 Baseline Model

//
// Fault/reliability model for a SPIDER instance
// modeled as a continuous-time Markov chain
//
// This model includes 3 BIUs and 3 RMUs
//
// All components are assumed to have similar fault models parameterized by:
// perm_lambda: rate of permanent faults
// trans_lambda: rate of transient faults
// repair_lambda: recovery rate from transient faults
//
// Three classes of faults are considered: benign, symmetric, and asymmetric.
//
// Two parameters define the probability that a fault is benign or symmetric:
// benign_ratio: probability that a fault is benign
// symmetric_ratio: probability that a fault is symmetric
// asymmetric_ratio: probability that a fault is asymmetric
// = (1 - benign_ratio - symmetric_ratio)
//

ctmc

// Error states of each component
const int good = 0;
const int benign = 1;
const int symmetric = 2;
const int asymmetric = 3;

// Parameters: arrival rates for each component
const double perm_lambda; // permanent faults (e.g., 10ˆ-6)
const double trans_lambda; // transient faults (e.g., 10ˆ-5)
const double repair_lambda; // recovery from transient faults (e.g., 10)

// Fractions of benign/symmetric/asymmetric faults
// all must be between 0 and 1 and they must add to 1
const double benign_ratio; // 0.5
const double symmetric_ratio; // 0.3
const double asymmetric_ratio = (1 - benign_ratio - symmetric_ratio);

// Fault arrival rates for the RMUs(faults/hour)
const double rmu_perm_lambda = perm_lambda;
const double rmu_trans_lambda = trans_lambda;
const double rmu_repair_lambda = repair_lambda;

29

// Fraction of fault types:
const double rmu_benign = benign_ratio;
const double rmu_symmetric = symmetric_ratio;
const double rmu_asymmetric = asymmetric_ratio;

// Fault arrival rates for the BIUs
const double biu_perm_lambda = perm_lambda;
const double biu_trans_lambda = trans_lambda;
const double biu_repair_lambda = repair_lambda;

// Fractions
const double biu_benign = benign_ratio;
const double biu_symmetric = symmetric_ratio;
const double biu_asymmetric = asymmetric_ratio;

// Error model for BIU1
module biu1

biu1_state: [0..3] init good;
biu1_permanent: bool init false;

[] biu1_state = good ->
(biu_perm_lambda * biu_benign): (biu1_state’=benign) &

(biu1_permanent’=true)
+ (biu_perm_lambda * biu_symmetric): (biu1_state’=symmetric) &

(biu1_permanent’=true)
+ (biu_perm_lambda * biu_asymmetric): (biu1_state’=asymmetric) &

(biu1_permanent’=true)

+ (biu_trans_lambda * biu_benign): (biu1_state’=benign) &
(biu1_permanent’=false)

+ (biu_trans_lambda * biu_symmetric): (biu1_state’=symmetric) &
(biu1_permanent’=false)

+ (biu_trans_lambda * biu_asymmetric): (biu1_state’=asymmetric) &
(biu1_permanent’=false);

// recovery from transient faults
[] (!biu1_permanent & biu1_state != good) ->

biu_repair_lambda: (biu1_state’=good) & (biu1_permanent’=false);

endmodule

// Same model for BIU2 and BIU3, modulo renaming
module biu2 = biu1[biu1_state=biu2_state,

biu1_permanent=biu2_permanent]
endmodule

module biu3 = biu1[biu1_state=biu3_state,
biu1_permanent=biu3_permanent]

endmodule

30

// Error model for RMU1: same as for BIU1 modulo renaming
module rmu1 = biu1[biu1_state=rmu1_state,

biu1_permanent=rmu1_permanent,
biu_perm_lambda=rmu_perm_lambda,
biu_trans_lambda=rmu_trans_lambda,
biu_benign=rmu_benign,
biu_symmetric=rmu_symmetric,
biu_asymmetric=rmu_asymmetric]

endmodule

// Same model for RMU2 and RMU3 too
module rmu2 = rmu1[rmu1_state=rmu2_state,

rmu1_permanent=rmu2_permanent]
endmodule

module rmu3 = rmu1[rmu1_state=rmu3_state,
rmu1_permanent=rmu3_permanent]

endmodule

//
// Maximum fault assumption for SPIDER
// - at least two good BIUs or one good BIU and two benign BIUs
// - at least two good RMUs or one good RMU and two benign RMUs
// - at most one asymmetric BIU or RMU
//
formula two_good_bius =

(biu1_state=good & biu2_state=good) | (biu1_state=good & biu3_state=good)
| (biu2_state=good & biu3_state=good);

formula one_good_two_benign_bius =
(biu1_state=good & biu2_state=benign & biu3_state=benign)

| (biu1_state=benign & biu2_state=good & biu3_state=benign)
| (biu1_state=benign & biu2_state=benign & biu3_state=good);

formula no_asymmetric_bius =
biu1_state!=asymmetric & biu2_state!=asymmetric & biu3_state!=asymmetric;

formula two_good_rmus =
(rmu1_state=good & rmu2_state=good) | (rmu1_state=good & rmu3_state=good)

| (rmu2_state=good & rmu3_state=good);

formula one_good_two_benign_rmus =
(rmu1_state=good & rmu2_state=benign & rmu3_state=benign)

| (rmu1_state=benign & rmu2_state=good & rmu3_state=benign)
| (rmu1_state=benign & rmu2_state=benign & rmu3_state=good);

formula no_asymmetric_rmus =
rmu1_state!=asymmetric & rmu2_state!=asymmetric & rmu3_state!=asymmetric;

label "functional" =
(two_good_bius | one_good_two_benign_bius)

31

& (two_good_rmus | one_good_two_benign_rmus)
& (no_asymmetric_bius | no_asymmetric_rmus);

//
// Other system states used in properties
//

formula all_bius_good =
(biu1_state=good) & (biu2_state=good) & (biu3_state=good);

formula all_rmus_good =
(rmu1_state=good) & (rmu2_state=good) & (rmu3_state=good);

// No faulty component
label "all_good" = all_bius_good & all_rmus_good;

//
// To test reliability after a symmetric fault
//
formula one_symmetric_biu =

(biu1_state=symmetric & biu2_state=good & biu3_state=good)
| (biu1_state=good & biu2_state=symmetric & biu3_state=good)
| (biu1_state=good & biu2_state=good & biu3_state=symmetric);

formula one_symmetric_rmu =
(rmu1_state=symmetric & rmu2_state=good & rmu3_state=good)

| (rmu1_state=good & rmu2_state=symmetric & rmu3_state=good)
| (rmu1_state=good & rmu2_state=good & rmu3_state=symmetric);

label "one_fault" =
(one_symmetric_biu & all_rmus_good) | (one_symmetric_rmu & all_bius_good);

rewards "total_time"
true: 1;

endrewards

Properties for the previous model

// Probability that no component fails over a 10hour run
P=? [G<=10 "all_good"]

// Expected time to the first component failure
R{"total_time"}=? [F !"all_good"]

// Probability that the system does not fail over a 5hour run
P=? [G<=5 "functional"]

32

// Probability that the system does not fail over a 10hours run
P=? [G<=10 "functional"]

// Probability that the system does not fail over a 100hour run
P=? [G<=100 "functional"]

// The probability of system failure over a 1hour run is less than 10ˆ-8
"all_good"=>P<=1e-8 [F<=1 !"functional"]

// The probability of system failure over a 1hour run is less than 10ˆ-9
"all_good"=>P<=1e-9 [F<=1 !"functional"]

// The probability of system failure over a 1hour run is less than 10ˆ-10
"all_good"=>P<=1e-10 [F<=1 !"functional"]

// Probability of system failure after a one hour run is less than 1e-3,
// even if we start with a single benign component failure.
"one_fault"=>P<=1e-3 [F<=1 !"functional"]

// Probability of system failure after a one hour run is less than 1e-4,
// even if we start with a single benign component failure.
"one_fault"=>P<=1e-4 [F<=1 !"functional"]

// Probability of system failure after a one hour run is less than 1e-5,
// even if we start with a single benign component failure.
"one_fault"=>P<=1e-5 [F<=1 !"functional"]

// Probability of system failure after a one hour run is less than 1e-6,
// even if we start with a single benign component failure.
"one_fault"=>P<=1e-6 [F<=1 !"functional"]

// Probability of system failure after a one hour run is less than 1e-7,
// even if we start with a symmetric component.
"one_fault"=>P<=1e-7 [F<=1 !"functional"]

// Probability of system failure after a one hour run is less than 1e-8,
// even if we start with a single benign component failure.
"one_fault"=>P<=1e-8 [F<=1 !"functional"]

33

A.2 Revised Model

//
// Fault/reliability model for SPIDER
// modeled as a continuous-time Markov chain
//
// This model uses counters for the number of good and faulty RMUs and BIUs
// Two parameters are used: N = number of BIUs, M = number of RMUs
//
// All components are assumed to have similar fault models parameterized by:
// perm_lambda: rate of permanent faults
// trans_lambda: rate of transient faults
// repair_lambda: recovery rate from transient faults
//
// Three classes of faults are considered: benign, symmetric, and asymmetric.
//
// Two parameters define the probability that a fault is benign or symmetric:
// benign_ratio: probability that a fault is benign
// symmetric_ratio: probability that a fault is symmetric
// asymmetric_ratio: probability that a fault is asymmetric =
// (1 - benign_ratio - symmetric_ratio)
//

ctmc

// Parameters: arrival rates for each component
const double perm_lambda; // permanent faults (e.g., 10ˆ-6)
const double trans_lambda; // transient faults (e.g., 10ˆ-5)
const double repair_lambda; // recovery from transient faults (e.g., 10)

// Fractions of benign/symmetric/asymmetric faults
// all must be between 0 and 1 and they must add to 1
const double benign_ratio; // e.g., 0.5
const double symmetric_ratio; // e.g., 0.3
const double asymmetric_ratio = (1 - benign_ratio - symmetric_ratio);

// Fault arrival rates for the RMUs(faults/hour)
const double rmu_perm_lambda = perm_lambda;
const double rmu_trans_lambda = trans_lambda;
const double rmu_repair_lambda = repair_lambda;

// Fraction of fault types:
const double rmu_benign = benign_ratio;
const double rmu_symmetric = symmetric_ratio;
const double rmu_asymmetric = asymmetric_ratio;

// Fault arrival rates for the BIUs
const double biu_perm_lambda = perm_lambda;
const double biu_trans_lambda = trans_lambda;
const double biu_repair_lambda = repair_lambda;

// Fractions
const double biu_benign = benign_ratio;

34

const double biu_symmetric = symmetric_ratio;
const double biu_asymmetric = asymmetric_ratio;

// Total number of BIUs and RMUs
const int N; // number of BIUs
const int M; // number of RMUs

module spider_bius
good_bius: [0..N] init N;
benign_transient_bius: [0..N] init 0;
symmetric_transient_bius: [0..N] init 0;
asymmetric_transient_bius: [0..N] init 0;
benign_permanent_bius: [0..N] init 0;
symmetric_permanent_bius: [0..N] init 0;
asymmetric_permanent_bius: [0..N] init 0;

// Fault of one good BIU
// NOTE: prism complains if we give only ’good_bius>0’ as precondition
[] good_bius>0 &

benign_transient_bius<N & benign_permanent_bius<N &
symmetric_transient_bius<N & symmetric_permanent_bius<N &
asymmetric_transient_bius<N & asymmetric_permanent_bius<N

->
(biu_trans_lambda * good_bius * biu_benign) :

(good_bius’=good_bius-1) &
(benign_transient_bius’= benign_transient_bius+1)

+ (biu_trans_lambda * good_bius * biu_symmetric) :
(good_bius’=good_bius-1) &
(symmetric_transient_bius’= symmetric_transient_bius+1)

+ (biu_trans_lambda * good_bius * biu_asymmetric) :
(good_bius’=good_bius-1) &
(asymmetric_transient_bius’=asymmetric_transient_bius+1)

+ (biu_perm_lambda * good_bius * biu_benign) :
(good_bius’=good_bius-1) &
(benign_permanent_bius’= benign_permanent_bius+1)

+ (biu_perm_lambda * good_bius * biu_symmetric) :
(good_bius’=good_bius-1) &
(symmetric_permanent_bius’= symmetric_permanent_bius+1)

+ (biu_perm_lambda * good_bius * biu_asymmetric) :
(good_bius’=good_bius-1) &
(asymmetric_permanent_bius’=asymmetric_permanent_bius+1);

// recovery from transient faults
[] (benign_transient_bius>0 & good_bius<N) ->

(biu_repair_lambda * benign_transient_bius) :
(good_bius’=good_bius+1) &
(benign_transient_bius’=benign_transient_bius-1);

[] (symmetric_transient_bius>0 & good_bius<N) ->
(biu_repair_lambda * symmetric_transient_bius) :

(good_bius’=good_bius+1) &
(symmetric_transient_bius’=symmetric_transient_bius-1);

35

[] (asymmetric_transient_bius>0 & good_bius<N) ->
(biu_repair_lambda * asymmetric_transient_bius) :

(good_bius’=good_bius+1) &
(asymmetric_transient_bius’=asymmetric_transient_bius-1);

endmodule

// RMU error model: same thing modulo renaming
module spider_rmus =

spider_bius[N=M,
good_bius=good_rmus,
benign_transient_bius=benign_transient_rmus,
symmetric_transient_bius=symmetric_transient_rmus,
asymmetric_transient_bius=asymmetric_transient_rmus,
benign_permanent_bius=benign_permanent_rmus,
symmetric_permanent_bius=symmetric_permanent_rmus,
asymmetric_permanent_bius=asymmetric_permanent_rmus,
biu_trans_lambda=rmu_trans_lambda,
biu_perm_lambda=rmu_perm_lambda,
biu_repair_lambda=rmu_repair_lambda,
biu_benign=rmu_benign,
biu_symmetric=rmu_symmetric,
biu_asymmetric=rmu_asymmetric]

endmodule

// Abbreviations
formula symmetric_bius =

symmetric_transient_bius+symmetric_permanent_bius;

formula asymmetric_bius =
asymmetric_transient_bius+asymmetric_permanent_bius;

formula bad_bius = symmetric_bius + asymmetric_bius;

formula symmetric_rmus =
symmetric_transient_rmus+symmetric_permanent_rmus;

formula asymmetric_rmus =
asymmetric_transient_rmus+asymmetric_permanent_rmus;

formula bad_rmus = symmetric_rmus + asymmetric_rmus;

//
// Maximal fault assumption:
// - number of good BIUs > number of bad BIUs
// - number of good RMUs > number of bad RMUs
// - no asymmetric BIUs or no asymmetric RMUs
//
label "functional" =

36

(good_bius > bad_bius) & (good_rmus > bad_rmus)
& (asymmetric_bius=0 | asymmetric_rmus=0);

// No component faulty
label "all_good" = (good_bius=N) & (good_rmus=M);

// At most one symmetric faulty component
label "one_fault" =

(good_bius>=N-1) & (good_rmus>=M-1)
& (asymmetric_bius=0) & (asymmetric_rmus=0)
& (((symmetric_bius=1) & (symmetric_rmus=0))

| ((symmetric_bius=0) & (symmetric_rmus=1)));

// For expected times
rewards "total_time"

true: 1;
endrewards

Properties for the previous model

// Probability that no component fails over a 10hour run
P=? [G<=10 "all_good"]

// Expected time to the first component failure
R{"total_time"}=? [F !"all_good"]

// Probability that the system does not fail over a 5hour run
P=? [G<=5 "functional"]

// Probability that the system does not fail over a 10hours run
P=? [G<=10 "functional"]

// Probability that the system does not fail over a 100hour run
P=? [G<=100 "functional"]

// The probability of system failure over a 1hour run is less than 10ˆ-9
"all_good"=>P<=1e-9 [F<=1 !"functional"]

// Probability of system failure after a one hour run is less than 1e-9,
// even if we start from a start with a single benign component failure.
"one_fault"=>P<=1e-9 [F<=1 !"functional"]

// Probability of system failure after a one hour run is less than 1e-8,
// even if we start from a start with a single benign component failure.
"one_fault"=>P<=1e-8 [F<=1 !"functional"]

// Probability of system failure after a one hour run is less than 1e-8,
// even if we start from a start with a single benign component failure.

37

"one_fault"=>P<=1e-7 [F<=1 !"functional"]

// Probability of system failure after a one hour run is less than 1e-8,
// even if we start from a start with a single benign component failure.
"one_fault"=>P<=1e-3 [F<=1 !"functional"]

// Probability of system failure after a one hour run is less than 1e-8,
// even if we start from a start with a single benign component failure.
"one_fault"=>P<=1e-4 [F<=1 !"functional"]

// Probability of system failure after a one hour run is less than 1e-8,
// even if we start from a start with a single benign component failure.
"one_fault"=>P<=1e-5 [F<=1 !"functional"]

38

Appendix B

Model of SPIDER’s Broadcast Service

mdp

// Messages: encoded in the range [0 .. 7]
// data1 .. data3 are data messages
// pe_error, source_error, no_majority: special messages
// bad_message: manifest fault
const int data1 = 0;
const int data2 = 1;
const int data3 = 2;
const int pe_error = 4;
const int source_error = 5;
const int no_majority = 6;
const int bad_message = 7;

// Error states of each component
const int fault_free = 0;
const int benign_faulty = 1;
const int symmetric_faulty = 2;
const int asymmetric_faulty = 3;

// Transition probabilities for BIU error model
const double biu_benign = 0.1;
const double biu_symmetric = 0.1;
const double biu_asymmetric = 0.1;
formula biu_nofault = (1 - biu_benign - biu_symmetric - biu_asymmetric);

// Transition probabilities for PE error model
const double pe_benign = 0.1;
const double pe_symmetric = 0.1;
formula pe_nofault = (1 - pe_benign - pe_symmetric);

// Transition probabilities for RMU error model
const double rmu_benign = 0.1;
const double rmu_symmetric = 0.1;
const double rmu_asymmetric = 0.1;
formula rmu_nofault = (1 - rmu_benign - rmu_symmetric - rmu_asymmetric);

// Global variables = communication links
// each link is an integer variable
global pe1_biu1: [0..7] init 0;
global pe2_biu2: [0..7] init 0;
global pe3_biu3: [0..7] init 0;

global biu1_rmu1: [0..7] init 0;
global biu1_rmu2: [0..7] init 0;
global biu1_rmu3: [0..7] init 0;
global biu2_rmu1: [0..7] init 0;
global biu2_rmu2: [0..7] init 0;

39

global biu2_rmu3: [0..7] init 0;
global biu3_rmu1: [0..7] init 0;
global biu3_rmu2: [0..7] init 0;
global biu3_rmu3: [0..7] init 0;

// source data: what PE1 will broadcast
// it must be valid data
//
// NOTE: prism does not allow me to specify that source must
// be equal to data1, data2, or data3 here.
const int source = data3;

// Majority vote for BIU1 when it receives three messages
// in biu1_rmu1, biu1_rmu2, biu1_rmu3
formula vote1 =

(biu1_rmu1=biu1_rmu2) ? ((biu1_rmu1!=bad_message) ? biu1_rmu1 : biu1_rmu3)
: (biu1_rmu2=biu1_rmu3) ? ((biu1_rmu2!=bad_message) ? biu1_rmu2 : biu1_rmu1)
: no_majority;

// Same thing for BIU2
formula vote2 =

(biu2_rmu1=biu2_rmu2) ? ((biu2_rmu1!=bad_message) ? biu2_rmu1 : biu2_rmu3)
: (biu2_rmu2=biu2_rmu3) ? ((biu2_rmu2!=bad_message) ? biu2_rmu2 : biu2_rmu1)
: no_majority;

// ERROR MODEL FOR PE1
module pe1_error

pe1_faulted: bool init false;
pe1_error: [0..2] init fault_free;

[] (!pe1_faulted) ->
pe_benign: (pe1_error’=benign_faulty) & (pe1_faulted’=true)

+ pe_symmetric: (pe1_error’=symmetric_faulty) & (pe1_faulted’=true)
+ pe_nofault: (pe1_error’=fault_free) & (pe1_faulted’=true);

endmodule

// PE1
module pe1

pe1_ctrl: [0..4] init 0;
pe1_out: [0..7] init 0;

// broadcast
[] (pe1_ctrl=0) & (pe1_error=fault_free) -> (pe1_ctrl’=1) &

(pe1_biu1’ = source);
[] (pe1_ctrl=0) & (pe1_error=benign_faulty) -> (pe1_ctrl’=1) &

(pe1_biu1’=bad_message);
[] (pe1_ctrl=0) & (pe1_error=symmetric_faulty) -> (pe1_ctrl’=1) &

(pe1_biu1’=data1);
[] (pe1_ctrl=0) & (pe1_error=symmetric_faulty) -> (pe1_ctrl’=1) &

(pe1_biu1’=data2);
[] (pe1_ctrl=0) & (pe1_error=symmetric_faulty) -> (pe1_ctrl’=1) &

40

(pe1_biu1’=data3);

[pe1_broadcast] (pe1_ctrl=1) -> (pe1_ctrl’=2);

// wait for message from BIU1
[biu1_send] (pe1_ctrl=2) -> (pe1_ctrl’=3);

// consume the message: copy it into pe1_out
[] (pe1_ctrl=3) -> (pe1_ctrl’=4) & (pe1_out’ = pe1_biu1);

endmodule

// ERROR MODEL FOR BIU1
module biu1_error

biu1_faulted: bool init false;
biu1_error: [0..3] init fault_free;

[] (!biu1_faulted) ->
biu_benign : (biu1_error’ = benign_faulty) & (biu1_faulted’=true)

+ biu_symmetric : (biu1_error’ = symmetric_faulty) &
(biu1_faulted’=true)

+ biu_asymmetric: (biu1_error’ = asymmetric_faulty) &
(biu1_faulted’=true)

+ biu_nofault: (biu1_error’ = fault_free) & (biu1_faulted’=true);

endmodule

// BIU1
module biu1

biu1_ctrl: [0..6] init 0;

// wait for broadcast from pe1
[pe1_broadcast] (biu1_ctrl=0) -> (biu1_ctrl’=1);

// Fault-free case: consume the message and forward it to all rmus
[] (biu1_ctrl=1) & (biu1_error=fault_free) & (pe1_biu1!=bad_message) ->

(biu1_ctrl’=2) & (biu1_rmu1’=pe1_biu1) &
(biu1_rmu2’=pe1_biu1) & (biu1_rmu3’=pe1_biu1);

[] (biu1_ctrl=1) & (biu1_error=fault_free) & (pe1_biu1=bad_message) ->
(biu1_ctrl’=2) & (biu1_rmu1’=pe_error) &
(biu1_rmu2’=pe_error) & (biu1_rmu3’=pe_error);

// Benign fault: send manifest bad message to all rmus
[] (biu1_ctrl=1) & (biu1_error=benign_faulty) ->

(biu1_ctrl’=2) & (biu1_rmu1’=bad_message) &
(biu1_rmu2’=bad_message) & (biu1_rmu3’=bad_message);

// Symmetric fault: send the same arbitrary message to all rmus
[] (biu1_ctrl=1) & (biu1_error=symmetric_faulty) -> (biu1_ctrl’=2) &

(biu1_rmu1’=data1) & (biu1_rmu2’=data1) & (biu1_rmu3’=data1);
[] (biu1_ctrl=1) & (biu1_error=symmetric_faulty) -> (biu1_ctrl’=2) &

(biu1_rmu1’=data2) & (biu1_rmu2’=data2) & (biu1_rmu3’=data2);

41

[] (biu1_ctrl=1) & (biu1_error=symmetric_faulty) -> (biu1_ctrl’=2) &
(biu1_rmu1’=data3) & (biu1_rmu2’=data3) & (biu1_rmu3’=data3);

// Asymmetric fault: send different messages to the rmus
// TODO: add more combinations
[] (biu1_ctrl=1) & (biu1_error=asymmetric_faulty) -> (biu1_ctrl’=2) &

(biu1_rmu1’=data1) & (biu1_rmu2’=data2) & (biu1_rmu3’=data3);
[] (biu1_ctrl=1) & (biu1_error=asymmetric_faulty) -> (biu1_ctrl’=2) &

(biu1_rmu1’=data1) & (biu1_rmu2’=data2) & (biu1_rmu3’=data2);
[] (biu1_ctrl=1) & (biu1_error=asymmetric_faulty) -> (biu1_ctrl’=2) &

(biu1_rmu1’=data1) & (biu1_rmu2’=data1) & (biu1_rmu3’=data2);
[] (biu1_ctrl=1) & (biu1_error=asymmetric_faulty) ->

(biu1_ctrl’=2) & (biu1_rmu1’=bad_message) &
(biu1_rmu2’=data1) & (biu1_rmu3’=data3);

[] (biu1_ctrl=1) & (biu1_error=asymmetric_faulty) -> (biu1_ctrl’=2) &
(biu1_rmu1’=pe_error) & (biu1_rmu2’=data1) & (biu1_rmu3’=data2);

// Synchronization: allow RMUs to read the message
[biu1_broadcast] (biu1_ctrl=2) -> (biu1_ctrl’=3);

// wait for replay from all RMUs
[rmu_relay] (biu1_ctrl=3) -> (biu1_ctrl’=4);

// consume the three messages from the RMU and compute the
// majority
[] (biu1_ctrl=4) & (biu1_error=fault_free) ->

(biu1_ctrl’=5) & (pe1_biu1’=vote1);

[] (biu1_ctrl=4) & (biu1_error=benign_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=bad_message);

[] (biu1_ctrl=4) & (biu1_error=symmetric_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=data1);

[] (biu1_ctrl=4) & (biu1_error=symmetric_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=data2);

[] (biu1_ctrl=4) & (biu1_error=symmetric_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=data3);

[] (biu1_ctrl=4) & (biu1_error=symmetric_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=pe_error);

[] (biu1_ctrl=4) & (biu1_error=symmetric_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=source_error);

[] (biu1_ctrl=4) & (biu1_error=symmetric_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=no_majority);

[] (biu1_ctrl=4) & (biu1_error=asymmetric_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=data1);

[] (biu1_ctrl=4) & (biu1_error=asymmetric_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=data2);

[] (biu1_ctrl=4) & (biu1_error=asymmetric_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=data3);

[] (biu1_ctrl=4) & (biu1_error=asymmetric_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=pe_error);

[] (biu1_ctrl=4) & (biu1_error=asymmetric_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=source_error);

42

[] (biu1_ctrl=4) & (biu1_error=asymmetric_faulty) ->
(biu1_ctrl’=5) & (pe1_biu1’=no_majority);

[biu1_send] (biu1_ctrl=5) -> (biu1_ctrl’=6);
endmodule

// RMU1
module rmu1

rmu1_ctrl: [0..3] init 0;

// Wait for data from BIU1
[biu1_broadcast] (rmu1_ctrl=0) -> (rmu1_ctrl’=1);

// consume the message and forward it to all BIUs
[] (rmu1_ctrl=1) -> (rmu1_ctrl’=2) & (biu1_rmu1’=biu1_rmu1) &

(biu2_rmu1’=biu1_rmu1) & (biu3_rmu1’=biu1_rmu1);
[rmu_relay] (rmu1_ctrl=2) -> (rmu1_ctrl’=3);

// done
// [] (rmu1_ctrl=3) -> (rmu1_ctrl’=3);

endmodule

// RMU2 and RMU3 are like RMU1, modulo renaming
module rmu2 = rmu1[rmu1_ctrl=rmu2_ctrl,biu1_rmu1=biu1_rmu2,

biu2_rmu1=biu2_rmu2,biu3_rmu1=biu3_rmu2]
endmodule

module rmu3 = rmu1[rmu1_ctrl=rmu3_ctrl,biu1_rmu1=biu1_rmu3,
biu2_rmu1=biu2_rmu3,biu3_rmu1=biu3_rmu3]

endmodule

// BIU2
module biu2

biu2_ctrl:[0..3] init 0;

// Wait for data from RMUS
[rmu_relay] (biu2_ctrl=0) -> (biu2_ctrl’=1);

// consume the messages + vote
[] (biu2_ctrl=1) -> (biu2_ctrl’=2) & (pe2_biu2’=vote2);
[biu2_send] (biu2_ctrl=2) -> (biu2_ctrl’=3);

// done
// [] (biu2_ctrl=3) -> (biu2_ctrl’=3);

endmodule

// BIU3: same as BIU2 modulo renaming
module biu3 = biu2[biu2_ctrl=biu3_ctrl,biu2_send=biu3_send,

biu2_rmu1=biu3_rmu1,biu2_rmu2=biu3_rmu2,
biu2_rmu3=biu3_rmu3,pe2_biu2=pe3_biu3]

endmodule

43

// PE2
module pe2

pe2_ctrl: [0..2] init 0;
pe2_out: [0..7] init 0;

// wait for message from BIU2
[biu2_send] (pe2_ctrl=0) -> (pe2_ctrl’=1);

// consume the message
[] (pe2_ctrl=1) -> (pe2_ctrl’=2) & (pe2_out’ = pe2_biu2);

// done
// [] (pe2_ctrl=2) -> (pe2_ctrl’=2);

endmodule

// PE3: same as PE2 modulo renaming
module p3 = pe2[pe2_ctrl=pe3_ctrl,pe2_out=pe3_out,

biu2_send=biu3_send,pe2_biu2=pe3_biu3]
endmodule

label "done" = pe1_ctrl=4 & pe2_ctrl=2 & pe3_ctrl=2;

label "all_good" = (pe1_out=source) & (pe2_out=source) & (pe3_out=source);

label "unanimous" = (pe1_out=pe2_out) & (pe1_out=pe3_out);

label "nonfaulty_agree" = (pe2_out=pe3_out);

label "nonfaulty_valid" = (pe2_out=source) & (pe3_out=source);

Properties for this model
// The broadcast protocol terminates with probability 1.
"init"=>P>=1 [F "done"]

P>=1 [G ("done"=>"all_good")]

P>=1 [G ("done"=>"unanimous")]

Pmin =? [G("done" => "unanimous")]

Pmax =? [G("done" => "unanimous")]

Pmin =? [G ("done" => "nonfaulty_agree")]

Pmax =? [G ("done" => "nonfaulty_agree")]

Pmin =? [G ("done" => "nonfaulty_valid")]

Pmax =? [G ("done" => "nonfaulty_valid")]

44

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Contractor Report

 4. TITLE AND SUBTITLE
Probabilistic Analysis of Distributed Fault-Tolerant Systems

5a. CONTRACT NUMBER

NNL10AB32T

 6. AUTHOR(S)

Dutertre, Bruno

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
This report was prepared by SRI International under subcontract to Honeywell International, Inc., Minneapolis, MN, under
NASA contract NNL10AB32T.
Langley Technical Monitor Paul S. Miner

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

An approach is documented for analyzing probabilistic properties of fault-tolerant distributed systems using
the PRISM model checker.

15. SUBJECT TERMS
fault models, fault tolerance, markov models, probalistic model checking, reliability analysis

18. NUMBER
 OF
 PAGES

49
19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

534723.02.02.07.30

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/CR-2011-217090

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
05 - 201101-

