

Active Oxidation of SiC

Nathan S. Jacobson^a, Dwight L. Myers^b, and Bryan J. Harder^a ^aNASA Glenn Research Center, Cleveland, OH ^bDepartment of Chemistry, East Central University, Ada, OK

https://ntrs.nasa.gov/search.jsp?R=20110011343 2019-08-30T15:26:51+00:00Z

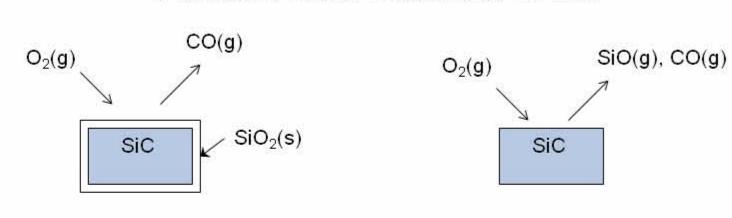
Microscopy of Oxidation 8, Liverpool, UK April 10-13, 2011

Contact: <u>nathan.s.jacobson@nasa.gov</u>

Abstract

The high temperature oxidation of silicon carbide occurs in either a passive or active mode, depending on temperature and oxygen potential.

Passive oxidation forms a protective oxide film which limits attack of the SiC: $SiC(s) + 3/2 O_2(g) = SiO_2(s) + CO(g)$ Active oxidation forms a volatile oxide and leads to extensive attack of the SiC:


 $SiC(s) + O_2(g) = SiO(g) + CO(g)$ The transition points and rates of active oxidation are a major issue.

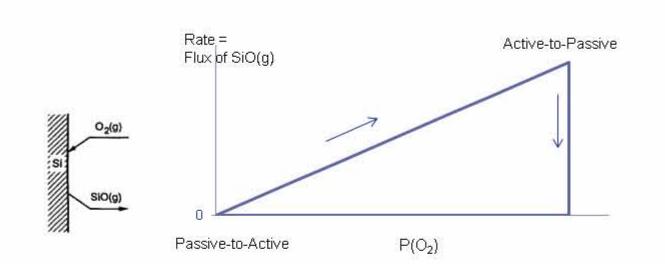
Previous studies are reviewed and the leading theories of passive/active transitions summarized. Comparisons are made to the active/passive transitions in pure Si, which are relatively well-understood. Critical questions remain about the difference between the active-to-passive transition and passive-to-active

For Si, Wagner [2] points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO₂ equilibria and the passive-to-active transition is governed by the decomposition of the SiO₂ film. This suggests a significant oxygen potential difference between these two transitions and our experiments confirm this. For Si, the initial stages of active oxidation are characterized by the formation of SiO(g) and further oxidation to SiO₂(s) as micron-sized rods, with a distinctive morphology.

SiC shows significant differences. The active-to-passive and the passive-to-active transitions are close. The SiO₂ rods only appear as the passive film breaks down. These differences are explained in terms of the reactions at the SiC/SiO₂ interface. In order to understand the breakdown of the passive film, pre-oxidation experiments are conducted. These involve forming dense protective scales of 0.5, 1, and 2 microns and then subjecting the samples with these scales to a known active oxidation environment. Microstructural studies show that SiC/SiO2 interfacial reactions lead to a breakdown of the scale with a distinct morphology.

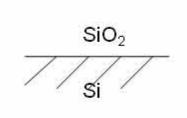
Passive/Active Oxidation of SiC

Passive Oxidation [1] $SiC + 3/2 O_2(g) = SiO_2(c) + CO(g)$ $SiC + O_2(g) = SiO(g) + CO(g)$

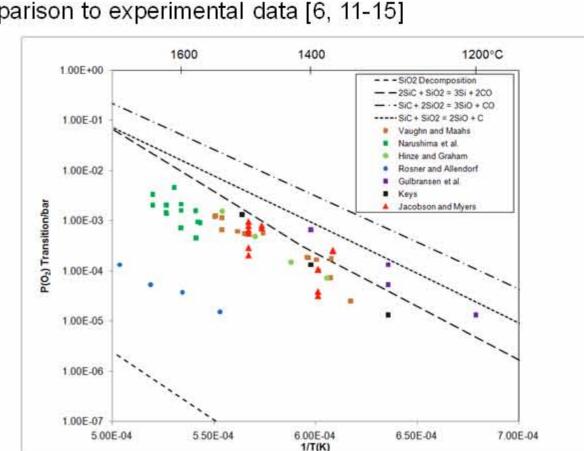

- Critical issues
- Transitions: active ⇔passive Rates of active oxidation
- Unexplored area: Focus of this study - Hysteresis for SiC: active to passive and passive to active
- Breakdown of passive film

Theories of Active/Passive Transitions

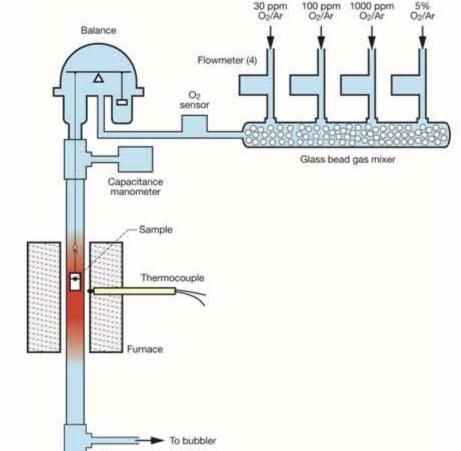
Investigator	Basic Concept	Strength	Weakness
Wagner [2]	Active-to-Passive: Equilibrium between Si/SiO ₂ Passive-to-Active: Decomposition of SiO ₂	Accounts for hysteresis between active-to-passive and passive-to-active; thermodynamically rigorous	Does not explain SiO₂ rod formation
Singhal [3]/ Gulbransen & Jansson [4]	Extends active-to-passive equilibration condition to SiC	Thermodynamically rigorous	Un clear which SiC/SiO ₂ equilibria is operative
Turkdogan [5] et al /Hinze and Graham [6]	SiO(g) forms at surface; reacts a distance away from surface to form SiO ₂ (smoke)	In cludes mass transport, fits data	Only active-to- passive; not passive- to-active
Nickel [7]	Uses condition of equilibria between SiC/SiO ₂ involving condensed phase SiO(c)		
Balat [8]	Simultan eous active/passive oxidation	Fits data	
Schneider [9]/Ogura [10]	Bubble formation leads to breakdown of passive scale		Describes only passive-to-active transition


Wagner: Active-to-Passive Transitions for Silicon [2]

Oxygen strikes a bare Si surface, gradually increase P(O₂)


Generate sufficient SiO(g) from reaction (a) for stable Si/SiO₂ equilibrium reaction (b)

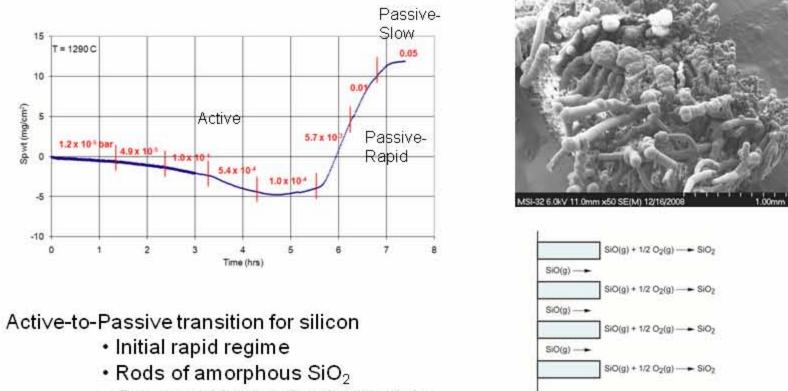
 $Si(c) + \frac{1}{2}O_2(g) = SiO(g)$ (a) $Si(c) + SiO_2(s) = 2SiO(g)$ (b)



Extend to SiC

- Critical Condition for SiC/SiO₂ equilibrium [4, 6]
- SiC(s) + SiO₂(s) = C(s) + 2SiO(g)
- or $SiC(s) + 2SiO_2(s) = 3SiO(g) + CO(g)$ - or $2SiC(s) + SiO_2(s) = 3Si(s) + 2CO(g)$
- Comparison to experimental data [6, 11-15]

Experimental Approach

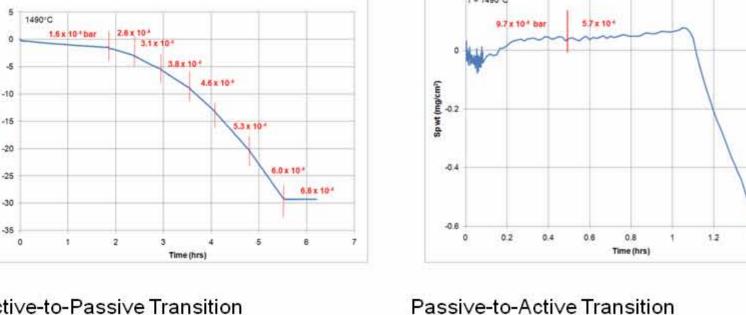

Starting Materials Semi-conductor grade Si and CVD

Active Oxidation [1]

- Quartz tube, hangwire; no alumina to prevent contamination [16]
- Thermogravimetric system
- Gradually increase or decrease O_2 in Ar Active-to-passive transition: Weight
- loss stops Passive-to-active transition: Weight
- Pre-oxidation studies

loss begins

- SiO₂ films grown on SiC in a clean environment [16]
- Microstructural examination • FE-SEM (Hitachi S4700)


Silicon: Active-to-Passive Transition

· Generated by mechanism to right • cf Hinze and Graham [6]

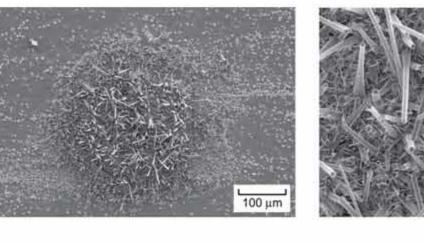
Rods of SiO₂ are an important 'marker' of

SiO(g) generation

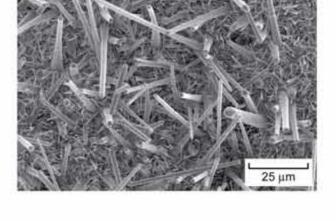
SiC: Active-to-Passive and

Passive-to-Active Transition

- Active-to-Passive Transition Oxygen potential lowered until passi∨ity reached
 - - Oxygen potential raised until active oxidation begins reached
 - Time lag is significant Instantaneous response

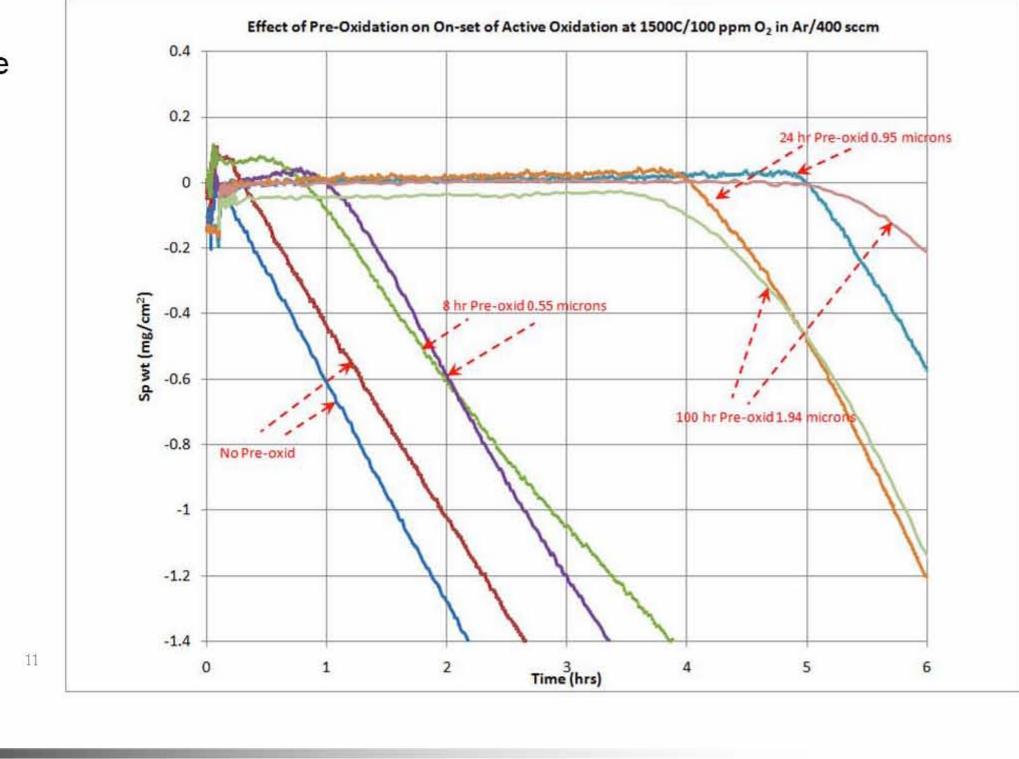

SiC: Active-to-Passive Transition

	337.1 92	P(trans)
Temperature	expt	calc*
1490	9.63E-04	2.12E-04
1490	7.92E-04	
1390	1.05E-04	1.41E-03
1390	1.05E-04	

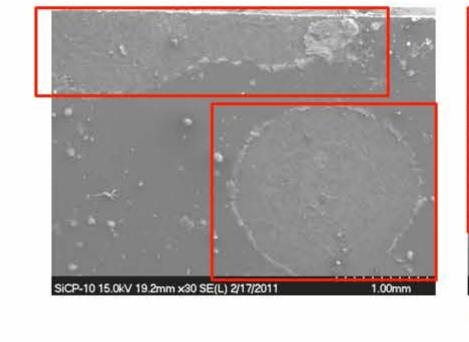

- Oxygen potential is gradually increased
- Initially SiC + ½ O₂(g) = Si (c) + CO(g)
- As P(O₂) is increased eventually enough CO(g) to satisfy the equilibria:
 - -2SiC(s) + SiO₂(s) = 3Si(s) + 2CO(g)
 - *Above equilibria used to calculated P(trans)
 - Once this condition is met, a passive SiO₂ film is formed.

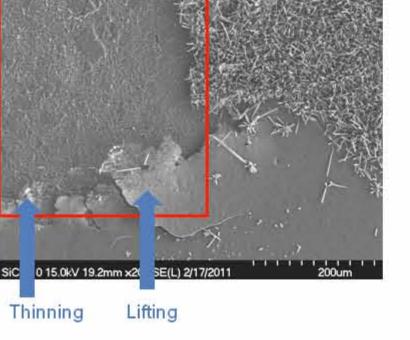
SiC: Passive-to-Active Transition

- Oxygen potential is gradually decreased SiC and SiO₂ react
- $SiC(s) + 2SiO_2(s) = 3SiO(g) + CO(g)$



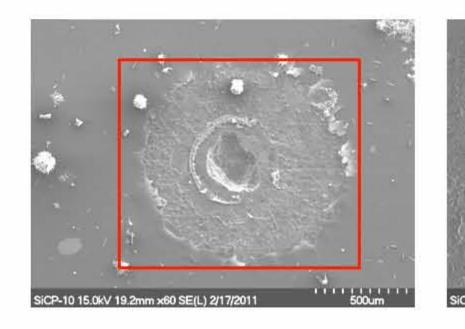
- \rightarrow SiO(g) + $\frac{1}{2}$ O₂ = SiO₂
- Consumption of SiO(g) 'pulls' reaction and generates more CO(g)
- CO(g) builds up pressure and lifts and removes scale


Pre-Oxidation and the Breakdown of the Passive Scale


- Experiment: Form 0.5, 1, 2 micron SiO₂ scales on CVD SiC [17]
- Expose to known active oxidation environment (100 ppm O₂-Ar/1500°C)
- Determine how the passive scale breakdown

Gives insights into the passive-to-active transition

Breakdown of Passive Scale



- Regions of SiO₂ scale removed from SiC, often as circular areas
- Edges of spalled areas provide clues of mechanism
- $SiC(s) + 2SiO_2(s) = 3SiO(g) + CO(g)$

lifting of scale

- \rightarrow SiO(g) + $\frac{1}{2}$ O₂ = SiO₂
- Reaction leads to scale consumption, CO(g) generation leads to

Etching/Pitting of SiC

- Circular regions where SiC exposed
- Grain boundary etching
- Often large pits in center

Summary and Conclusions

- Active oxidation of SiC:
 - SiC(s) + $\frac{1}{2}$ O₂(g) = SiO(g) + CO(g)
- Unexplored area is the difference between the active-to-passive and passive-to-active transition for SiC
- Active-to-passive transition
 - Attain sufficient P(O₂) to establish the SiC/SiO₂ equilibria
- Passive-to-active transition Scale/substrate react and SiO(g) product removal 'pulls' reaction
 - $SiC(s) + 2SiO_2(s) = 3SiO(g) + CO(g)$ \rightarrow SiO(g) + ½ O₂ = SiO₂
- Examine pre-oxidized SiC to understand breakdown of SiO₂ scale

References

- 1. Jacobson, N., Corrosion of Silicon-Based Ceramics in Combustion Environments, Journal of the American Ceramic Society, 1993. 76(1): Wagner, C., Passivity during the Oxidation of Silicon at Elevated Temperatures, Journal of Applied Physics 1958. 29: p. 1295-1297. Singhal, S.C., Thermodynamic Analysis of the High-Temperature Stability of Silicon Nitride and Silicon Carbide, Ceramurgia International.
- Gulbransen, E.A. and Jansson, S. A., The High-Temperature Oxidation, Reduction, and Volatilization Reactions of Silicon and Silicon Carbide, Oxidation of Metals, 1972. 4(3):: p. 181-201. Turkdogan, E.T., Grieveson, P., and Darken, L. S., Enhancement of Diffusion-Limited Rates of Vaporization of Metals, The Journal of
- Physical Chemistry, 1963. 67(8): p. 1647-1654. Hinze, J.W. and Graham, H. C., The Active Oxidation of Si and SiC in the Viscous Gas-Flow Regime, Journal of the Electrochemical Nickel, K.G., The Role of Condensed Silicon Monoxide in the Active-to-Passive Oxidation Transition of Silicon Carbide, Journal of the European Ceramic Society, 1992. 9(1): p. 3-8.
- Balat, M.J.H., Determination of the Active-to-Passive Transition in the Oxidation of Silicon Carbide in Standard and Air, Journal of the European Ceramic Society, 1996. **16**(1): p. 55-62. Schneider, B., Guette, A., Naslain, R., Cataldi, M., and Costecalde, A., A Theoretical and Experimental Approach to the Active-to-Passive Transition in the Oxidation of Silicon Carbide, Journal of Materials Science 33, 535 (1998) 10. Ogura, Y. and Morimoto, T., Mass Spectrometric Study of Oxidation of SiC in Low-Pressure Oxygen, Journal of the Electrochemical
- 11. Vaughn, W.L. and Maahs, H.G., Active-to-Passive Transition in the Oxidation of Silicon Carbide and Silicon Nitride in Air, Journal of the American Ceramic Society, 1990. 73(6): p. 1540-1543. 12. Narushima, T., et al., High-Temperature Active Oxidation of Chemically Vapor-Deposited Silicon Carbide in an Ar-O2 Atmosphere,
- Journal of the American Ceramic Society, 1991. **74**(10): p. 2583-2586. 13. Rosner, D.E. and H.D. Allendorf, High-temperature Kinetics of the Oxidation and Nitridation of Pyrolytic Silicon Carbide in Dissociated Gases, The Journal of Physical Chemistry, 1970. 74(9): p. 1829-1839. Keys, L.H., The Oxidation of Silicon Carbide in Properties of High Temperature Alloys with an Emphasis on Environmental Effects, 1977;
- Electrochemical Society. 15. Jacobson, N. and Myers, D., Active Oxidation of SiC, Oxidation of Metals, 2010: p. 1-25. 16. Opila, E., Influence of Alumina Reaction Tube Impurities on the Oxidation of Chemically-Vapor-Deposited Silicon Carbide, Journal of the
- American Ceramic Society, 1995. 78(4): p. 1107-1110. 17. Ogbuji, L.U.J.T. and Opila, E. J., A Comparison of the Oxidation Kinetics of SiC and Si₃N₄, Journal of the Electrochemical Society, 1995.