

American Institute of Aeronautics and Astronautics

1

A Hybrid Parachute Simulation Environment for the Orion
Parachute Development Project

James W. Moore1
Jacobs ESCG, Houston, TX, 77598

A parachute simulation environment (PSE) has been developed that aims to take advantage of legacy
parachute simulation codes and modern object-oriented programming techniques. This hybrid simulation
environment provides the parachute analyst with a natural and intuitive way to construct simulation tasks
while preserving the pedigree and authority of established parachute simulations. NASA currently employs
four simulation tools for developing and analyzing air-drop tests performed by the CEV Parachute Assembly
System (CPAS) Project. These tools were developed at different times, in different languages, and with
different capabilities in mind. As a result, each tool has a distinct interface and set of inputs and outputs.
However, regardless of the simulation code that is most appropriate for the type of test, engineers typically
perform similar tasks for each drop test such as prediction of loads, assessment of altitude, and sequencing of
disreefs or cut-aways. An object-oriented approach to simulation configuration allows the analyst to choose
models of real physical test articles (parachutes, vehicles, etc.) and sequence them to achieve the desired test
conditions. Once configured, these objects are translated into traditional input lists and processed by the
legacy simulation codes. This approach minimizes the number of sim inputs that the engineer must track
while configuring an input file. An object oriented approach to simulation output allows a common set of
post-processing functions to perform routine tasks such as plotting and timeline generation with minimal
sensitivity to the simulation that generated the data. Flight test data may also be translated into the common
output class to simplify test reconstruction and analysis.

Nomenclature
CD = drag coefficient
CDS = drag area
qbar = dynamic pressure

I. Introduction
HE test program to design and validate the parachute recovery system for the NASA Crew Exploration Vehicle
(CEV) includes ambitious objectives and complex test techniques.5,6 Engineers perform trajectory simulations

prior to the tests to examine the effectiveness of these techniques and ensure the safety of the test. While the details
of each test are unique, engineers typically perform a similar set of analyses for every test. Over the years, multiple
simulations have been developed to meet specific needs. Each simulation has its own input methods and output files.
The result is that engineers need to be skilled in using different tools to perform the same task. Time and effort that
could be spent analyzing data is diverted to translating engineering concepts into tool-specific simulation inputs and
decoding tool-specific output into the parameters of interest. A key analysis technique is to compare the results of
simulations to actual flight test data. Flight data brings additional format, synchronization, and noise reduction
issues that further complicate the analyst’s task.
 This paper will briefly describe a set of MATLAB object classes that have been developed to simplify the
engineer’s interaction with these multiple simulation tools and test data. These tools construct a hybrid simulation7
environment that consists of simulation tools based in several programming languages. The simulations are brought
together into a single Parachute Simulation Environment (PSE) that maintains the versatility and reliability of the
multiple legacy simulations while providing the trajectory analyst with a common way to interact with simulation
input and output. Some of the parachute simulations used by the CPAS project will be briefly introduced to explain
the tasks performed by the PSE. The PSE includes tools for configuring simulations and analyzing output. Both of
these functions will be described in detail. Finally, limitations and future improvements will be discussed.

1 Analysis Engineer, Aerothermal and Flight Mechanics, 455 E. Medical Center Blvd., Webster, TX.

T

https://ntrs.nasa.gov/search.jsp?R=20110011219 2019-08-30T15:25:57+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10559898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

American Institute of Aeronautics and Astronautics

2

II. Legacy Simulations
The CPAS project employs four parachute trajectory simulations, three of which will be adapted to the

simulation environment. The PSE effectively translates the input and output used by several simulations into a
common format. To understand how the PSE works it is helpful to review the simulations that it manages.

DSS4 (Decelerator System Simulation) is a legacy 6 Degree-of-Freedom (DOF) parachute trajectory simulation
based on the UD233A simulation used by the Space Shuttle Solid Rocket Booster parachute project. DSS is written
in Fortran and user input is performed via pre-configured text files. The DSS executable produces binary and text
format output files. DSS is the highest fidelity NASA-maintained simulation used by the CPAS project.

DSSA2,3 (Decelerator System Simulation Application) is a 6-DOF parachute trajectory simulation based on DSS
that includes the capability to model the extraction of a test platform from an aircraft. Like DSS, this simulation is
written in Fortran. DSSA employs a spreadsheet front end to configure the input file for a compiled executable.
After execution, DSSA displays trajectory plots based on text and binary data files generated by the executable.

DTVSim (Drop Test Vehicle Simulation) is a 2-DOF parachute trajectory simulation intended for conceptual
planning of test trajectories. This simulation includes parachute inflation models and is appropriate for early
assessment of parachute loads as well as available altitude studies, programmer sizing, and reefing ratio selection.
DTVSim is MATLAB-based and inputs are configurable through a MATLAB/Java-based user interface. After
execution, output is plotted in the same user-interface.

Sasquatch1 is a footprint prediction tool that uses wind profiles and trajectory information to plot dispersed
touchdown circles against drop zone boundaries. While not a trajectory integrator, Sasquatch interacts with data
generated by the other simulations. The PSE can facilitate this interaction.

In addition to the simulations mentioned above, the parachute manufacturer Airborne Systems uses a proprietary
simulation named DCLDYN8 that provides an independent check on simulation results. DCLDYN is not part of the
PSE but is mentioned here to provide a complete list of trajectory simulations used on the CPAS project.

As would be expected of simulations developed at different times and for different purposes, each simulation
uses a different input method and output data is presented differently. DSSA and DTVSim provide their own custom
methods for reviewing output. Direct access to the output data is available for all three simulations but the file
formats are different. Also, the input and output variable names corresponding to a particular physical quantity are
typically different across the three simulations. DSS and DSSA employ Fortran common blocks. Users familiar
with this practice will recall that this allows the same memory location to represent different variables depending on
the particular subroutine being executed. Moreover, within the DSS and DSSA input file, variable names and
common block locations are re-used for each parachute in a test sequence. This allows the re-use of code but
presents opportunities for error. Engineers familiar with the use of legacy simulations will, no doubt, be acquainted
with similar complications.

Re-coding these tools in a more modern language would be time-consuming and would require extensive
validation. The existing simulations have proven to be accurate and have a track record of success. The PSE aims
to retain the reliability of the legacy simulations while providing a simpler and less error-prone interface. Pairing an
interpreted language with an existing compiled simulation has proven to be useful in this situation.7

III. Intuitive Simulation Configuration
The most complex of the simulations described above requires hundreds of user-inputs to execute. Properly

selecting such a large number of inputs is problematic. A detailed understanding of the simulation code is required
to fully understand the importance of all the user inputs. It is increasingly difficult to maintain this level of
competency as simulation codes age, documentation grows out-of-date, and the importance of some of the
simulation functions decline. The traditional approach to this problem is to start with something that worked before
and update the user inputs that are known to be important for the analysis in question. Since the CPAS project is a
parachute development program, many of the parachute modeling parameters and test vehicle sensitive inputs
change from test to test. This limits the applicability of previous simulation input files to upcoming tests. With this
approach to simulation re-configuration, CPAS trajectory designers have found that they need to track roughly one
hundred inputs in order to properly configure a simulation for a single test. The consequence of missing one of these
inputs could be re-performing an analysis that takes days to complete.

American Institute of Aeronautics and Astronautics

3

Figure 2. Parachute Simulation Objects. The physical
objects that make up a parachute test are implemented in an
object-oriented simulation configuration environment. The
particularities of the individual simulations are also coded as
objects.

Vehicle

Length
Width
Mass
CD

Parachute

Position
Velocity
Force
Time

Atmosphere
Variable Names
Integration Step

Input files

Sensor Simulation

Diameter
Riser Length

Mass
CD

Figure 1. Object schematic. MATLAB implements object-
oriented concepts by defining classes. The state of the object
is stored in its properties. The object behavior is described by
special functions called methods. Interaction with the data is
performed via the methods.

Object (Class)

State
(Properties)

An alternative approach to configuring
simulation inputs is to assemble the inputs in a
more intuitive way using off-the-shelf
components. This approach mirrors the way tests
are assembled in the physical world. Engineers
have a test objective that they desire to meet for a
specific test. They survey the available test
vehicles, parachutes, and other hardware that can
be used to achieve this test objective. Once these
components are selected, engineers assemble the
pieces into a test article. By selecting (or in some
cases building) the physical components, test
engineers implicitly define the associated mass
properties, dimensions, aerodynamic properties,
parachute inflation parameters, and characteristics
that will affect the test trajectory. The PSE
attempts to mimic this test design process within
the simulation configuration process using object-
oriented programming techniques.

The PSE is built on a set of MATLAB objects
that model the properties of test vehicles,
parachutes, sensors, and simulations. As with other
object-oriented languages, MATLAB can represent
physical objects with virtual objects. Figure 1
shows a typical schematic of a virtual object. In the
MATLAB implementation of object-oriented
programming, objects are represented by ‘classes’,
the state of an object is stored in its ‘properties’,
and the behavior of an object is determined by its
‘methods’. The data associated with an object is
stored in its properties and access to the properties
should be performed through the methods. Moving
from the abstract object to specific types of
objects, the PSE defines classes that are useful in
generating simulation inputs. These include
parachute, vehicle, sensor, and simulation objects.
Figure 2 provides a schematic of these objects,
including sample properties and methods. The
generic vehicle object has properties such as mass,
inertia tensor, aero coefficients, and attach points.
Parachute objects have properties such as mass,
diameter, drag coefficient, riser and suspension
line lengths, reefing ratios, and inflation
parameters. Generic sensor objects are models of
the sensor output rather than the physical sensors
themselves and have many available properties
such as position, velocity, acceleration, load,
temperature, wind velocity, etc. Sensor objects are
more important in post-flight analysis and will be discussed later. Simulation objects have properties such as
atmosphere models, and other information that allows MATLAB to build an input set. For example, the DSS object
includes the Fortran common block locations associated with each input variable.

The first step in reducing the number of inputs tracked by the analyst is to build some common instances of these
generic objects that assign particular values to the object properties. This represents another step from the abstract
toward the concrete. For example, in Fig. 3, an instance of the parachute object might be created to model the CPAS
Main parachute. The inflation parameters might be set to the latest model values, the physical dimensions might be
set to the values in the design documentation. The CPAS Main instance of the parachute object is then saved for

American Institute of Aeronautics and Astronautics

4

Figure 3. Instantiation schematic. Specific instances of the generic
objects contain the data associated with the physical object to be
modeled. Here, an instance of the parachute object corresponding to
the CPAS Main parachute is created.

CPAS MainParachute

Instantiate

Diameter
Riser Length

Mass
CD

D = 116 ft
LR = 97 ft
M = 300
CD = 0.97

Figure 4. Simulation build sequence. Test articles are selected from off-the-shelf objects. Any required
modifications to the selected objects are made, then the objects translate themselves into input values for the
legacy simulation. The inputs are then compiled into a single file for execution.

Select Programmer
Parachute Object

Select Vehicle
Object

Select Simulation
Object

Object Library

Drogue Parachutes

Main Parachutes

Programmer
Parachutes

Type V Platform

Medium Dart

Capsule Boilerplate

DSS

DSSA

DTVSim

Select Test
Parachute Object

Update with
Specific Values

Update with
Specific Values

Update with
Specific Values

Set test
specific models

Translate
Inputs

Translate
Inputs

Translate
Inputs

Assemble
Input File

Execute
Simulation

Choose
Components

Make
Modifications

Assemble and
Execute

later use. Now instead of verifying that
twenty or so simulation inputs
associated with the Main parachute are
correctly typed into an input file, the
engineer just needs to identify the
baseline Main parachute as the test
parachute. A similar process is
repeated for the common test vehicles.
Instances of common sensor objects are
a convenient place to store information
about sensor precision and typical
output units.

Each object has methods that
operate on its properties. For sensor
objects, these methods might detect and
remove bias from the acceleration
property or convert measured inertial
vehicle velocity and wind information into airspeed. The primary methods for the vehicle and parachute objects are
those that translate the internally stored properties into the input formats of the three simulations.

With these objects and their methods, a set of simulation inputs can be built “from scratch” rather than
modifying an existing input set. This reduces the likelihood of mistakenly carrying forward an inappropriate input
from and older analysis. The process of building the input set is similar to building the physical test article. Figure 4
shows an example. The test vehicle and parachutes are selected from the common off-the-shelf objects. At this point
the default properties can be overridden with test specific conditions, if required. Each object simulation translation
method is then called to convert the MATLAB object into a list of text inputs in the case of DSS and DSSA, or a

American Institute of Aeronautics and Astronautics

5

Figure 5. The Trajectory class. The trajectory class provides
a common structure for simulation output and flight test data.
Methods are included to perform common analysis tasks and
standardize output plots.

Trajectory Class

Find qbar

Load data
from
Sim

Load data
from
Test

Plot

Shift time

Find
peaks

Get
Statistics

Compute
Load

Position
Velocity

Acceleration

Parachute Load
Attitude

Angular Rate

simulation-specific data structure in the case of DTVSim. These sets of inputs are then assembled in the appropriate
sequence and saved as an input file for the legacy simulations. The simulation may then be executed in the usual
manner.

An additional benefit of this approach is that it allows a single test configuration to be translated into multiple
simulations with minimal changes to the configuration script. This feature could be useful for simulation
comparisons or for improving fidelity from 2-DOF to 6-DOF as the test planning process matures.

The simulation configuration function of the PSE is still under development and has seen limited use. Engineers
should not undervalue the importance of deep understanding of the models and algorithms employed by a trajectory
simulation. However, the intuitive configuration process used by the PSE will hopefully lower the learning curve for
new analysts and allow meaningful analyses to be performed quickly and with minimal error and re-work.

IV. Common Output Interface and Analysis Methods
The common output functionality of the PSE was the first component to be developed and has more extensive

capabilities than the simulation configuration functionality. The motivation for developing this interface is the
observation that many parachute test analyses are interested in several common parameters. For example, many pre-
flight test predictions focus on time histories of parachute riser loads, dynamic pressure, and altitude. Post-flight
analyses are commonly interested in the same parameters as well as the calculation of drag coefficient and inflation
characteristics. While the output of the typical CPAS analysis will be similar, namely, plots and peak values of these
parameters, the input data to the analysis comes in at least four different formats. There are three different output
formats corresponding to the three simulations, with many output parameters having a different name in each
simulation. In addition, test data may have a different format, base unit, and variable name depending on the sensor
collecting the data. For example, CPAS uses multiple sensors that collect acceleration data. Each sensor has its own
format and may have an unsynchronized time
channel.

This situation has resulted in a collection of
custom analysis and plotting scripts that were
tailored for specific sensors or simulations. In
addition, each analyst might have a personal
library of analysis tools that is not easily
transferrable to other engineers. The goal of the
common output interface was to make analysis
scripts applicable to multiple simulation tools,
transferrable to other analysts, and re-usable for
multiple tests.

The PSE common output interface employs
another set of MATLAB object classes to
manage data and perform common calculations.
Figure 5 depicts the generic object called a
“trajectory”, including a few representative
properties and methods. There are over one
hundred trajectory properties and roughly seventy
methods. The trajectory class has properties
associated with all the common simulation output
variables and sensor readings. These properties
include trajectory data such as position and
velocity as well as mass properties, parachute parameters, and environmental data.

Trajectory objects include methods that instantiate the object properties with arrays of trajectory data extracted
from the simulations or from the recorded test data. For each of the simulations there is a method to load data into
the property arrays. In a sense, the trajectory object “knows” how to fill itself with data from each of the simulations.
There are also methods to populate the property arrays with the common sensor and balloon data formats as well as
generic data sources like text files and spreadsheets. The process of converting data from the various sources into a
common structure is an important step in creating re-usable analysis scripts.

Another important component of the PSE is a streamlined plotting capability. Several methods are also included
that extract characteristics of the data such finding local peaks and mean values. The data label and unit information
is contained within the object. The trajectory object has a plotting method that builds on the basic MATLAB plot

American Institute of Aeronautics and Astronautics

6

Figure 6. Sample trajectory plot. The trajectory class allows analysts to quickly generate standardized plots
using the same basic command for any simulation or set of test data.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time (s)

C
hu

te
 L

oa
d

(lb
)

DSS

18585

11205
12494

DSS

command by automatically adding titles, labels, legends, error bars, text annotations, and timeline events. This
allows the analyst to concentrate on the data while ensuring that plots are free of typographical errors and are in a
consistent format regardless of the team member who generated the plot. Any trajectory parameter may be plotted
against any other parameter. Figure 6 shows a sample plot of parachute load vs. time generated with the following
MATLAB commands:

DSS = trajectory('name', 'DSS'); % Construct a Trajectory object named 'DSS'
DSS.loadDSS('Sample.mat'); % Load simulation data
DSS.get_peak_loads('time',{[20 30],[40 50],[60 70]}); % Find peaks in the provided timeframes
DSS.trajplot('chute_load','xlim',[0,100],'annotate','chute_load') % Plot and annotate

The trajectory class provides a simple means to add similar trajectory data from other sources. In this way, co-
plots are generated with the same command that generates regular plots. If a trajectory object contains multiple
trajectories, the plot command will automatically co-plot the data. For example, an engineer might load data from a
pre-flight prediction simulation into a trajectory object and then with another command, load flight data from a
sensor output file, and then call the plot command to compare the pre-flight prediction to the actual data.

American Institute of Aeronautics and Astronautics

7

Figure 7. Sample test data processing. The physical instruments are modeled as objects. The interaction of the
methods with the object properties shows how raw data might be transformed into a Best Estimate Trajectory.

Test Data

Weather Balloon

GPS

Vehicle Scale

Accelerometer

Strain Link

Best Estimate
Trajectory
Object

Trajectory Plot

Accelerometer
Object

Strain Link
Object

Plot

Time, Velocity
Position

Acceleration
Density
Weight

Parachute Load

Compute
Load

Compute
CD

Find Load
peaks

Shift
Time

Compute
qbar

Get
Statistics

The trajectory class was originally designed for use with simulation data but it was easily extended to
accommodate actual flight data. The sensor object class is a super-class that inherits the trajectory object parameters
and methods. It extends the trajectory class by adding methods to load data from the standard CPAS avionics data
files, as well as text files and spreadsheets. The sensor class includes a special timing data structure that is used to
interpret discrete events recorded by the avionics system. These events include a pin-pull that occurs when the test
article clears the aircraft ramp and the cut-away or mortar-fire commands issued by the avionics system. The analyst
may also add information from a video timeline of the test to assist in data synchronization.

In addition to reading and plotting data, the trajectory and sensor objects include methods that perform various
calculations common to parachute analysis. Many of these computations are simple but prone to error if not applied
carefully. Locating the code in a common object class reduces the likelihood of a calculation error. The important
algorithms are coded in one place where they can be validated and then re-used. These calculation methods include:

 converting between various time formats and references and synchronizing data
 finding the average and extrema in a user-defined section of the data
 computing airspeed from collected vehicle velocity and wind data
 applying measured air density to compute dynamic pressure and equivalent airspeed
 converting between altitude references, including finding the local ellipsoid-to-geoid conversion
 computing latitude and longitude from Cartesian position
 computing parachute riser loads from accelerometer data and inferring CDS
 computing CD from steady state rate-of-descent, weight, and vehicle CDS
 fitting data to empirical formulae

These functions are used to process sensor data for post-flight analysis and for comparison to simulation data.
Uncertainty in each parameter is stored along with the actual data array. The calculation methods also propagate the
uncertainty in the original data to uncertainty in the resulting parameter. This allows error bars to easily be added to
any plot using the plot method described above.
 Figure 7 is a schematic of flight data processing with the PSE. The physical instruments may be modeled as
sensor objects such as an accelerometer object, strain link object, and a Best Estimate Trajectory (BET) object. The
detail in the BET object shows how the interaction of the sensor methods with the object data might transform the
raw flight data into a final product. Weight, atmosphere, and GPS data are loaded into the object. Moving in a
clockwise direction, the Shift Time method synchronizes the data with other objects or with a video timeline. The

American Institute of Aeronautics and Astronautics

8

Compute qbar method calculates the dynamic pressure using the measured atmospheric density and an airspeed
derived from the wind (balloon) and vehicle (GPS) velocity properties. The Compute CD method calculates the
parachute CD using the object weight and velocity properties. The Compute Load method populates the parachute
load property using the weight and acceleration properties. The Find Load Peaks and Get Statistics methods extract
key characteristics of the data set. Finally the Plot method generates a standardized plot as shown in Fig. 6.

Several methods have been included to perform basic data clean-up and processing. These methods include
functions to identify and remove spurious data spikes, normalize data to a user-defined mean value, and removing
sections of data that are not of interest. These functions are convenient in post-flight analysis since they can be
applied to reduce noise in the data, remove biases, and delete data that was collected by a sensor before or after the
time of interest.

Finally there are several data export methods that make it convenient to create data files that can be read by other
tools. Trajectory data can be reformatted to simple text files that are easily readable by many software packages.
Data collected from one of the trajectory simulations can be reformatted as input to the Sasquatch1 footprint tool.
Analysts are commonly asked to provide a text-based trajectory timeline that highlights key events that occur during
a test. A method is included to extract the key sequence events from the simulation data and use this information to
build a timeline file. Any trajectory object with latitude, longitude, and altitude data can be exported to Google
EarthTM. These functions speed the transfer of data between tools and standardize the handoff of data between
analysis groups.

V. Conclusion
The common output aspect of the simulation environment described in this paper has been used for trajectory

predictions and post flight analysis on many of the Generation II CPAS drop tests. It has facilitated the extension of
a Monte Carlo tool originally built for DSSA to the other NASA maintained parachute simulations. The generic
nature of the data structure and plotting capability has proven to be versatile and has allowed analysts to extract
pertinent information from very large data sets without the need to resort to custom analysis codes and scripts. The
PSE tool will continue to be refined as new analysis needs develop.

References
1. Bledsoe, K., “Development of the Sasquatch Drop Test Footprint Tool”, 21st AIAA Aerodynamics Decelerator
Systems Technology Conference, Dublin, Ireland, May 2011 (submitted for publication)
2. Cuthbert, P.A., “A Software Simulation of Cargo Drop Tests,” 17th AIAA Aerodynamic Decelerator Systems
Technology Conference, Monterey, California, May 2003, AIAA Paper 2003-2132.
3. Cuthbert, P.A., Conley, G. L., Desabrais, K. J., “A Desktop Application to Simulate Cargo Drop Tests,” 18th
AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Munich, Germany, May 2005, AIAA
Paper 2005-1623.
4. Moog, R.D., et al., “Parachute Simulation User’s Guide Computer Program UD233A,” Martin Marietta Corp.,
Denver Aerospace Division, Denver, Colorado, USA, Feb. 1986.
5. Morris, A.,et al., “Summary of Generation II CPAS Parachute Performance”, 21st AIAA Aerodynamics
Decelerator Systems Technology Conference, Dublin, Ireland, May 2011 (submitted for publication)
6. Morris, A.,et al., “Summary of CPAS Test Techniques”, 21st AIAA Aerodynamics Decelerator Systems
Technology Conference, Dublin, Ireland, May 2011 (submitted for publication)
7. Nemeth, S. M., “Hybrid Simulation Technology: The Next Step in the Evolution of Spaceflight Simulations”,
SpaceOps 2008 Conference, Heidelberg, Germany, May 2008, AIAA Paper 2008-3334
8. Taylor, A. P., Murphy, E., “The DCLDYN Parachute Inflation and Trajectory Analysis Tool – An Overview”,
18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Munich, Germany, May 2005,
AIAA Paper 2005-1624.

