National Aeronautics and Space Administration

6

Li-ion Pouch Cell Designs; Performance and Issues for Crewed Vehicle Applications

by Eric Darcy NASA-JSC For Electric Aircraft Symposium 29 April 2011 Santa Rosa, CA

00

Outline

Li-ion Pouch Cells

- Purpose and Motivation
- Cell designs evaluate
- Cell lot uniformity, why that's important
- Forward plans
 - High rate performance
 - Cycle life durability
 - Seals
 - Corrosion susceptibility
 - Manufacturing quality
- Conclusions

Purpose & Motivation

- Compelling Advantages
 - Li-ion pouch cell designs provide the highest specific energy (> 220 Wh/kg), energy density (> 450 Wh/L) of all commercially available designs
 - Many high power designs also exist with very impressive performance (> 2000 W/kg and > 4000 W/L)
 - Numerous designs are being produced world wide in high volumes for the emerging EV/HEV/PHEV market
 - As such, calendar life, cycle life, and durability has been improved over the last 5 years
 - Many designs have extensive field testing and therefore, maturity
- Our purpose: Are there any performance show stoppers for spinning them into spacecraft applications?
 - Are the seals compatible with extended vacuum operations?
 - How uniformly and cleanly are they made?
 - How durable are they?
- Why now?
 - Electric vehicle market has driven significant improvements
 - Many of our applications (VASIMR, R2, etc) could benefit right now
 - We have access to several high volume cell suppliers which will soon have US production lines up and running

Maturity of Pouch Cell/Module Designs

- Dow Kokam
 - 15 high power cell designs offered
 - From 145 mAh to 200 Ah
 - Z-fold separator stacking method
 - PHEV battery module, liquid cooled, optimized for high energy, with 4 years, 1 million km of fleet testing
 - 98.4V, 7.1 kWh, 85 kg module

- EIG
 - 4 high power designs with good energy density
 - From 8 to 25Ah
 - Standard pack module is fan cooled for scooters, bikes, robots
 - 48V, 960Wh, 8.9 kg

EiG

- LG Chem is providing cells in high volume for Chevy Volt battery packs
- A123 Systems also preparing for high volume cell production in US

Assessment of Cell Designs

#	Vendor	P/N	Mass	Rated	Standard Charge Regime	Max
			(g)	Discharge		Discharge
				Capacity (Ah)		
1	A123	PHEV	480	20	3.6V at C/2 with C/50	80A to 2.0V
					taper current limit	
2	Dow	SLPB75106100	165	8	4.2V at C/2 with C/50	32A to 2.7V
	Kokam				taper current limit	
3	EIG	C020	425	20	4.15V at C/2 with C/50	80A to 2.5V
	had a second				taper current limit	
4	LG Chem	P1	383	15	4.15V at C/2 with C/50	60A to 2.8V
10					taper current limit	

- All 4 are mature cell designs, made in high volume production lines
- All 4 provide a blend of high power and energy density capability

From the Dow-Kokam Datasheet

- Specific Energy at 4C, RT
 158 Wh/kg
- Energy Density at 4C, RT 🔽 278 Wh/L
- Thin tab termination
- Blend of high power (up to 5C continuous discharge rates) with high energy capability

Energy Innovation Group

Product General Specification

Mechanical Characteristics

Model	C020
Length	216.0 ± 1 mm (excluding terminal)
Width	130.0 ± 1 mm
Thickness	7.2 ± 0.2 mm
Weight	approx. 425 g

Electrical Characteristics

Nominal Voltage	3.65 V
Nominal, Capacity	20 Ah
AC Impedance (1 KHz)	< 3 m0
Specific Energy	175 Wh/Kg
Energy Density	370 Wh/L
Specific Power(DDD50%, 10sec)	2300 W/kg
Power Density[DOD50%, 10sec]	4600 W/L

Technology

Lithium Ion Polymer Battery Li[NiCoMn]02-based Cathode Graphite-based Anode High Energy Density Optimized for PHEV, EV

Operating Conditions

Charge Conditions :	
Recommended Charge Method	CC/CV
Maximum Charge Voltage	4.15 V
Recommended Charge Current	0.5 C Current
Discharge Conditions :	
Recommended Voltage Limit for Discharge	3.0 V
Lower Voltage Limit for Discharge	2.5 V
Maximum Discharge Current (Continuous)	up to 5 C Current
Maximum Discharge Current [Peak < 10 sec]	10 C Current
Operating Temperature :	-30°C/+50°C
Recommended Charge Temperature	0°C/+40°C
Storage Temperature	-30°C / + 50°C

Cycle Life at 25°C : [1 C Charge / 1 C Discharge, DOD100%] 1000 Cycles to 80% Nominal Capacity

ePLB CO20 Performance

CHARGE : CC(0.5C)/CV(4.15V to 0.05C) at 25°C

Cycle Life

ual CHARGE : CC(1.0C)/CV(4.15V to 0.05C) at 25°C DISCHARGE : CC(1.0C) to 3.0V at 25°C (DOD100%)

Energy Innovation Group

- From their datasheet

 148 Wh/kg
 311 Wh/L
- Max continuous discharge rate is 5C, capable of 10C pulses
- Beefy tabs

20Ah cell design

LG Chem 15Ah Cell Design

- From their datasheet
 150 Wh/kg
 300 Wh/L
 At 4C, RT
- Capable of >10C continuous discharge
 - Thick and wide tabs

A123 Systems

- LiFePO₄ cathode

 More thermally stable
 Flat discharge curve

 Very high power, but lower energy according to their
 - datasheet
 - 120 Wh/kg
 - 219 Wh/L

Test Plan for Assessment of Cell Designs

- Acceptance Testing
 - Visual, OCV, AC Impedance, mass, dimensional
 - Pouch isolation resistance
 - Soft short (OCV bounce back after deep discharge)
- Capacity performance
 - Capacity/Energy vs rate
 - at ambient T, C/5, C/2, C, 2C, 4C with 3 cells per design,
 - all charging at manuf recom rate
- Cycling performance
 - Capacity/Energy vs cycle number
 - 4C discharge, C/2 charge at ambient T for >100 cycles
 - Testing one 3S string per cell design and cycling condition (4 strings total) with cells under compression as per manufacturer's recommendation
- Evaluate cell design and manufacturing quality
 - Seal leak rate and compare to 18650 crimp seal rates
 - Seal cells in Al laminate bag
 - Then thermally cycling (vs not) for 3 weeks
 - Sample container gas for electrolyte to determine leak rate and/or measure mass lost
 - Corrosion susceptibility
 - Destructive Physical Analysis (Tear down)

Examples of Pouch Corrosion

Melt extrusion

Flat side

- Defective inner isolation layer of the laminate pouch results in corrosion of the Al layer
- Polarizing the Al layer to the (-) terminal is a quick test method

Butter-Cup Side

Nylon Tayer

Corrosion site

Polyethylene layers

Soft Short (Small 18650 Cell)

14-day OCV bounce back after deep discharge (constant voltage to 3.0V)

Very uniform OCV bounce back performance

Soft Short (Large Aerospace Cell Design)

14-day OCV bounce back after deep discharge (constant voltage to 3.0V)

4 cells out of 20 had declining OCV between days 10 and 14

What to look for in DPAs?

- Consistent mechanical alignment
 - Anode overlapping cathode
 - absence burrs
 - No separator tears or wrinkles
- Lack of contamination
 - Heat effective zone halos
 - No foreign or native delamination debris
- No Li deposits or plating
- Consistent active material coating with smooth edges
- Solid weld connections without splatter

Photos courtesy of Exponent

Preliminary Conclusions

- Current Li-ion pouch cells designs for electric vehicle market are offering
 - Over 150 Wh/kg and 300 Wh/L at 15 minute (4C) discharge rates
 - Based on 2 manufacturer's data sheets (to be verified)
 - High maturity with numerous units fielded
 - Manufactured in high production lines
- Planned testing will determine their readiness for the demands of crewed spacecraft
 - Manufacturing quality
 - Effectiveness of the seals
 - Durability of performance
- Results will be available by August of 2011