

Medical Updates to the International Space Station Probabilistic Risk Assessment Model Using the Integrated Medical Model

Presenters:

Doug Butler, Project Manager

Dr. Eric Kerstman, Clinical Lead

Presentation to the Multilateral Medical Operations Panel

NASA Johnson Space Center SLSD/SD/SD4/Wyle Houston, TX 4 May 2011

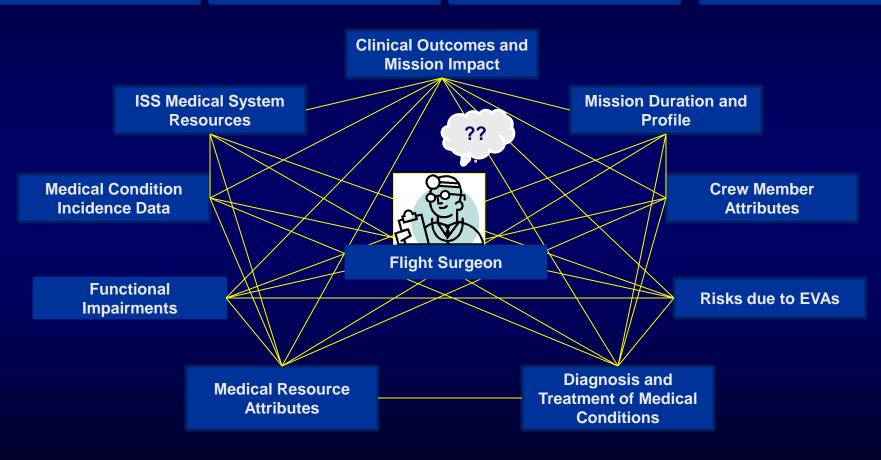
Purpose/Agenda

- Purpose: To inform the MMOP of the current IMM capability, and present the updated medical risk estimates approved for use by the Space Station Program.
- Select the appropriate box below:
 - Request for Technical Concurrence
 - Request for Partial Implementation
 - ☐ Request for Full/Final Implementation
 - Information Only/Management Direction
 - Response to an Action Item

This presentation was previously reviewed/dispositioned at:

Meeting	Date	Outcome/Direction
Space Medicine CCB	May 2010	Approved. Present to FACB
Flight Activities Control Board	June 2010	Present to NASA HQ/HMTA
Health & Medical Technical Authority	June 2010	Approved
Safety & Mission Assurance CCB	Dec 2010	Present to SSPCB
Space Station Control Board	Dec 2010	Approved. Present to MMOP

Life Before IMM



What is the likelihood of a medical evacuation?

What is the risk of Loss of Crew Life due to illness on ISS?

What medical devices should we have on ISS?

What should be in the Expedition Medical Kit?

Life Now with IMM

Mission Specific Inputs

Monte Carlo Simulations

Quantified Outputs

Informed Analysis

Crew Member Attributes

Crew Composition

Mission Duration and Profile

Integrated Medical Model

13,500+ data elements

ISS Medical System Resources

Diagnosis and Treatment of Medical Conditions

Medical Condition Incidence Data

Risks due to EVAs

IMM Relational Database

Type and Quantity of all medical events

Risk of EVAC

Risk of Loss of Crew

Medical Resources Used

Optimized medical system within vehicle constraints

Background

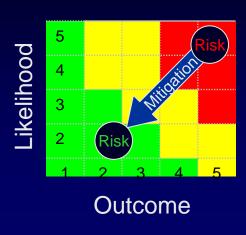
- IMM Approach
 - Represents specific (83) medical conditions (including nine space adaptation conditions)
 - Accounts for ISS-based medical capability
 - Bounds clinical outcome uncertainty via best-case, worst-case, and untreated-case scenarios
- IMM development started in June 2005, and funded by Human Research Program
- Transitioned from research to ops, Feb 2011
- Provides evidence-based optimization of in-flight medical system mass and volume

Release History

•	FY 2005	Project Kickoff
•	April 2008	Project Technical Review
•	Sept 2008	IMM v1.0 – Proof of Concept Complete
•	Oct 2008	Conceptual Model Review
•	Mar 2009	Software Transition from Crystal Ball to SAS 9.1
•	Sept 2009	IMM v2.0 – Beta version of relational database
•	Oct 2010	IMM v3.0 - Integrated with Database
•	Dec 2010	ISS Program Accepts Risk Forecasts

Transition to Operational Tool

Feb 2011


IMM Evidence Base

- Astronaut Health Database
- ISS Expeditions 1 thru 13 (2006)
- STS-01 thru STS-114 (2005)
- Apollo, Skylab, Mir (U.S. crew only)
- Analog, terrestrial data
- Review of crew medical charts
- Flight Surgeon Subject Matter Expertise
- Russian medical data not used

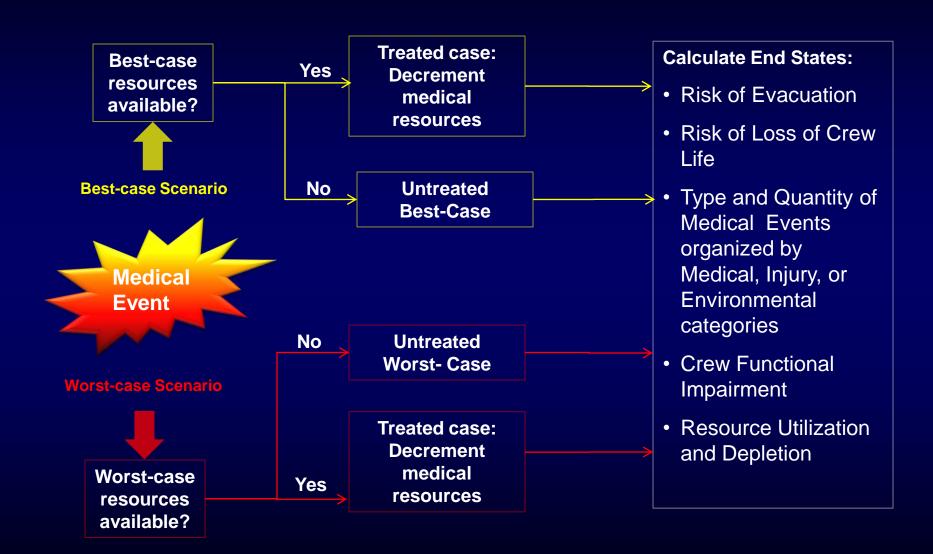
Comparison – 5x5 Risk Matrix vs. IMM

5x5 Matrix

- Qualitative
- Categorical
- Subjective
- Single Risk
- No Uncertainty
- No Confidence Interval
- Limited context

IMM

- Quantitative
- Probabilistic, Stochastic
- Evidence-based
- Integrated Risks
- Uncertainty
- Confidence Interval
- In context


- Medical Conditions & Incidence Data
- Crew Profile
- Mission Profile & Constraints
- Potential crew impairments and mission end states
- In-flight Medical Resources

- Type and quantity of all medical events
- Crew Impairment, Mission and Clinical End States
- Resources used
- Optimized medical system within vehicle constraints

Event Sequence Diagram

Status of IMM

- Past Uses of the IMM
 - ISS medical system re-design
 - IV Fluid "What if" Assessment
 - Storage Capacity Requirements of Vomitus/Diarrhea for Constellation
 - Constellation medical kit design support
 - ISS Emergency Return Vehicle Analysis
 - Near Earth Asteroid Mission Support (HEFT DRM4)
- Validation and Verification of clinical data
- Documentation of methods and innovations
- Migrating clinical evidence to IMM database
- Establishing web-based external review capability
- Enhancing database reporting capabilities

Verification & Validation (V&V) Status

- Established and implemented V&V Plan
- V&V Plan includes internal and external reviews
- Key IMM elements identified for V&V
- V&V Plan approved via the NASA STD 7009 process
- Established NASA STD 7009 Credibility and Compliance Matrixes for IMM

Verification & Validation (V&V) Status

IMM Element	Internal Review	External Review (NASA or non-NASA)	External Review (non-NASA)
IMM medical conditions list	✓	✓ a) panel b) individual SMEs	Pending
Internal Clinical V&V process	✓	√ (non-NASA)	
Clinical Inputs (incidence, health impairment, mitigation, consequences, etc.)	30%	Pending (Selected Medical Conditions)	Pending (Selected Medical Conditions)
Model programming	✓	Pending (non-NASA)	
Software and code documentation	✓	Pending (non-NASA)	
IMM database process	✓	√ (non-NASA)	
IMM output components	✓	✓	
IMM overall approach	✓	✓	✓
IMM output results	✓	✓ a) panel b) individual SMEs	

Methods

- Reference Mission (as defined by ISS PRA Group)
 - 6-person crew (1 female, 5 males)
 - 6-month mission
 - 3 EVAs total for mission
- Industry standard statistical software, SAS 9.1
- Monte Carlo simulations (100K trials)
- Fully-treated scenario using the ISS medical system

Key Assumptions and Limitations

- Accurate diagnosis of all medical events
- Treatments are effective
- 100% reliable medical equipment
- All medical events occur on day one of mission

IMM Definition of Medical Evacuation

- Evacuation is considered as the mission end state when the medical event has the potential to result in any of the following
 - Loss of crew life
 - Permanent impairment
 - Intractable pain or suffering
 - Inability to complete mission critical tasks
 - Persistent disturbance of behavior, thought or mood that may lead to harm to self or others (psychiatric emergency)

Results – EVAC and LOC

ISS Reference Mission - Fully Treated

Category	EVAC	EVAC (%)	95% CI
Medical Illness	1 in 32	3.14	2.97-3.32
Injury/Trauma	1 in 169	0.59	0.52-0.67
Environmental	1 in 135	0.74	0.65-0.81
All Conditions	1 in 23	4.43	4.25-4.61

Category	LOC	LOC (%)	95% CI
Medical Illness	1 in 270	0.37	0.31-0.43
Injury/Trauma	1 in 769	0.13	0.10-0.16
Environmental	1 in 172	0.58	0.49-0.65
All Conditions	1 in 94	1.06	0.97-1.16

Conversion of % EVAC to events/person-yr

- IMM forecasts a 4.43% probability of EVAC for a 6 crew/6 month ISS mission
 - 6 crew x 0.5 years (6 months) = 3 person-yrs
 - 0.0443 events/3 person-yrs = 0.015 events/person-yr
- IMM forecasts a 1.06% probability of LOC for a 6 crew/6 month ISS mission
 - 6 crew x 0.5 years (6 months) = 3 person-yrs
 - 0.0106 events/3 person-yrs = 0.0035 events/person-yr

Comparison of Risk of EVAC Rates

IMM forecasted *Risk of EVAC* rate (0.015) compares favorably with literature review EVAC rates (0.010 to 0.072)

Source	Low (events/person-yr)	Max (events/person-yr)
IMM (mean)	0.015	-
ISS PRA (mean)	0.001	-
ISS Independent Safety Task Force (February 2007)	0.028	0.042
Terrestrial General Population	0.060	-
Antarctic Population	0.036	-
U.S. Submarine Population	0.023	0.028
Russian Historical Space Flight Data	0.032	0.072
LSAH (Astronaut Health) Data	0.010	0.020
SSF Clinical Experts Seminar Proceedings (1990)	0.010	0.030

Validation - Risk of EVAC

IMM Simulation Data

Medical illness (71%)

- 1. Dental Abscess
- 2. Sepsis
- 3. Kidney Stones
- 4. Stroke
- 5. Atrial Fibrillation
- 6. Acute Chest Pain/Angina

Injury/Trauma (13%)

- 1. Hypovolemic Shock
- Wrist Fracture

Environmental (16%)

- 1. Smoke Inhalation
- 2. Toxic Exposure

Actual Russian Flight Data

Three EVACs

- 1. Urosepsis
- 2. Cardiac Arrhythmia
- 3. Smoke Inhalation

Three Close Call EVACs

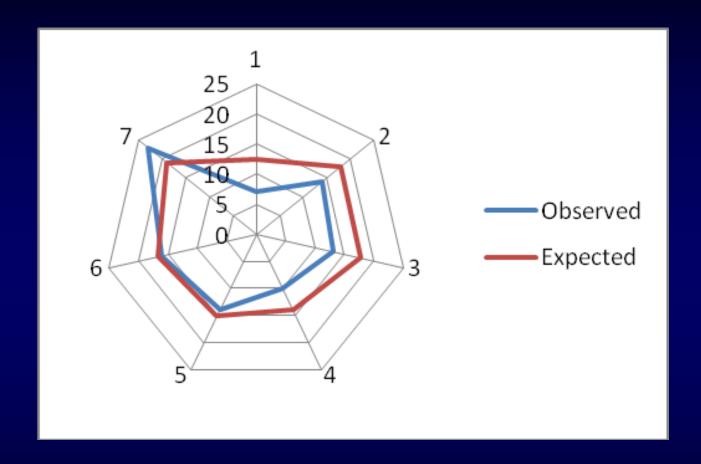
- 1. Kidney Stone
- 2. Dental Abscess
- 3. Toxic Exposure

NOTE: No Russian data are in IMM

Recent Medical Events

 Although papilledema and ocular issues have come to the forefront, currently there is not enough knowledge to know when or if this problem could reach the level requiring evacuation. As data becomes available, it will be added to the model.

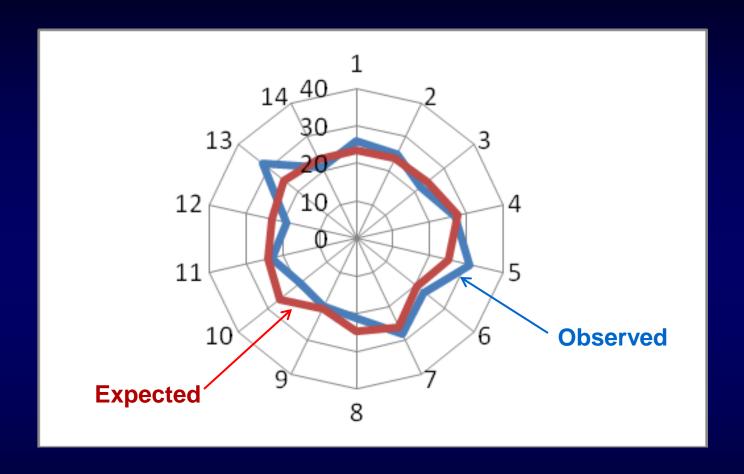
Validation – Risk of LOC forecast



IMM forecasted *Risk of LOC* rate (0.0035) compares favorably with literature review results for LOC rates (0.0028 to 0.0081)

Source	LOC (events/person-yr)
IMM (6 crew/6-month mission)	0.0035
ISS PRA (3 crew/6-month mission)	0.0006
Terrestrial Mortality Rate	0.0081 (2006)
48-year old male	0.0047 (2006)
48-year old female	0.0028 (2006)
Antarctic	0.0054 (1904-1964)
LSAH Data	0.0034 (1980-2009)

Validation – ISS Medical Event Estimates



Spider plot comparing the observed (historical data) and expected (model data) number of medical events by mission – ISS (Source: IMM Validation - Goodness of Fit Report for ISS and Shuttle Missions, JSC #TBA)

Validation — Shuttle Medical Event Forecasts

Spider plot comparing the observed (historical data) and expected (model data) number of medical events by mission – Shuttle (Source: IMM Validation - Goodness of Fit Testing for ISS and Shuttle Missions, JSC #TBA)

Summary of Validation

Risk of Evacuation (EVAC) Estimates

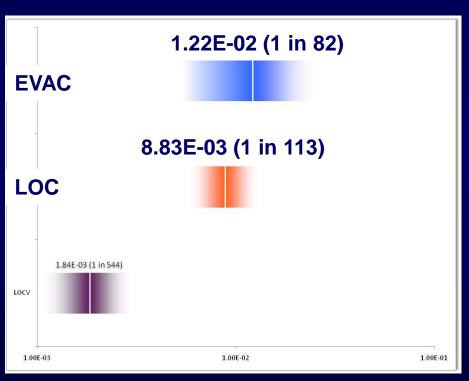
Source	Low (events/person-year)	Max (events/person-year)
IMM (mean)	0.015	-
ISS PRA (mean)	0.001	-
Evidence-based Literature	0.010	0.072

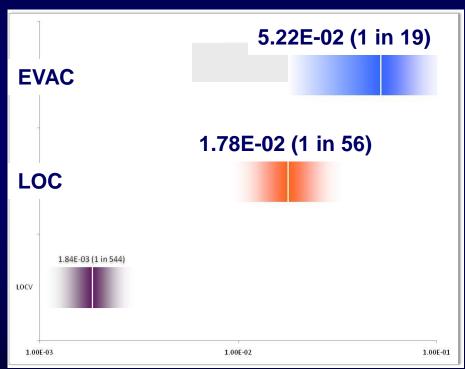
Risk of Loss of Crew Life (LOC) Estimates

Source	Low (events/person-year)	Max (events/person-year)
IMM (mean)	0.0035	-
ISS PRA (mean)	0.0006	-
Evidence-based Literature	0.0028	0.0081

Comparison of Data – IMM vs. ISS PRA

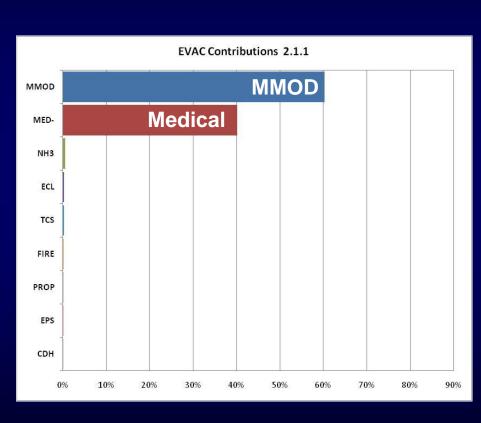
Source Model	Risk of EVAC*	Risk of LOC*
IMM (mean)	0.015 (4.43%)	0.0035 (1.06%)
ISS PRA (mean)	0.001 (0.35%)	0.0006 (0.17%)
Difference	x15 factor	x5.8 factor

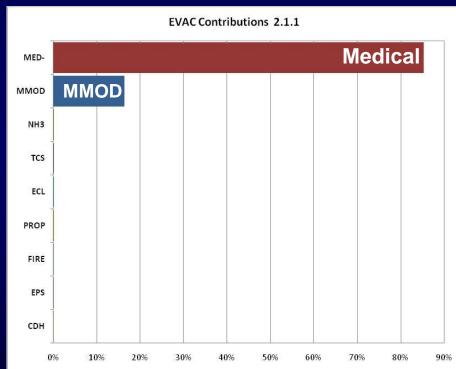

^{*} Shown as events/person-year, and percent during mission


Impact to ISS PRA

PRA 2.1.1

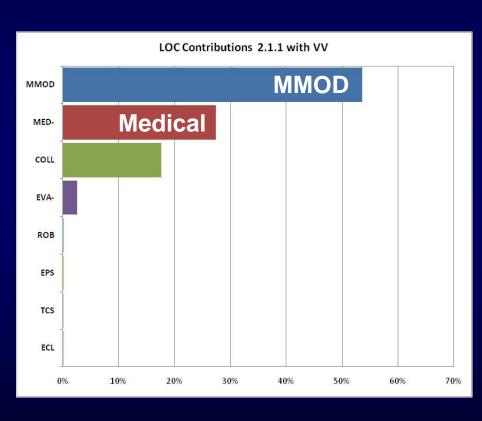
PRA 2.1.1 with IMM

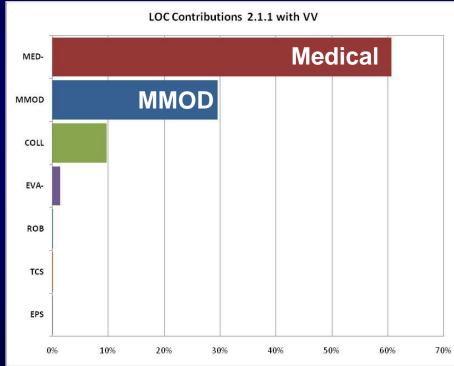



Impact to ISS PRA - EVAC

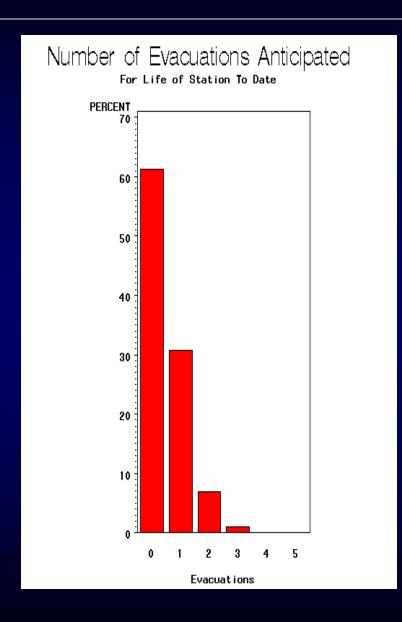
EVAC PRA 2.1.1

EVAC PRA 2.1.1 with IMM



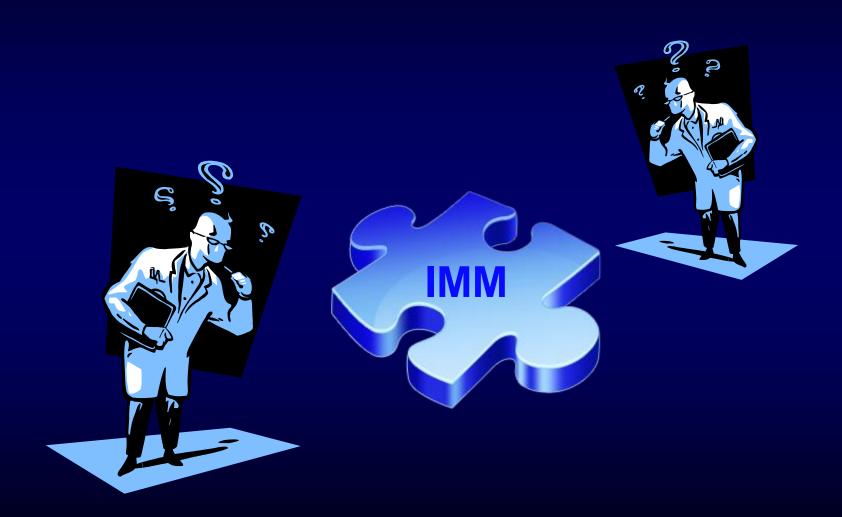

Impact to ISS PRA - LOC

LOC PRA 2.1.1


LOC PRA 2.1.1 with IMM

Forecast of Medical Evacuations on ISS To Date

- 61% probability of no medical evacuation to date
- 39% probability of one or more medical evacuations to date
- Assumes a 4.43% probability of evacuation for a 6-crew, 6-month increment.
 - 3 person-years per increment
- Assumes 33 person-years of ISS crew time to date.


Closing

- Medical events will be lead contributor to "Risk of EVAC/LOC", surpassing ISS PRA estimates of "Risk of EVAC/LOC" from MMOD
- A comprehensive evidence review forms the basis for updating the ISS PRA Risk Model

Open Discussion and Questions

Back-Up Slides

Probabilities at least one EVAC or LOC

Timeframe	Med EVAC Probability	Total EVAC Probability	Med LOC Probability	Total LOC Probability
ISS to Date	39%	44%	11%	18%
ISS to 2020	74%	79%	27%	42%

Emergent Evacuation

IMM Results from Emergency Return Vehicle Trade Study (May 2010)

Estimated Emergent EVAC Probability = 1.2%

1. Kidney Stone 0.33%

2. Smoke Inhalation 0.22%

3. Toxic Exposure 0.20%

4. Sepsis 0.15%

5. Hypovolemic Shock 0.10%

Note: Based on 3 crew/6 month ISS mission

Environmental Risk Discussion

- Environmental Conditions in IMM
 - Smoke Inhalation
 - Toxic Exposure
 - Acute Radiation Syndrome
 - Altitude Sickness
 - Barotrauma (ear/sinus block)
 - Burns
 - Decompression Sickness (EVA)
 - Headache (CO₂ induced)

Environmental Risk Discussion

- Differences between ISS PRA and IMM
 - IMM estimates the incidence of smoke inhalation and toxic exposure based on historical data of crew medical events
 - ISS PRA estimates the incidence of smoke inhalation and toxic exposure based on the probability of ISS system failures
 - Since the ISS PRA does not consider the medical risk of smoke inhalation and toxic exposure, it is valid to include these conditions in the IMM as contributors to the risk of EVAC and LOC

IMM Intravenous Fluids (IV) Analysis

Outcome	IV Fluids	No IV Fluids *
CHI (%)	93.79	93.48
EVAC (%)	3.64	7.26
LOCL (%)	1.09	2.40

Outcomes are based on a 6 month/6 crew ISS mission

* Conservative (high) estimates of outcomes based on IMM limitation that medical conditions requiring IV fluids go untreated

Validation of Dental Evacuation

Outcome	IMM	Military *
Dental Evacuation (events/person-yr)	0.006	0.017

* References

Chaffin, et al. Review of Current U.S. Army Dental Emergency Rates. Military Medicine, 173, 1:23-26, 2008.

Deutsch, et al. Dental Events during Periods of Isolation in the U.S. Submarine Force. Military Medicine, 173, 1:29-37, 2008.

Medical Conditions in IMM by Category

Medical Illness

Acute Chest Pain/Angina

Acute Prostatitis

Allergic Reaction

Anaphylaxis

Anxiety

Appendicitis

Atrial Fibrillation

Back Pain (SAS)

Behavioral Emergency

Cardiogenic Shock

Choking (foreign body inhalation)

Constipation (SAS)

Cough (URI/Pneumonia)

Dental Abscess

Dental Crown Replacement

Dental Temporary Filling

Dental Toothache

Dental Tooth Loss

Depression

Diarrhea

Eye Abrasion

Eye Corneal Ulcer

Eye Infection

Gastroenteritis

Glaucoma

Headache (SAS)

Hemorrhoid

Indigestion

Insomnia (SAS)

Kidney Stones

Late Insomnia

Medication OD/Misuse

Mouth Ulcer/Cold Sore

Nasal Congestion (SAS)

Nosebleed (SAS)

Otitis Externa

Otitis Media

Pharyngitis

Seizures

Sepsis

Sinus Infection

Skin Infection

Skin Rash

Space Motion Sickness (SAS)

Stroke

Sudden Cardiac Arrest

Urinary Incontinence (SAS)

Urinary Retention (SAS)

Urinary Tract Infection

Vaginal Yeast Infection

Medical Conditions in IMM by Category

Injury/Trauma

Abdominal Injury

Back Injury

Chest Injury/Pneumothorax

Eye Abrasion

Eye Penetration

Elbow Dislocation

Finger Dislocation

Fingernail Delamination (EVA)

Head Injury (TBI)

Hip/Proximal Femur Fracture

Hypovolemic Shock

Lumbar Spine Fracture

Neck Injury

Neurogenic Shock

Paresthesias/Hot Spots (EVA)

Shoulder Dislocation

Skin Abrasion/Laceration

Sprain/Strain

Wrist Fracture

Environmental

Acute Radiation Sickness

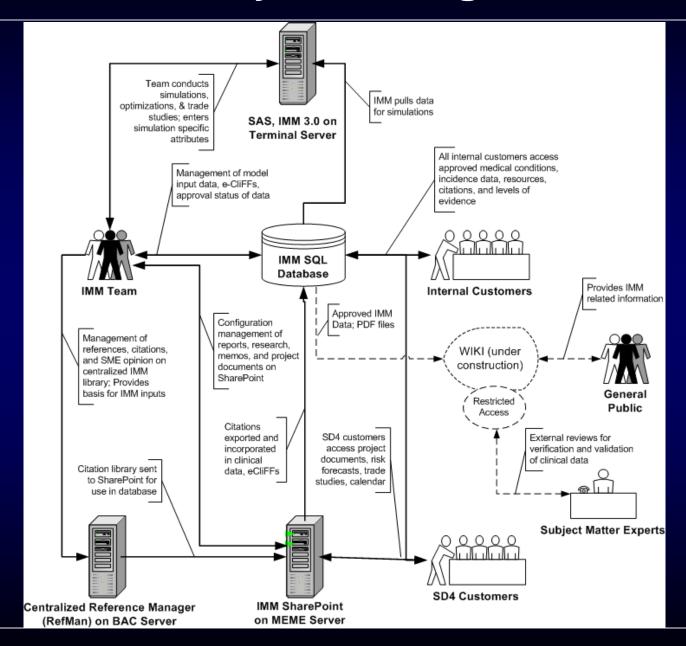
Altitude Sickness

Barotrauma (ear/sinus block)

Burns

Decompression Sickness (EVA)

Eye Chemical Burn


Headache (CO₂ induced)

Smoke Inhalation

Toxic Exposure

IMM System Diagram

