NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

A Technical Interchange Meeting was held at Saft America's Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA's High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

NASA's Exploration Technology Development Program Energy Storage Project

Battery Technology Development

Joint Saft America-NRA Contractor-NASA Technical Interchange Meeting on Cell Components and Cell Development

Held at Saft America, Cockeysville, MD September 28, 2010

Concha Reid and Tom Miller, co-Pl's Carolyn Mercer, Project Manager Amy Jankovsky, Integration Manager

Key Performance Parameters for Battery Technology Development

Customer Need	Performance Parameter	State-of-the-Art	Current Value	Threshold Value	Goal
Safe, reliable operation	No fire or flame	Instrumentation/control- lers used to prevent unsafe conditions. There is no non- flammable electrolyte in SOA	Preliminary results indicate a small reduction in performance using safer electrolytes and cathode coatings	Tolerant to electrical and thermal abuse such as over-temperature, over- charge, reversal, and short circuits with no fire or thermal runaway***	Tolerant to electrical and thermal abuse such as over-temperature, over- charge, reversal, and short circuits with no fire or thermal runaway***
Specific energy Lander: 150 – 210 Wh/kg 10 cycles	Battery-level specific energy* [Wh/kg]	90 Wh/kg at C/10 & 30 C 83 Wh/kg at C/10 & 0 C (MER rovers)	160 at C/10 & 30 C (HE) 170 at C/10 & 30 C (UHE) 80 Wh/kg at C/10 & 0 C (predicted)	135 Wh/kg at C/10 & 0 C "High-Energy"** 150 Wh/kg at C/10 & 0 C "Ultra-High Energy"**	150 Wh/kg at C/10 & 0 C "High-Energy" 220 Wh/kg at C/10 & 0 C "Ultra-High Energy"
<u>Rover:</u> 160-200 Wh/kg 2000 cycles <u>EVA:</u> 270Wh/kg 100 cycles	Cell-level specific energy [Wh/kg]	130 Wh/kg at C/10 & 30 C 118 Wh/kg at C/10 & 0 C	199 at C/10 & 23°C (HE) 213 at C/10 & 23°C (UHE) 100 Wh/kg at C/10 & 0°C (predicted)	165 Wh/kg at C/10 & 0 C "High-Energy" 180 Wh/kg at C/10 & 0 C "Ultra-High Energy"	180 Wh/kg at C/10 & 0 C "High-Energy" 260 Wh/kg at C/10 & 0 C "Ultra-High Energy"
	Cathode-level specific capacity [mAh/g]	180 mAh/g	252 mAh/g at C/10 & 25°C 190 mAh/g at C/10 & 0°C	260 mAh/g at C/10 & 0 C	280 mAh/g at C/10 & 0 C
	Anode-level specific capacity [mAh/g]	280 mAh/g (MCMB)	330 @ C/10 & 0°C (HE) 1200 mAh/g @ C/10 & 0°C for 10 cycles (UHE)	600 mAh/g at C/10 & 0 C "Ultra-High Energy"	1000 mAh/g at C/10 0 C "Ultra-High Energy"
Energy density Lander: 311 Wh/l Rover: TBD EVA: 400 Wh/l	Battery-level energy density	250 Wh/I	n/a	270 Wh/I "High-Energy" 360 Wh/I "Ultra-High"	320 Wh/l "High-Energy" 420 Wh/l "Ultra-High"
	Cell-level energy density	320 Wh/I	n/a	385 Wh/I "High-Energy" 460 Wh/I "Ultra-High"	390 Wh/l "High-Energy" 530 Wh/l "Ultra-High"
Operating environment	Operating Temperature	-20°C to +40°C	0°C to +30°C	0°C to 30°C	0°C to 30°C
0°C to 30°C, Vacuum	Assumes prismatic cell p Battery values are as	backaging for threshold value sumed at 100% DOD, disch	es. Goal values include lightw arged at C/10 to 3.0 volts/cell	eight battery packaging. , and at 0°C operating condition	ons
*	 High-Energy = mixed metal oxide cathode with graphite anode ** "Ultra-High Energy" = mixed metal oxide cathode with Silicon composite anode *** Over-temperature up to 110°C; reversal 150% excess discharge @ 1C; pass external and simulated internal short 				

*** Over-temperature up to 110°C; reversal 150% excess discharge @ 1C; pas tests; overcharge 100% @ 1C for Goal and 80% @ C/5 for Threshold Value.

Revised 9/20/10

Lithium Ion Battery Technology Development Advanced Cell Components

Notional Schedule for DD Cell Builds in FY10-FY11

Hardware Description	Notional Schedule	Comments	
DD cell: MPG-111 anode, NCA cathode	DD Delivered: Spring 2010	Baseline chemistry	
34P cell: MPG-111 anode, NCA cathode	34P Delivered: July 2010		
DD cell: MPG-111, anode Toda NMC cathode	Begin: Sep 2010	High Energy Cells (HE)	
Saft's Space electrolyte (2 builds)	Cells Delivered: Jan 24, 2011	4 variants x 6 copies	
JPL Gen-2 electrolyte (2 builds)		Variations:	
Tonen 16 micron separator		2 cathode loadings &	
		2 electrolytes	
DD cell: MPG-111 and best available	Begin: Feb 2011	HE	
components (if any are better)	Cells Delivered: Jun 2011	2 variants x 6 copies	
DD cell: advanced cathode (UT Austin, NEI	24-mo cathode delivery: Jan 2011	HE	
Corporation or PSI-coated NMC), MPG-111,	Begin cell: Mar 2011	2 variants x 6 copies	
baseline or JPL electrolyte	Cells delivered: Aug 2011		
DD cell: <u>Silicon anode</u> , <u>advanced cathode (</u> UT	Begin: Apr 2011	Ultra High Energy Cells (UHE)	
Austin, NEI Corporation or PSI-coated NMC), Saft	Cells Delivered: Sep 2011	2 variants x 6 copies	
baseline or JPL electrolyte			

Energy Storage Roadmap

