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ABSTRACT 
 The Ko displacement theory originally developed for shape predictions of straight beams is extended 
to shape predictions of curved beams. The surface strains needed for shape predictions were analytically 
generated from finite-element nodal stress outputs. With the aid of finite-element displacement outputs, 
mathematical functional forms for curvature-effect correction terms are established and incorporated into 
straight-beam deflection equations for shape predictions of both cantilever and two-point supported 
curved beams. The newly established deflection equations for cantilever curved beams could provide 
quite accurate shape predictions for different cantilever curved beams, including the quarter-circle 
cantilever beam. Furthermore, the newly formulated deflection equations for two-point supported curved 
beams could provide accurate shape predictions for a range of two-point supported curved beams, 
including the full-circular ring. Accuracy of the newly developed curved-beam deflection equations is 
validated through shape prediction analysis of curved beams embedded in the windward shallow spherical 
shell of a generic crew exploration vehicle. A single-point collocation method for optimization of shape 
predictions is discussed in detail. 

NOMENCLATURE 

� 

c   distance from neutral axis to outermost surface point of uniform beam (depth factor), in. 
CC  both ends clamped 
CEV crew exploration vehicle 

 ci     ≡ c(xi ) distance from neutral axis to i-th strain sensor, in. 

 cn   value of  ci  at free end (beam tip),  x = xn = l , in. 

  c(x)  distance from neutral axis to outermost surface point of nonuniform beam (or radius 
  of tapered tubular beam) at axial location, 

� 

x , in.  

  c0   value of  ci  at fixed end (beam root),  x = x0 = 0 , in. 
deg  degree 
E  Young’s modulus, lb/in2 

 ei     ≡ yi − yi
C , shape prediction error at strain-sensing station,  xi  

 en     ≡ yn − yn
C , shape prediction error at cantilever curved-beam tip, in. 

  
en    

  ≡
yn − yn

C , reduced shape prediction error at cantilever curved-beam tip, in. 
h  depth of beam, in. 
i  index associated with i-th strain sensor at  xi  (i = 0, 1, 2, 3, …, n) 
I  moment of inertia, in4 
j  index,  1, 2, 3, …  

  kin    ≡ σ in σ , bending stress ratio on concave side  

  kout   ≡ σout σ , bending stress ratio on convex side  
l  length of beam, in. 
M  bending moment, in-lb 

 Mi   bending moment at  xi , in-lb 
n    index of last strain sensor (also used to indicate strain-sensing station density)  
P  force, lb 
R   radius of curvature of curved beam, in. 
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SPAR  Structural Performance And Resizing 
SS  both ends simply supported 
TPS thermal protection system  
UAV  unmanned aerial vehicle 

� 

x    axial coordinate of beam measured from left end, in. 

 xi    x-coordinate (or symbol) of strain-sensing station (cross section) where i-th strain sensor is 
located, in.  

� 

y   beam deflection normal to x-axis, in. 

 yi   deflection of cantilever straight beam at  xi , in. 

 yi
B   deflection of two-point supported straight beam at  xi , in. 

 yi
C  radial deflection of curved beam at i-th strain-sensing station calculated from SPAR, in. 

  
yi   radial deflection of curved beam at i-th strain-sensing station, in. 

  
yi

B   radial deflection of two-point supported curved beam at i-th strain-sensing station, in. 

� 

δ   neutral axis offset (distance between neutral axis and centroidal axis), in. 
∆l  

� 

= l n , distance between two adjacent strain-sensing stations, in. 

� 

Δφ    ≡ φn n , angular coordinate differential between two adjacent strain-sensing stations, deg  

 εi   surface bending strain at i-th strain-sensing station, in/in. 

� 

ε(x)  surface bending strain at axial location, x, in/in. 

� 

η    ≡ yn/2
C − yn/2

B , amplitude of sine correction function, in. 

 θi   deformed beam slope at axial location,  xi , rad or deg 

  θ(x)   deformed beam slope at axial location, x, rad or deg 

� 

σ  magnitude of surface bending stress of equivalent straight beam, lb/in2 

 σ in  magnitude of bending stress on concave side of curved beam, lb/in2 

 σout  magnitude of bending stress on convex side of curved beam, lb/in2 

 φi   angular coordinate (measured from left end of beam) of i-th strain-sensing station, deg  

 φn  angular coordinate (measured from left end of beam) of n-th (last) strain-sensing station (called 
curved-beam angle), deg 

INTRODUCTION 
 By installing a series of strain sensors at discrete points along the surface of a beam-like structure 
(such as an aircraft wing), one can use the measured surface strains as input to the Ko displacement 
theory to calculate structural deflections and cross-sectional rotations at discrete points for mapping the 
structural deformed shapes. The most attractive strain-sensing system, an alternative to the conventional 
strain gage system (which contains too much lead wire weight), is the fiber-optic strain-sensing system, 
because the fiber optics are lightweight, fine, and flexible filaments (approximately the size of human 
hairs), and they can be highly multiplexed (Bragg gratings) to define sensing stations at desired sensing 
intervals (refs. 1–3). In the formulation of the Ko displacement theory (refs. 4–7), the beam was first 
divided into multiple domains of equal length, so that variations of both bending strain and beam depth 
could be assumed to be linear within in each small domain. This approach enabled piecewise integrations 
of the classical beam differential equation to yield beam slope and deflection equations for each domain. 
The resulting displacement equations were then expressed in terms of strains measured at multiple equally 
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spaced strain-sensing stations (at domain junctures) on the surface of the beam structures. The surface 
strain data could then be input to the displacement equations for the calculation of slopes, deflections, and 
cross-sectional twist angles of the beam structures at the strain-sensing cross sections for generating the 
overall deformed shapes of the beam structures. 
 

The Ko displacement theory (refs. 4–7), combined with the onboard fiber-optic strain-sensing system, 
form a powerful tool (called Method for Real-Time Structure Shape-Sensing, U.S. Patent No. 7,520,176; 
ref. 8) for in-flight deformed shape monitoring of flexible wings and tails (such as those often employed 
on unmanned aerial vehicles, UAVs) by the ground-based pilot for maintaining safe flights. In addition, 
the wing shape, monitored in real time, could be input to the aircraft control system for aeroelastic wing 
shape control. The fiber-optic strain-sensing technique (refs. 4–8) has been further applied to a new 
reverse process (called Process for Using Surface Strain Measurements to Obtain Operational Loads for 
Complex Structures, U.S. Patent No. 7,715,994; ref. 9) for structural operational load monitoring. 

 
The Ko displacement theory (refs. 4–8) was originally developed for predicting the deformed shapes 

of straight beams (cantilever and two-point supported beams). In addition, the theory can also be applied 
to shape predictions of unsupported free-free beam-like structures, such as aircraft wings and fuselages, 
during flight. The displacement theory (refs. 4–5) has been successfully validated for its accuracy by 
finite-element analysis of different sample structures such as cantilever tubular beams (uniform, tapered, 
slightly tapered, step-wise tapered), two-point supported tapered tubular beams, flat panels, and tapered 
wing boxes (unswept and swept). 

 
By introducing curvature-effect corrections, one can modify the straight-beam displacement theory 

(refs. 4–7) for shape predictions of curved beams. Mathematical functional forms of the curvature-effect 
correction terms could be established, with the aid of finite-element displacement solutions, and 
incorporated into the straight-beam deflection equations for the formulation of curved-beam deflection 
equations. 

 
This technical report examines the prediction errors arising from the use of straight-beam deflection 

equations for shape predictions of curved beams, and demonstrates the methods used in the formulation 
of curved-beam deflection equations for shape predictions of both cantilever and two-point supported 
curved beams. The accuracy of the newly formulated curved-beam deflection equations has been 
validated through shape prediction analysis of curved beams embedded in the windward shallow spherical 
wall of a generic crew exploration vehicle (CEV). This report also discusses the single-point collocation 
method for optimizing the accuracy of the shape predictions of curved beams. 

BASICS OF THE KO DISPLACEMENT THEORY 
 The basics of the Ko displacement theory for the straight beams (refs. 4–5) are briefly described in 
this section. The principal assumptions made in the formulation of the theory also are discussed. 

Beam Differential Equations 

 The formulation of the displacement theory is built upon the classical beam differential equation 
(elastic curvature of a deformed straight beam) given by (refs. 10–11) 
 

         
  

d2 y

dx2
=

M (x)
EI

              (1) 
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in which y is the lateral deflection, x is the beam axial coordinate, M(x) is the bending moment, E is the 
Young’s modulus, and I is the moment of inertia.  
 
 At the cross section, x, the bending moment, 

� 

M(x) , and associated bending strain, 

� 

ε(x), induced at 
the bottom (or top) fiber (outermost point from the neutral axis) of the nonuniform straight beam can be 
written as (refs. 4–5)  

  
M (x) = EI

ε(x)
c(x)

                         (2) 

in which 

� 

c(x) is the local half depth (distance from the neutral axis to the bottom surface) of the 
nonuniform beam. When equations (1) and (2) are combined, the modified differential equation for the 
nonuniform beam is obtained as   
            

           
  

d2 y

dx2
=
ε(x)
c(x)

                      (3) 

 Note that under the present strain formulation, the modified beam differential equation (3) contains 
only the beam half depth, 

� 

c(x), and the bending strain, 

� 

ε(x). The flexural rigidity, EI, is eliminated. 
Formulation of the Ko displacement theory (refs. 4–5) for nonuniform straight beams is based upon the 
modified beam differential equation (3), which could be sufficiently accurate if the nonuniform beam 
cross sections change gradually (ref. 10, p. 143). 
 
 If the mathematical functional forms of { c(x), ε(x)} are given, equation (3) can be integrated once to 
yield the beam slope,

� 

dy dx . The equation can then be integrated a second time to yield the beam 
deflection, 

� 

y(x), for the shape predictions. 

Basic Assumptions  

 When the single and double integrations of equation (3) were carried out, the following assumptions 
were made: 
 

1.  The nonuniform beam of length l (fig. 1) is discretized into n domains of equal length,Δl(= l n) , 
and the beam section within each domain is assumed to linearly taper down (or linearly taper up). 
The strain sensors, i (= 0, 1, 2, 3,…, n), are to be installed at the bottom (or top) of the domain 
junctures, x = xi  (i = 0, 1, 2, 3,…, n) (also called strain-sensing stations, xi ). Thus, in the domain, 
xi−1 ≤ x ≤ xi , between any two adjacent strain-sensing stations, { xi−1, xi }, the beam half depth, 
c(x) , can be expressed as a linear function of (x − xi−1)  as 

 

 
  
c(x) = ci−1 − (ci−1 − ci )

x − xi−1
Δl

     ;        xi−1 ≤ x ≤ xi           (4) 

in which {

� 

ci−1,  ci} are the values of 

� 

c(x) at the strain-sensing stations, {  xi−1, xi }, respectively. 
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2. The distribution of the bending strain, 

� 

ε(x) , in the domain,   xi−1 ≤ x ≤ xi , between the two 

adjacent strain-sensing stations, {  xi−1, xi }, is also assumed to change linearly with   (x − xi−1)  as 
 

      
  
ε(x) = εi−1 − (εi−1 − εi )

x − xi−1
Δl

    ;       xi−1 ≤ x ≤ xi        (5) 

in which {  εi−1, εi } are the values of 

� 

ε(x)  at the strain-sensing stations, {  xi−1, xi }, respectively.  

Linearity of Bending Moments  

Note that for a slightly nonuniform beam, c(x)  is a weak linear function of (x − xi−1)  (the small 
slope term in eq. (4)), and the associated bending moment, M(x) (eq. (2)), will vary almost linearly 
between the two adjacent strain-sensing stations, {  xi−1, xi }, because the higher-order terms in the 

binomial expansion of the denominator [c(x)]−1  may be neglected. This argument may not hold, 
however, if c(x)  is not a weak linear function of x, because the higher-order terms in the binomial 

expansion of the denominator [c(x)]−1  must be retained. 
 
For the uniform beam ( c(x) = c = constant), the bending moment, M(x), is directly proportional to the 

bending strain, ε(x) , according to equation (2). Therefore, if the strain, ε(x) , is a linear function of x 
given by equation (5), then M(x) will also be a linear function of x. 

Beam Slopes and Deflections    

 The slope, tanθ(x)(≡ dy dx) , of the nonuniform beam at the axial location, x, within the domain, 

  xi−1 ≤ x ≤ xi  (fig. 1), can be obtained by integrating equation (3) once, and enforcing the continuity of 

the slope at the inboard strain-sensing station,   xi−1 , as 
 

   

tanθ(x) =
d2 y

dx2
dx

xi−1

x
∫

Integration of eq. (3)  
  

+ tanθi−1
Slope at xi−1

 
=

ε(x)
c(x)

dx
xi−1

x
∫

Slope increment 
above tanθi−1

  
+ tanθi−1

Slope at xi−1

 
   ;    (  xi−1 ≤ x ≤ xi )   (6) 
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in which   tanθi−1  is the slope at the inboard strain-sensing station,   xi−1 . The deflection, 

� 

y(x), of the 

nonuniform beam within the domain, xi−1 ≤ x ≤ xi  (fig. 1), can be obtained by integrating slope equation 
(6), and enforcing the continuity of deflection at the inboard adjacent strain-sensing station, xi−1 , as 
 

   

y(x) = tanθ(x) dx
xi−1

x
∫

Integration of 
eq. (6)

  
+ yi−1

Deflection
at xi−1

 =
ε(x)
c(x)

dx dx
xi−1

x
∫xi−1

x
∫
Deflection increment 
above yi−1

  
+ tanθi−1xi−1

x
∫ dx

Deflection at x  
due to tanθi−1

  
+ yi−1

Deflection
at xi−1

  

                     (  xi−1 ≤ x ≤ xi )  (7) 

in which   yi−1  is the deflection at the inboard strain-sensing station,   xi−1 . 
 
 In light of the linearity assumptions of {

� 

c(x),  ε(x)} given by equations (4) and (5), respectively, 
equations (6) and (7) can now be integrated once and twice, respectively, to yield the indicial forms of the 
slope and deflection equations for each domain. These indicial equations are then combined to yield the 
final mathematical forms of the deflection equations expressed in terms of beam geometrical parameters 
and surface strains presented in the following section (refs. 4–5).  

Straight-Beam Deflection Equations   

 The deflection equations (integrations of equation (7)) previously developed for nonuniform, slightly 
nonuniform, and uniform straight cantilever beams, have the following mathematical forms (refs. 4–5): 
 
 1. For nonuniform straight cantilever beams (  ci ≠ ci−1 ) (derivations in ref. 5, Appendix A),  
 

  

yi = (Δl)2 2(i − j)+1⎡⎣ ⎤⎦
ε j−1 − ε j

2(c j−1 − c j )
−
ε j−1c j − ε jc j−1

(c j−1 − c j )3
c j log

c j
c j−1

+ (c j−1 − c j )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪j=1

i
∑    

  

    + (Δl)2 (i − j)
ε j−1c j − ε jc j−1

(c j−1 − c j )2
log

c j
c j−1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥j=1

i−1
∑ + y0 + (i)Δl tanθ0     ;     (i = 1, 2, 3,...,n)        (8) 

 2. For slightly nonuniform straight cantilever beams (  ci ci−1 →1 ), 
 

  

yi =
(Δl)2

6
1

ci− jj=1

i
∑ 3(2 j −1)− (3 j − 2)

ci− j+1
ci− j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
εi− j + (3 j − 2)εi− j+1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ y0 + (i)Δl tanθ0  

(i =1, 2, 3, …, n)    (9) 

which was obtained from equation (8) by expanding the logarithmic terms in the neighborhood of 

  ci ci−1 ≈1  (derivations in ref. 5, Appendix C). 
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 3. For uniform straight cantilever beams (  ci = ci−1 = c ), 
 

           

  

yi =
(Δl)2

6c
(3i −1)ε0 + 6 i − j( )ε j

j=1

i−1
∑ + εi

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+ y0 + (i)Δl tanθ0      ;     (i = 1,2,3,...,n)              (10) 

which was obtained by grouping the terms after setting   ci = ci−1 = c  in equation (9) (derivations 
in ref. 4 and Appendix D of ref. 5). 

 
 In each of the deflection equations (8)–(10), the deflection, 

� 

yi, at the sensing station, 

� 

xi, is expressed 
in terms of the inboard beam half depths (   c0, c1, c2, ..., ci ) and the associated inboard strains 

(  ε0, ε1, ε2, ..., εi ), including the values of {  ci , εi } at the strain-sensing station, 

� 

xi, where the deflection, 

� 

yi, is calculated. Because equations (8)–(10) contain no structural properties (they actually are contained 
implicitly in the strains), in the shape predictions of complex structures (for example, aircraft wings), one 
can avoid tedious computations of bending stiffness, EI, at different strain-sensing stations (cross 
sections). This feature is a characteristic of the Ko displacement theory. 

UNIFORM CANTILEVER STRAIGHT BEAMS 

In this report, only the uniform beams (  ci = ci−1 = c  = constant) are considered; therefore, only 
equation (10) is needed. To show the progression of the functional form of equation (10) with an 
increasing value of the index, i, deflection equation (10) is written out explicitly for different indices, i 
(strain-sensing station,  xi ), as 
 

  
y1 =

(Δl)2

6c
(2ε0 + ε1)+ y0 + Δl tanθ0                             (10a) 

  
y2 =

(Δl)2

6c
5ε0 + 6ε1 + ε2( ) + y0 + 2Δl tanθ0                         (10b) 

  
y3 =

(Δl)2

6c
8ε0 + 6(2ε1 + ε2)+ ε3⎡⎣ ⎤⎦ + y0 + 3Δl tanθ0                        (10c) 

  
y4 =

(Δl)2

6c
11ε0 + 6 3ε1 + 2ε2 + ε3( ) + ε4⎡⎣ ⎤⎦ + y0 + 4(Δl) tanθ0                     (10d) 

  
y5 =

(Δl)2

6c
14ε0 + 6 4ε1 + 3ε2 + 2ε3 + ε4( ) + ε5⎡⎣ ⎤⎦ + y0 + 5(Δl) tanθ0                    (10e) 

  
y6 =

(Δl)2

6c
17ε0 + 6 5ε1 + 4ε2 + 3ε3 + 2ε4 + ε5( ) + ε6⎡⎣ ⎤⎦ + y0 + 6(Δl) tanθ0                (10f) 
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y7 =

(Δl)2

6c
20ε0 + 6 6ε1 + 5ε2 + 4ε3 + 3ε4 + 2ε5 + ε6( ) + ε7⎡⎣ ⎤⎦ + y0 + 7(Δl) tanθ0                   (10g) 

  
y8 =

(Δl)2

6c
23ε0 + 6 7ε1 + 6ε2 + 5ε3 + 4ε4 + 3ε5 + 2ε6 + ε7( ) + ε8⎡⎣ ⎤⎦ + y0 + 8(Δl) tanθ0          (10h) 

…………………….. 

  

yn =
(Δl)2

6c
(3n −1)ε0 + 6 n − j( )ε j

j=1

n−1
∑ + εn

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+ y0 + n(Δl) tanθ0              (10i) 

 Equation (10) explicitly shows that the deflection,  yi , at the strain-sensing station, xi , is obtained by 

summing up all the inboard strains (  ε0, ε1, ε2, ..., εi ), including the strain,  εi , at the current strain-sensing 

station,  xi . For the cantilever beam, both the deflection,   y0 , and slope,  tanθ0 , at the fixed end 

(  x = x0 = 0 ) in equation (10) are zero (that is,   y0 = tanθ0 = 0 ). The terms,   y0 + (i)Δl tanθ0 , however, 
are purposely retained for completeness so that equation (10) can be extended to the deflection equations 
for the simply supported beam, for which the left-end deflection,   y0 , is zero (  y0 = 0 ), but the left-end 

slope,  tanθ0 , is nonzero ( tanθ0 ≠ 0 ). 

TWO–POINT SUPPORTED STRAIGHT BEAMS 
 Deflection equation (10) for uniform cantilever beams also can be used for shape predictions of 
uniform two-point supported beams (simple beams). Depending on the support conditions, equation (10) 
can be used directly or with modifications.   

Left End Simply Supported 

If the uniform two-point supported straight beam is simply supported at the left end (the right end 
may be either simply supported or clamped), the slope,  tanθ0 , at the left support (  x = x0 = 0 ) is no 

longer zero ( tanθ0(≠ 0) ). Also, the unknown nonzero slope,  tanθ0 , must be determined so that 
equation (10) can be modified for shape predictions of left-end simply supported beams. 

 

 Let  yi
B  be the deflection at the strain-sensing station,  xi , of the left-end simply supported straight 

beam. Then  yi
B  can be calculated from equation (10) ( yi  replaced by  yi

B ) with the nonzero slope term, 

 tanθ0(≠ 0) , retained: 
 

              

   

yi
B =

(Δl)2

6c
(3i −1)ε0 + 6 i − j( )ε j

j=1

i−1
∑ + εi

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Cantilever beam deflection equation
  

+ i(Δl) tanθ0
Nonzero 


    ;     (i = 1,2,3,...,n)           (11) 
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By setting the deflection,  yi
B , at the right support ( x = xn = l) to zero (that is,   yi

B = yn
B = 0 ), one can 

determine the unknown slope,  tanθ0 , at the left support (  xi = x0 = 0 ) from equation (11) as 
 

         
  
tanθ0 = −

1 
n(Δl)

yn                                 (12) 

in which  yn  is the deflection at the right end of the beam ( xi = xn = l) calculated from equation (10i), 

neglecting {  y0 + (i)Δl tanθ0 } terms. Namely,  
               

   

yn ≡
(Δl)2

6c
(3n −1)ε0 + 6 n − j( )ε j

j=1

n−1
∑ + εn

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Cantilever beam tip deflection (eq. (10i) neglecting 
{y0+n(Δl) tanθ0} terms) 

  

          (13) 

 In light of equation (12), deflection equation (11) for the left-end simply supported straight beam 
becomes 
 

             

   

yi
B = yi −

i
n

yn

To enforce

yn
B = 0 

at right 
support 
(i  =  n)


    ;       (i = 1,2,3,...,n)                       (14) 

in which  yi  is the cantilever beam deflection at the strain-sensing station,  xi , given by equation (10), 

setting  y0 = 0  and  tanθ0 = 0  (or from equation (13), setting the index n = i).  

Left End Clamped 

 If the uniform two-point supported straight beam is clamped at the left end (the right end can be either 

clamped or simply supported), the deflections,  yi
B , can be calculated from the cantilever-beam deflection 

equation (10) (replacing  yi  with  yi
B  and setting   y0 = 0  and  tanθ0 = 0 ) for the shape predictions 

(refs. 4–5). The calculated deflection,  yn
B , at the right support ideally should be zero ( yn = 0 ). If the 

calculated value of  yn
B  is not exactly zero (  yn ≠ 0 ), however, and it has a small value, a correction term
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must be added to equation (10) to enforce   yn
B = 0 . To enforce  yn

B  = 0 at the right end, and also to 

maintain a zero slope ( tanθ0 = 0 ) at the clamped left end, equation (14) can be modified by squaring the 
second term as 

            

   

yi
B = yi −

i
n

⎛
⎝⎜

⎞
⎠⎟

2
yn

To enforce 

yn
B = 0 

at right support 
(i  =  n)

 
    ;       (i = 1,2,3,...,n)                 (15) 

for the calculations of deflections,  yi
B , of the left-end clamped straight beam.  

BASICS OF CURVED BEAMS 
 The purpose of this section is to examine the deflection prediction errors involved in using the 
straight-beam deflection equation (10) for shape predictions of curved beams with different curvatures, 
and then to show how the prediction errors can be practically eliminated by introducing the curvature-
effect correction terms to equation (10). Table 1 lists the geometrical parameters and associated bending 
stresses for different curved beams with rectangular cross sections (taken from ref. 10, p. 148).   

 
Table 1. Curvature-related data for curved beams (ref. 10). 

        
R/c 

 kin   kout    δ / R  

1.2 2.89 0.57 0.305 
1.4 2.13 0.63 0.204 
1.6 1.79 0.67 0.149 
1.8 1.63 0.70 0.112 
2.0 1.52 0.73 0.090 
3.0 1.30 0.81 0.041 
4.0 1.20 0.85 0.021 
6.0 1.12 0.090 0.0093 
8.0 1.09 0.92 0.0052 

10.0 1.07 0.94 0.0033 
  
 In table 1, {R, c} are the radius of curvature and the half depth of the uniform curved beam, 
respectively,δ  is the neutral axis offset (distance between the neutral axis and centroidal axis) given by 
(ref. 10, p. 148; ref. 11, p. 183) 
 

             

  

δ = R −
2c

ln R + c
R − c

⎛
⎝⎜

⎞
⎠⎟

                      (16) 
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and { kin ,  kout } are the magnitudes of the normalized bending stresses on the concave and convex sides, 
respectively, of the curved beam defined as  
 

                            kin  
=
σ in
σ

                           (17) 

      kout  
 
=
σout
σ

                   (18) 

in which {  σ in , σout } are the magnitudes of the bending stresses on the concave and convex sides, 
respectively, and σ  is the magnitude of the surface bending stress of the equivalent straight beam. 
 
 The data listed in table 1 are plotted in figure 2. Note that the magnitude of the bending stress on the 
concave side ( kin ) is larger than the magnitude of the bending stress on the convex side ( kout ), and that 

the difference between  kin  and  kout  decreases as the radius of curvature factor,  R c , increases. Also 
notice that the neutral axis of the curved beam does not coincide with the centroidal axis, but it is shifted 
away from the centroidal axis toward the concave side by an offset distance, δ . As shown in figure 2, the 
curvature effect gradually decreases with an increasing radius of curvature factor,  R c , and practically 
diminishes at approximately R/c = 17 (  δ / R ≈  0.001). In the region R/c >17, one observes that  kin ≈ kout  
and  δ ≈ 0 , and the curved beam approaches the straight beam. Therefore, for the slightly curved beam 
with a radius of curvature factor, R/c, greater than 17 (R/c >17, fig. 2), the curved beam can be treated like 
a straight beam. Thus the straight-beam deflection equation (10) can be applied for shape predictions 
without introducing too many errors. The next section discusses the prediction errors of using the straight-
beam deflection equation (10) for shape predictions of curved beams with different curvatures. 

BASICS OF ANALYTICAL SHAPE PREDICTIONS 
 The present shape prediction study of curved beams is called an analytical shape prediction study. 
Instead of using the strain data measured by fiber optics, the Structural Performance And Resizing 
(SPAR) finite-element computer program (ref. 12) was used to generate the surface bending strain data 
and beam deflection curves (to be used as reference deflection curves). 
 

 The bending strains,  εi  (i = 0, 1, 2, 3,…, n), at the i-th strain sensors needed for deflection 

calculations (eq. (10)) were generated by converting the SPAR axial nodal stresses,  σ i  

(i = 0, 1, 2, 3,…, n), at the i-th strain sensor point, into the bending strains,  εi , through Hooke’s law (that 

is,  εi = σ i E ), in which E is the Young’s modulus. Alternatively, the bending strains,  εi , can also be 

generated from the axial length changes of the SPAR elements where the bending strains,  εi , are to be 
measured. This method was found to lose accuracy near the high slope regions of the deformed beam, 
however, and therefore was not used (ref. 4). 
 
 The bending strains generated by the SPAR program were then input to the straight-beam deflection 
equations to calculate  the theoretical deflection curves for comparison with the corresponding SPAR 
deflection curves (used as reference). The prediction errors caused by curvature effect also were 
examined. The final mathematical functional forms for the curvature-effect correction terms were 
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determined when the trial deflection curves best fit the corresponding SPAR deflection curves. The 
curvature-effect correction terms thus determined were then introduced to the straight-beam deflection 
equations to formulate the curved-beam deflection equations. 

SHAPE PREDICTIONS OF CANTILEVER CURVED BEAMS 
 Before the straight-beam deflection equation (10) is applied to the shape predictions of cantilever 
curved beams, the prediction errors resulting from equation (10) first must be examined. For the 
prediction error studies, cantilever curved beams with different curvatures, listed in the next section, were 
analyzed. 

Geometry 

 Table 2 lists the dimensions of five types of cantilever curved beams (the straight cantilever beam is 
listed as a limit case) for the shape prediction error studies. All the cantilever curved beams considered 
have a unit width, an identical curved length of l = 100 in., and an identical half depth of c = h/2 = 0.25 in. 
To maintain the same curved-beam length, the radius of curvature, R, was changed with the change of the 
curved-beam angle,  φn . 
     

Table 2. Dimensions of cantilever curved beams analyzed; width = 1 in. 
 

l, in. 
 φn , deg R, in. h, in. c, in. R/c 

100 0.0 (straight) ∞  0.50 0.25 ∞  
100 22.5 254.65 0.50 0.25 1,019 
100 45.0 127.32 0.50 0.25 509 
100 67.5 84.88 0.50 0.25 340 
100 90.0 (1/4 circle) 63.66 0.50 0.25 255 

 
 Based on the range of the radius of curvature factor, R/c, listed in table 2, the neutral axis offset, δ , 
calculated from equation (16) was negligible (fig. 2). Therefore, the neutral axis offset effect was ignored 
in the shape prediction analysis. 
 
 Figure 3 shows the undeformed and deformed shapes, generated from the SPAR program, of a typical 
cantilever curved beam with an inward radial load of P = 1 lb at the beam tip. There are n + 1 (n = 8) 
equally spaced strain sensors (i = 0, 1, 2, 3,…, n) installed on the lower surface of the beam, with the 
strain sensors (0, n) located at the fixed end (  x = x0 = 0 ) and at the free end ( x = xn = l ), respectively. 
 
 Figure 4 shows the strain curves, generated from the SPAR program, for the cantilever curved beams 
with different curvatures. Note from figure 4 that as the curvature increases (that is, an increasing curved-
beam angle,  φn ), the strain curve near the left fixed end continues to bend further downward from the 

straight strain line of the straight beam (  φn = 0 ). Also note from figure 4 that all the strain curves for the 
cantilever curved beams have very small curvatures, and any segment of the strain curve between the two 
adjacent strain-sensing stations is very close to a straight line, reinforcing the assumption of piecewise 
linear distributions of bending strains (eq. (5)) used in the formulation of the Ko displacement theory 
(refs. 4–6). The piecewise linear strain curves will converge to the corresponding actual curvilinear strain 
curves (fig. 4) as the number of strain-sensing stations is increased. For the fiber-optic strain sensors, the 
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number of strain-sensing stations can be increased very easily at will by simply reducing the sensing 
intervals of the Bragg gratings along the optical fiber (refs. 1–3). 

Uncorrected Deflections  

 To use the straight-beam deflection equation (10) for shape predictions of a cantilever curved beam, 
the axial coordinate, x, will now represent the tangential coordinate,  x = Rφ , of the curved beam, and 

� 

y  
will represent the radial displacement, which is considered positive when pointed inward. Because the 
radius of curvature factors, R/c = 255–1,019 (table 2), are much greater than 17 (beyond which the 
curvature effect diminishes), the neutral axis and centroidal axis of the cantilever curved beams are almost 
coincidental (fig. 2). Therefore, when equation (10) was used, the half depth, c, was not modified, 
because the neutral axis offset, δ , was practically zero ( δ ≈ 0 ). 
 

Figure 5 shows the deflection curves calculated for all the cantilever curved beams. The deflection 
curves calculated from equation (10) are represented by solid lines with solid circular symbols, and the 
deflection curves calculated from the SPAR program are represented by dotted lines with open circular 
symbols. Note that equation (10) overpredicts the curved-beam deflections calculated from the SPAR 
program, and the prediction error increases progressively with the increasing curved-beam angle,  φn . 

Namely, as the curvature increases (that is, increasing  φn ), the deflection curve calculated from 
equation (10) continues to bend upward further away from the corresponding SPAR deflection curve 
(considered as the reference deflection curve). 

Shape Prediction Errors 

 Let  yi
C  (i = 1, 2, 3, …, n) be the radial deflections calculated from the SPAR program (assumed to 

be the true radial deflections), and let  yi  (i = 1, 2, 3, …, n) be the deflections calculated from the straight-

beam deflection equation (10). Then the difference,   ei (≡ yi − yi
C ) , will be considered as the shape 

prediction error at the strain-sensing station,  xi . Table 3 lists the beam tip deflections, {  yn
C , yn } 

(maximum), of the cantilever curved beams together with the normalized beam tip shape prediction 

errors,  en yn
C , for different cantilever curved beams. Note that the prediction error,  en yn

C , at the 
curved-beam tip based on the straight-beam deflection equation (10) increases progressively with the 
increase in the curved-beam angle  φn , and reaches a maximum of 26.6437 percent at  φn = 90° for a 
quarter-circle beam. 
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Table 3. Comparison of beam tip deflections calculated from SPAR with those calculated from straight-
beam deflection equation (10) for different cantilever curved beams; l = 100 in.; c = 0.25 in.; P = 1 lb; 
n = 8. 
 

 φn , deg  yn
C , in. 

(SPAR) 
 yn , in. 
(eq. (10)) 

  en / yn
C ×100%  

(eq. (10) prediction error) 

0.0 (straight) 9.4714 9.4793 0.0834 
22.5 9.1834 9.3209 1.4951 
45.0 8.3693 8.8805 6.1000 
67.5 7.1645 8.1891 14.3011 
90.0 (1/4 circle) 5.7582 7.2924 26.6437* 

*Peak prediction error. 

Curvature-Effect Corrections 

 To reduce (or eliminate) the prediction errors from using the straight-beam deflection equation (10) 
for shape predictions of cantilever curved beams, a curvature-effect correction term must be introduced to 
modify equation (10). A trial mathematical function for the curvature-effect correction term was added to 
equation (10) to calculate the corrected deflection curve for each cantilever curved beam, which was then 
compared with the corresponding SPAR deflection curve (used as reference). After extensive searching, 
the most accurate mathematical functional form for the curvature-effect correction term was introduced to 
equation (10) to formulate the following modified deflection equation for calculations of deflections, 

  
yi  (i = 1, 2, 3, …, n), of the cantilever curved beams (established September 24, 2008). For   0 ≤ φn ≤ 90 ° 

arcs,  
 

               

   

yi = yi −
1

4.5
φn
90

⎛

⎝
⎜

⎞

⎠
⎟

2
i
n

⎛
⎝⎜

⎞
⎠⎟

4
yn

Curvature-effect
 correction term

  

     ;      (i = 1,2,3,...,n)            (19) 

in which  yi  (i =1, 2, 3, …, n) is to be calculated from the cantilever straight-beam deflection 

equation (10) (setting   y0 + (i)Δl tanθ0 = 0). Equation (19) is called the cantilever curved-beam deflection 

equation and is applicable for the whole range (  0 ≤ φn ≤ 90 °) of cantilever curved beams analyzed, 

including the special case of a straight beam ( φn = 0°), for which the curvature-effect correction term 

vanishes (that is, 
  
yi = yi ).  

Corrected Deflections  

 The corrected deflection curves calculated from the cantilever curved-beam deflection equation (19) 
are plotted in figure 6 for different curved beams. Note that the predicted deflection curves practically 
match the corresponding SPAR deflection curves, with pictorially inconspicuous prediction errors. This 
good agreement confirms the accuracy of the newly developed cantilever curved-beam deflection 
equation (19) for shape predictions of a whole range (  0 ≤ φn ≤ 90 °) of cantilever curved beams analyzed. 
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Reduced Shape Prediction Errors 

 Table 4 lists the corrected beam tip deflections, 
  
yn , together with the reduced prediction errors, 

   
en(≡ yn − yn

C ) . The uncorrected beam tip deflections,  yn , calculated from equation (10) and the 

associated prediction errors,   en(≡ yn − yn
C ) , taken from table 3 also are listed for comparison. Note that 

the corrected beam tip deflection errors, 
  
en yn

C , are merely 0.0849–1.4987 percent, which are almost 

negligible compared with the uncorrected beam tip deflection errors of  en yn
C  of 1.4951–26.6437 

percent. 
 

Table 4. Comparison of curved-beam tip deflections calculated from SPAR with those calculated from 
deflection equations (10) and (19) for different cantilever curved beams; l = 100 in.; c = 0.25 in.; P = 1 lb; 
n = 8. 
 

 φn , deg  yn
C , in. 

(SPAR) 
 yn , in. 
(eq. (10)) 

  en / yn
C ×100%  

(eq. (10) prediction error) 
  
yn  

(eq. (19)) 
   
en / yn

C ×100%  
(eq. (19) prediction error) 

0.0 9.4714 9.4793 0.0834 9.4793 0.0834 
22.5 9.1836 9.3209 1.4951 9.1914 0.0849 
45.0 8.3693 8.8805 6.100 8.3871 0.2127 
67.5 7.1645 8.1891 14.3011 7.1654 0.0126 
90.0 5.7582 7.2924 26.6437 5.6719 1.4987 

  
 For easy visualization, figure 7 shows the uncorrected and corrected curved-beam tip deflection 

prediction errors { en yn
C ,

   
en / yn

C } plotted as functions of the curved-beam angle,  φn , based on the data 
of table 4. Note that the prediction errors of using equation (10) increases progressively with increasing 

 φn . With curvature-effect corrections (eq. (19)), the beam tip prediction error curve is nearly a horizontal 
line because of a negligible error range (table 4). 

SHAPE PREDICTIONS OF TWO–POINT SUPPORTED CURVED BEAMS 
 The straight-beam deflection equations (14) and (15) may be reasonably accurate for shape 
predictions of simply supported and clamped shallow curved beams, respectively. For shape predictions 
of deeper curved beams, however, equations (14) and (15) could lose prediction accuracy. Therefore, 
curvature-effect correction terms are needed to modify both equations (14) and (15). The mathematical 
functional forms for the curvature-effect correction terms were determined with the aid of SPAR finite-
element analysis of different two-point supported curved beams listed in the next section. 

Geometry   

 Table 5 lists the dimensions of the two-point supported curved beams that were analyzed for 
establishing the mathematical functional forms of the curvature-effect correction terms. All the two-point 
supported curved beams that were analyzed have a unit width, an identical curved length of l = 200 in., 
and an identical half depth of c = h/2 = 0.25 in. To maintain the same curved-beam length, the radius of 
curvature, R, was changed with the change of the curved-beam angle,  φn . For the range of radius of 
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curvature factor, R/c, listed in table 5, the neutral axis offset factor,   δ / R , is practically zero according to 
the   δ / R  curve of figure 2. 
      

Table 5. Dimensions of two-point supported curved beams; width = 1 in. 
 

l, in.  φn , deg R, in. h, in. c, in. R/c 
200 0 (straight) ∞  0.50 0.25 ∞  
200 45 254.65 0.50 0.25 1,019 
200 90 (1/4 circle) 127.32 0.50 0.25 509 
200 135 84.88 0.50 0.25 340 
200 180 (1/2 circle) 63.66 0.50 0.25 255 
200 225 50.93 0.50 0.25 204 
200 270 (3/4 circle) 42.44 0.50 0.25 170 
200 315 36.38 0.50 0.25 146 
200 360 (full circle) 31.83 0.50 0.25 127 

 
 Figure 8 shows a typical two-point supported curved beam under two types of support conditions: 
(1) both ends clamped, and (2) both ends simply supported. Each two-point supported curved beam was 
subjected to an upward (inward) radial force of P = 2 lb at the curved beam midpoint. As shown in 
figure 8, n + 1 (n = 16) equally spaced strain sensors were installed along the outer surface of the curved 
beam. The corresponding strain-sensing stations (not shown) for the inner surfaces of the curved beam 
also are needed so that the outer and inner strains at the same beam cross sections can be averaged to 
eliminate possible axial strain components caused by beam curvature and support constraints. 

 Curvature-Effect Corrections 

 For shape predictions of curved beams, the straight-beam equation (14) (for both ends simply 
supported) or equation (15) (for both ends clamped) will generate too many prediction errors when the 
beam curvature increases. Therefore, the curvature-effect correction terms must be introduced to 
equations (14) and (15) to formulate the modified deflection equations for shape predictions of two-point 
supported curved beams. 
 
 The mathematical functional forms for the curvature-effect correction terms were extensively 
searched with the aid of the SPAR computer program. Namely, the SPAR program was used to generate 
both the bending strains and deflection curves of various two-point supported curved beams. The SPAR 
bending strains were then input to the straight-beam deflection equation (14) (for both ends simply 
supported) or equation (15) (for both ends clamped) to calculate the respective predicted deflection curves 
for comparison with the corresponding SPAR deflection curves (considered as reference deflection 
curves). The curvature correction terms expressed in trial mathematical functional forms were added to 
equation (14) or (15) to improve the curved-beam shape predictions. The curvature correction 
mathematical functional forms were continually modified until the predicted deflection curves converged 
toward the corresponding SPAR deflection curves. The reformulated equation (14) or (15) containing the 
final forms of the curvature-effect correction terms were then considered as the deflection equations for 
the two-point supported curved beams. 
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Both Ends Clamped 

 Figure 9 shows the deformed shapes, generated from the SPAR program, of various clamped curved 
beams including the straight beam (  0 ≤ φn ≤ 360 °), each of which was subjected to an upward central 

force of P = 2 lb. Note that in the range of   45 ≤ φn ≤ 270 °, the central regions of the curved beams caved 
in, but both the left and right regions buckled out because of stationary supports. The central inward 
bending diminished for the curved-beam angles,  φn = 315° and  φn  = 360°. 

Strain Curves  
 Figure 10 shows the strain curves, generated from  the SPAR program, for various clamped curved 
beams including the straight beam (  0 ≤ φn ≤ 360 °). The strain curve for the clamped straight beam 

( φn  = 0) has the classical V-shape consisting of two inclined straight lines. The strain curves for the 
clamped curved beams, however, have a rounded M-shape and stay quite close. Slight strain differences 
are visible in the two submit regions, and the strain curves fan out toward the left and right supports. 

Deflection Equations 
 After the mathematical functions were searched extensively for the best curvature-effect correction 
terms in light of the SPAR deflection curves, the modified deflection equations were formulated for 

calculations of the deflections, 
  
yi

B (i =1, 2, 3, …, n), of the clamped curved beams with curved-beam 

angles up to  φn = 360° (complete circle). The modified deflection equations for the whole range 

(  0 ≤ φn ≤ 360 °) of clamped curved beams are presented in the next paragraph. For completeness, the 
degenerated deflection equation for the clamped straight beam is written out separately. 
 
 For  φn = 0° (straight beam),   
    

   

yi
B ≡ yi

B = yi −
i
n

⎛
⎝⎜

⎞
⎠⎟

2
yn

To enforce 
yn

B= 0 at 
right support
(i = n).

 
     ;      (i = 1,2,3,...,n)       (20a) 

 For   0 ≤ φn ≤ 225 ° arcs (established July 14, 2008) (Chino Hills earthquake, July 29, 2008, 
11:40 a.m., scale 5.4),  
 

   

yi
B = yi −

i
n

⎛
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⎞
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⎛

⎝
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⎤

⎦

⎥
⎥
⎥

yn

Correction term to enforce yn
B=  0 at 

right support (i =  n).  

  

     ;     (i = 1,2,3,...,n)       (20b) 
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For   225 < φn ≤ 360 ° arcs (established July 17, 2008),      
    

   

yi
B = yi −

i
n

⎛
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⎥
⎥
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yn

Correction term to enforce yn
B=  0 at 

right support (i =  n).    

  

     ;     (i = 1,2,3,...,n)        (20c) 

 In equation (20),  yi  is the deflection of the cantilever straight beam given by equation (10) 

(setting  y0 = 0  and  tanθ0 = 0 ). Note that the functional forms of the curvature-effect correction terms are 

slightly different for different ranges of the curved-beam angle,  φn . For shape predictions of the clamped 
curved-beam case, only two deflection equations are needed to cover the whole range of curved-beam 
angles (  0 ≤ φn ≤ 360 °). 
 

 In equations (20b–c), the first correction term,   (i / n)2 , within the brackets is to cause the 
  
yi

B = yi  
curve to rotate with respect to the left support point to nullify the deflection at the right support (that is, 

   
yn

B = 0 ), thereby causing the left and right regions of the rotated theoretical deflection curve to fit the 
corresponding regions of the SPAR deflection curve. The second correction term with a sine function 
(eqs. (20b–c)) is to bend the central region of the rotated theoretical deflection curves upward to match 
the corresponding central regions of the SPAR deflection curves as shown in the following section.  

Deflection Curves 
 The strain data generated from the SPAR program (fig. 10) were input to the clamped curved-beam 
deflection equation (20) to generate the theoretical deflection curves. Figure 11 shows the deflection 
curves generated from the SPAR program compared with the theoretical deflections curves calculated 
from the straight-beam deflection equations (10) and (15), and also from the modified deflection 
equation (20), for the whole range of curved-beam angles (  0 ≤ φn ≤ 360 °). 
 

 For the straight beam ( φn = 0, fig. 11a), the deflection curves,  yi
B = yi  (cantilever straight-beam 

deflection equation (10)) and   yi
B = yi − i / n( )2 yn  (clamped straight-beam deflection equation (19a)), 

agree quite nicely with the SPAR deflection curve. Equation (10) ( yi
B = yi ), however, gives a pictorially 

inconspicuous nonzero deflection of  yn = 0.014285 in. at the right end. Keep in mind that the term, 

  (i / n)2 yn , in the deflection equation,   yi
B = yi − i / n( )2 yn , is to rotate (with slight distortions) the 

 yi
B = yi  curve (eq. (10)), with respect to the left support, to nullify the right-end deflection, 

  
yn

B , of the 

clamped straight beam (that is, to set 
   
yn

B = 0 ). For the curved beams (figs. 11b–i), the deflection curves, 

 yi
B = yi  (eq. (10)), produce marked prediction errors (in the range of  yn  = –0.10952 to –0.15475) at the 

right ends of the beam because of the curvature effect. With the term,   (i / n)2 yn , included, the 
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  yi
B = yi − i / n( )2 yn  curve (eq. (20a)) compares nicely with the corresponding SPAR deflection curve for 

the curved-beam angle,  φn  = 45° (fig. 11b). For curved-beam angles, 

� 

φn ≥ 90° (figs. 11c–i), however, 

the   yi
B = yi − i / n( )2 yn  curve can fit only the regions near both ends of the corresponding SPAR 

deflection curve, and the central region of the   yi
B = yi − i / n( )2 yn curve starts to diverge from the 

corresponding SPAR curve as  φn  increases, and reaches a maximum level at  φn  = 360°. When the sine 
function correction terms (eqs. (20b–c)) are introduced, the central region of each final theoretical 
deflection curve can be bent upward to converge toward the central region of the corresponding SPAR 
deflection curve (figs. 11b–i). 

Both Ends Simply Supported 

 Figure 12 shows the deformed shapes, generated from the SPAR program, of various simply 
supported curved beams including the straight beam (  0 ≤ φn ≤ 360 °), each of which was subjected to an 
upward central force of P = 2 lb. Similar to the clamped curved beams (fig. (9)), for the simply supported 
curved beams with the curved-beam angle,   45 ≤ φn ≤ 270 °, the central region of the curved beam bent 
inward, but both the left and right regions bulged out because of stationary supports. For the curved-beam 
angles,  φn  = 315° and  φn = 360°, both the left and right regions bulged out because of stationary 
supports, but the central region did not cave in.  

Strain Curves  
 Figure 13 shows the strain curves, generated from the SPAR program, for different simply supported 
curved beams with a whole range of curved-beam angles ( φn = 0–360°). The strain curve for the straight 

beam ( φn  = 0) again has the classical V-shape, consisting of two inclined straight lines. The strain curves 
for the curved beams, however, have a rounded M-shape and are very similar. Slight differences in the 
strain curves are magnified in the left and right summit regions.  

Deflection Equations  
 The strain data generated from the SPAR program (fig. 13) were used to calculate the theoretical 
deflection curves for comparison with the corresponding reference SPAR deflection curves. After 
mathematical functions were searched extensively for the curvature-effect correction terms in light of the 
reference SPAR deflection curves, modified deflection equations were established for calculations of 

deflections, 
  
yi

B (i =1, 2, 3, …, n), of simply supported curved beams with a whole range of curved-beam 

angles (  0 ≤ φn ≤ 360 °). The modified deflection equations for simply supported curved beams are 
presented in this section. For completeness, the deflection equation for the simply supported straight-
beam case ( φn = 0°) is written out separately.  
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 For  φn = 0° (straight-beam case), 

   

   

yi
B ≡ yi

B = yi −
i
n

yn

To enforce 
yn

B= 0 at 
right support
(i = n)


     ;       (i = 1,2,3,...,n)         (21a) 
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 For  φn = 90° arc, 
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  

     ;      (i = 1,2,3,...,n)          (21c) 

 For 135 ≤ φn ≤  225° arcs, 
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  

     ;     (i = 1,2,3,...,n)              (21d) 
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 For  φn = 315° arc, 
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     ;      (i = 1,2,3,...,n)         (21f) 

 For  φn = 360° ring, 
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  

     ;      (i = 1,2,3,...,n)       (21g) 

 Note that six different deflection equations are needed for the simply supported curved beams to 
cover the whole range of curved-beam angles (  0 ≤ φn ≤ 360 °). Remember that for the clamped curved 
beams, only two deflection equations are needed to cover the whole range of curved-beam angles 
(  0 ≤ φn ≤ 360 °). 

Deflection Curves 

Figure 14a shows the deflection curve, 
  
yi

B = yi
B = yi − i n( ) yn , for the simply supported straight 

beam (eq. (21a)) compared with the deflection curve generated from the SPAR program. The two 
deflection curves are extremely close, showing the prediction accuracy of equation (21a). Figures 14b–i 
compare the theoretical and SPAR deflection curves for the curved-beam angles,  φn = 45–360°. For the 

simply supported curved beams, the deflection curves, 
  
yi

B = yi
B = yi − i n( ) yn , calculated from the 

straight-beam equation (21a) are fairly close to the corresponding SPAR deflection curves up to 

 φn  = 135°, and the prediction error (underprediction) gradually increases with increasing  φn , reaching a 

maximum at  φn = 360°. 
 

Remember that the term,   (i / n)yn , in the deflection equation, 
  
yi

B = yi
B = yi − i n( ) yn  (eq. (21a)), is 

to shift the 
  
yi

B = yi  curve upward proportionally with respect to the left support point to bring the right 

support deflection, 
  
yn

B , to zero (
   
yn

B = 0 ). For curved beams, this shift causes the 

  
yi

B = yi
B = yi − i n( ) yn  curves to fit only the left and right regions of the corresponding SPAR 

deflection curves. The central regions remain to be corrected. When the sine correction terms    
(eqs. (21b–g)) are added, the central regions of the final deflection curves could be bent upward to fit the 
central regions of the corresponding SPAR deflection curves quite well. 
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GENERIC CREW EXPLORATION VEHICLE CURVED STRUCTURES 
 The new deflection equations developed for cantilever curved beams (eq. (19)) and for two-point 
supported curved beams (eqs. (20) and (21)) will now be applied to shape predictions of the generic crew 
exploration vehicle (CEV) curved structures. As shown in figure 15, the windward shallow spherical wall 
of the generic CEV is fabricated with dual honeycomb sandwich walls (exterior composite wall and 
interior aluminum wall). Both walls have an identical depth of 2c = 0.5 in. and are separated by a 2-in. 
gap. The exterior wall region chosen for the shape prediction analysis has a radius of curvature of 
R = 245.75 in., and subtends an azimuth angle of 22°, which excludes the rounded toroidal shoulder 
regions. The shape predictions of the CEV outer shell (with the thermal protection system removed) can 
start from the shape predictions of the CEV curved beam embedded in the exterior wall of the CEV. Two 
types of CEV curved beams were analyzed: (1) cantilever curved beam, and (2) two-point supported 
curved beam. 

SHAPE PREDICTIONS OF CREW EXPLORATION VEHICLE 
CANTILEVER CURVED BEAMS 

 Figure 16 shows the SPAR model of the CEV cantilever curved beam, which is a cutout of the 
generic CEV windward exterior wall along its radius (fig. 15). An inward radial load of P = 1 lb is 
applied at the beam tip. There are n + 1 (n = 8) equally spaced strain sensors (i = 0, 1, 2, 3,…, n) (fig. 16) 
designated on the lower surface of the CEV cantilever curved beam, with strain sensors (0, n) located at 
the fixed end (  x = x0 = 0 ) and at the free end ( x = xn = l ), respectively. 
 
 The CEV cantilever curved beam has a curved length of l = 94.36 in., a curved-beam angle of 

 φn = 22°, and a unit width. Table 6 provides the complete dimensions of the CEV cantilever curved beam, 
including the dimensions of an equivalent cantilever straight beam (same length, depth, and width as the 
CEV cantilever curved beam).  

 
Table 6. Dimensions of CEV cantilever curved beam and equivalent straight beam. 

 
Beam l, in. 

 φn , deg R, in. h, in. c, in. 

CEV cantilever 94.3612 22.0 254.75 0.50 0.25 
Equivalent straight 94.3612 0.0 ∞  0.50 0.25 

 
 Based on the geometrical data provided in table 6, the radius of curvature factor,  R c , for the CEV 
curved beam is  R c =

� 

983, which is far greater than the curvature-effect limit of   R c = 17 (fig. 2), 
beyond which the curvature effect diminishes. Thus in light of figure 2, the CEV curved beam can be 
classified as a very shallow curved beam. 
 
 Also based on the data in table 6, the neutral axis offset, δ , of the CEV curved beam was calculated 
from equation (16) to be δ  = 0.049754 in., which gives the normalized neutral axis offset of 

� 

δ /R  = 
0.000202. This value is far too small to appear in table 1. Thus the neutral axis of the CEV curved beam 
is practically coincidental with the centroidal axis (see fig. 2). Therefore, in the calculations of theoretical 
deflection curves, the neutral axis offset effect was neglected.  
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Strain Curves 

 Figure 17 shows the curves for the bending strains,  εi , generated from the SPAR program, for the 
lower surface of the CEV cantilever curved beam and the equivalent straight beam. The strain curve for 
the CEV cantilever curved beam is very close to that of the equivalent straight beam, for which the strain 
curve is a straight line with maximum strain at the built-in end and tapering down to zero at the beam tip. 

Deflection Curves 

 The strain data, generated from the SPAR program, of figure 17 were used as inputs to the cantilever 
curved-beam deflection equation (19) for deflection calculations for the CEV cantilever curved beam. 
Table 7 compares the calculated deflections with the deflections generated from the SPAR program for 
the CEV cantilever curved beam.  
 
Table 7. Comparison of deflections calculated from SPAR with those calculated from curved-beam 
deflection equation (19) for the CEV cantilever curved beam. 
 

  
yi

B     
y0

B  
(fixed 
end) 

   
y1

B  
   
y2

B  
   
y3

B   
y4
B     

y5
B  

   
y6

B  
   
y7

B     
y8

B  
(free end) 

SPAR 0.0000 0.1747 0.6687 1.4375 2.4335 3.6096 4.9166 6.3055 7.7265 
Eq. (19), 
curved 0.0000 0.1743 0.6675 1.4343 2.4289 3.5986 4.9171 6.3183 7.7624 

Difference, 
percent 0.0000 0.2290 0.1795 0.2225 0.1890 0.3047 0.0102 0.2030 0.4646 

   
For the prediction error comparison, table 8 compares the deflections calculated from the straight-

beam deflection equation (10) with those calculated from the SPAR program for the equivalent cantilever 
straight beam.  
 
Table 8. Comparison of deflections calculated from SPAR with those calculated from straight-beam 
deflection equation (10) for the equivalent straight cantilever beam. 
 

 yi    y0  
(fixed 
end) 

  y1    y2    y3    y4    y5    y6    y7    y8  
(free end) 

SPAR 0.0000 0.1787 0.6834 1.4684 2.4863 3.6910 5.0355 6.4734 7.9578 
Eq. (10), 
straight 0.0000 0.1788 0.6841 1.4694 2.4881 3.6934 5.0388 6.4776 7.9631 

Difference, 
percent 0.0000 0.0560 0.1024 0.0681 0.0724 0.0650 0.0655 0.0649 0.0666 

  
Note from table 7 that based on the cantilever curved-beam deflection equation (19), the prediction 

error at the tip of the CEV cantilever curved beam is only 0.4646 percent. For the equivalent straight 
cantilever beam (table 8), the prediction error at the beam tip based on equation (10) is even smaller, in 
the amount of 0.0666 percent. 
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 The deflection data of tables 7 and 8 are plotted in figure 18 for visual comparison. The deflection 
curves, calculated from the cantilever curved-beam deflection equation (19) and from the straight-beam 
deflection equation (10), fall practically on top of the corresponding SPAR deflection curves. The small 
number of prediction errors listed in tables 7 and 8 are pictorially inconspicuous in figure 18. The 
excellent agreement between the theoretical deflection curves and the corresponding SPAR deflection 
curves validates the high accuracy of both the cantilever curved-beam deflection equation (19) and the 
cantilever straight-beam deflection equation (10). 

SHAPE PREDICTIONS OF CREW EXPLORATION VEHICLE  
TWO–POINT SUPPORTED CURVED BEAMS 

 Figure 19 shows the CEV two-point supported curved beam, which is a cutout of the generic CEV 
windward exterior wall along its diameter (rounded shoulder regions excluded). The CEV two-point 
supported curved beam is a union of the CEV cantilever curved beam and its mirror image. An inward 
radial load of P = 2 lb is applied at the beam center (symmetrical loading condition). The CEV two-point 
supported curved beam has a curved length of l = 188.72 in., which subtends a curved-beam angle of 

 φn = 44°, and has a unit width. Table 9 provides the complete dimensions of the CEV two-point 
supported curved beam and an equivalent straight beam (same length and depth as the CEV curved 
beam).     
  

Table 9. Dimensions of CEV two-point supported curved beam and equivalent straight beam. 
 

Beam l, in. 
 φn , deg R, in. h, in. c, in. 

CEV full 188.72 44.0 254.75 0.50 0.25 
Straight 188.72 0.0 ∞  0.50 0.25 

 
 There are n + 1 (n = 16) equally spaced strain sensors (i = 0, 1, 2, 3, …, n) installed on the curved-
beam convex surface. The corresponding strain-sensing stations (not shown) for the curved-beam concave 
surface also are needed so that a pair of the convex and concave surface strains can be averaged to 
eliminate possible axial strain components caused by beam curvature and stationary supports. 
 
 In the shape prediction analysis of the CEV two-point supported curved beam, the following four 
types of support conditions were considered (fig. 19): 
 1.  Both ends clamped and free to move along beam curve (CC-free) 
 2.  Both ends clamped and stationary (CC-fixed) 
 3.  Both ends simply supported and free to move along beam curve (SS-free)  
 4.  Both ends simply supported and stationary (SS-fixed)  
 
 As discussed previously, the neutral axis of the CEV curved beam is practically coincidental with the 
centroidal axis (that is,  δ ≈ 0 , fig. 2). Therefore, like the CEV cantilever curved-beam case, the neutral 
axis offset effect was ignored in the calculations of theoretical deflection curves of the CEV two-point 
supported curved beam.  

Both Ends Clamped  

 Figure 20 shows the deformed shapes of the CEV clamped curved beam subjected to an inward radial 
central force of P = 2 lb. For the CC-free case (fig. 20a), the deformed shape is slightly wavy, because the 
supports are allowed to move tangentially. For the CC-fixed case (fig. 20b), the deformed shape is wavier 
because of stationary support constraints. 
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 Because the CEV curved-beam angle,  φn = 44°, falls within the range,   0 ≤ φn ≤ 225°, the clamped 
curved-beam deflection equation (20b) was used for the shape predictions of the CEV curved beam with 
both CC-free and CC-fixed support conditions. Equation (20b) is rewritten as 
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  

     ;      (i = 1,2,3,...,n)          (22) 

Case of Both Ends Clamped and Free to Move Along Beam Curve (CC-Free) 

 Figure 21 shows the strains,  εi , generated from the SPAR program, for the CEV two-point supported 
curved beam and the equivalent straight beam under the CC-free support condition. The two strain curves 
are V-shaped and very close, indicating that the CEV curved beam behaves almost like a straight beam 
under the CC-free support condition. The strain data, generated from the SPAR program, of figure 21 
were used to calculate the deflections for the CEV CC-free curved beam and CC-free equivalent straight 
beam using deflection equations (22) and (10), respectively.  Table 10 compares the deflections 
calculated from the SPAR program with those calculated from the curved-beam deflection equation (22) 
for the CEV CC-free curved beam. 
 
Table 10. Comparison of deflections calculated from SPAR with those calculated from deflection 
equation (22) for the CEV CC-free curved beam. 
    

  
yi

B     
y0

B  
(left end)    

y1
B  

   
y2

B  
   
y3

B   
y4
B     

y5
B  

   
y6

B  
   
y7

B     
y8

B  
(center) 

SPAR 0.0000 0.0882 0.3150 0.6351 1.0021 1.3693 1.6898 1.9164 2.0025 
Eq. (22), 
curved 0.0000 0.0838 0.3056 0.6200 0.9812 1.3427 1.6581 1.8811 1.9655 

Difference, 
percent 0.0000 4.9887 2.9841 2.3776 2.0856 1.9426 1.8760 1.8420 1.8477 

|<----------------------------------------------Left half of CEV CC-free curved beam---------------------------------------> 
 
 Table 11 compares the deflections calculated from the SPAR program with those calculated from the 
straight-beam deflection equation (15) for the CC-free equivalent straight beam. Note from tables 10 and 
11 that the prediction error at the center (  y8 ) of the CEV CC-free curved beam is only 1.8477 percent 

compared with the miniscule prediction error of 0.2471 percent at the center (  y8 ) of the CC-free 
equivalent straight beam. 
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Table 11. Comparison of deflections calculated from SPAR with those calculated from deflection 
equation (15) for the CC-free equivalent straight beam. 

  

  
yi

B     
y0

B  
(left end)    

y1
B  

   
y2

B  
   
y3

B   
y4
B     

y5
B  

   
y6

B  
   
y7

B     
y8

B  
(center) 

SPAR 0.0000 0.0868 0.3121 0.6298 0.9936 1.3571 1.6741 1.8982 1.9833 
Eq. (15), 
straight 0.0000 0.0852 0.3103 0.6287 0.9939 1.3593 1.6779 1.9031 1.9882 

Difference, 
percent 0.0000 1.8433 0.5767 0.1747 0.0302 0.1621 0.2270 0.2581 0.2471 

  |<---------------------------------------------Left half of CEV CC-free straight beam---------------------------------------> 
 
 Figure 22 shows the deflection curves calculated from the data of table 10 for the CEV CC-free 
curved beam. Because of graphical proximity, and to avoid plot congestion, the deflection curve for the 
equivalent straight beam was not plotted from the data in table 11. The predicted deflection curve based 
on equation (22) is represented by a solid line with solid circular symbols, whereas the deflection curve 
calculated from the SPAR program is represented by a dotted line with open circular symbols. Figure 22 

also shows the deflection curve, 
  
yi

B = yi , calculated from the straight-beam deflection equation (10), 
which is represented by a dashed-dotted line with solid triangular symbols. Note that the deflection curve, 

  
yi

B = yi , gives relatively good shape prediction on the left-half region of the beam. The prediction error, 
however, gradually increases beyond the midpoint of the beam and reaches a maximum value of 

 yn  = 0.241682  in. at the right support. With the curvature effect introduced (eq. (22)), the predicted 
deflection curve converges to the SPAR deflection curve. The accuracy of the shape predictions may be 
optimized by slightly altering the coefficient (4/p) of the sine correction function in equation (22). 

Case of Both Ends Clamped and Stationary (CC-Fixed) 

 Figure 23 shows the strains,  εi , generated from the SPAR program, for the CEV two-point supported 
curved beam under the CC-fixed support condition. Because of stationary supports, the strain curve has a 
rounded M-shape. The strain data of figure 23 were used to calculate the deflections using the curved-
beam deflection equation (22). Table 12 compares the deflections calculated from the SPAR program 
with those calculated from the curved-beam deflection equation (22) for the CEV CC-fixed curved beam. 

Note that the prediction error at the center (
   
y8

B ) (maximum deflection point) of the CEV CC-fixed curved 
beam is only 0.2349 percent, showing the degree of accuracy of deflection equation (22) formulated for 
clamped curved beams. 
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Table 12. Comparison of deflections calculated from SPAR with those calculated from deflection 
equation (22) for the CEV CC-fixed curved beam. 
 

  
yi

B     
y0

B  
(left end)    

y1
B  

   
y2

B  
   
y3

B   
y4
B     

y5
B  

   
y6

B  
   
y7

B     
y8

B  
(center) 

SPAR 0.0000 –0.0168 –0.0457 –0.0621 –0.0529 –0.0157 –0.0421 0.0998 0.1277 

Eq. (22)  0.0000 –0.0167 –0.0454 –0.0619 –0.0525 –0.0149 0.0425 0.1000 0.1274 

Difference, 
percent 0.0000 0.5952 0.6565 0.3221 0.7561 2.6144 0.9501 0.2004 0.2349 

     |<-------------------------------------------Left half of CEV CC-fixed curved beam --------------------------------------> 
Note: Inward deflection is considered positive; outward deflection is negative. 
 

Figure 24 shows the deflection curves for the CEV CC-fixed curved beam plotted from the data listed 
in table 12. The deflection curve calculated from equation (22) is represented by a solid line with solid 
circular symbols, whereas the deflection curve calculated from the SPAR program is represented by a 

dotted line with open circular symbols. Also, the deflection curve, 
  
yi

B = yi , calculated from the straight-
beam deflection equation (10) is represented by a dashed-dotted line with solid triangular symbols. Note 
that the straight-beam deflection equation (10) induces a maximum prediction error of  yn = –0.097526 in. 
at the right support. With the curvature effect considered, the deflection curve calculated from 
equation (22) pictorially agrees with the SPAR deflection curve, confirming the high accuracy of the 
curved-beam deflection equation (22) formulated for clamped curved beams.  

Both Ends Simply Supported 

 Figure 25 shows the deformed shapes, generated from the SPAR program, of the CEV simply 
supported curved beam under an inward radial central load of P = 2 lb. For the SS-free case (fig. 25a), the 
deformation is a shallow bow shape, because the supports are allowed to move tangentially. For the 
SS-fixed case (fig. 25b), the deformed shape is wavier because of the stationary support points. 
 
 Because the CEV two-point supported curved beam has a curved-beam angle ( φn  = 44°) very close 

to  φn  = 45°, in the calculations of the deflections for both the SS-free and SS-fixed cases, the curved-

beam deflection equation (20b) ( φn = 45°), rewritten as equation (23), was used:  
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⎠
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⎥
⎥
⎥

yn

Correction term to enforce yn
B= 0 

at right support (i = n).  

  

    ;      (i = 1,2,3,...,n)       (23) 

Case of Both Ends Simply Supported and Free to Move Along Beam Curve (SS-Free) 

 Figure 26 shows the strains,  εi , generated from the SPAR program, for the CEV two-point supported 
curved beam and for the equivalent straight beam under the SS-free support condition. The two strain 
curves are V-shaped and are fairly close, but not as close as those in the CC-free support case (fig. 21). 
The strain data of figure 26 were used to calculate the deflection curves for the CEV SS-free curved beam 
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using deflection equation (23). Table 13 compares the deflections calculated from the SPAR program 
with those calculated from the curved-beam deflection equation (23) for the CEV SS-free curved beam. 
 
Table 13. Comparison of deflections calculated from SPAR with those calculated from deflection 
equation (23) for the CEV SS-free curved beam. 
 

  
yi

B     
y0

B  
(left end) 

  
   
y1

B    
   
y2

B    
   
y3

B     
y4
B    

   
y5

B    
   
y6

B    
   
y7

B    
   
y8

B  
 (center) 

SPAR 0.0000 1.6723 3.2909 4.8022 6.1534 7.2916 8.1664 8.7264 8.9242 
Eq. (23), 
straight 0.0000 1.6566 3.2600 4.7573 6.0960 7.2242 8.0911 8.6465 8.8419 

Difference, 
percent 0.0000 0.9388 0.9390 0.9350 0.9328 0.9244 0.9221 0.9156 0.9222 

                |<-------------------------------------------Left half of CEV SS-free curved beam----------------------------------------> 
 

The strain data of figure 26 were used as inputs to calculate the deflections for the SS-free equivalent 
straight beam, using both the SPAR program and deflection equation (14) (for simply supported straight 
beams). Table 14 compares these deflections. Note from tables 13 and 14 that the prediction error of 

0.9222 percent at the center (
   
y8

B ) of the SS-free CEV curved beam is slightly larger than the 
corresponding prediction error of 0.8214 percent for the SS-free equivalent straight beam. 
 
Table 14. Comparison of deflections calculated from SPAR with those calculated from deflection 
equation (14) for SS-free equivalent straight beams. 
 

  
yi

B     
y0

B  
(left end) 

  
   
y1

B   
   
y2

B  
   
y3

B   
y4
B   

   
y5

B  
   
y6

B  
   
y7

B     
y8

B  
 (center) 

SPAR 0.0000 1.4737 2.9011 4.2356 5.4319 6.4425 7.2220 7.7232 7.9010 

Eq. (14)  0.0000 1.4865 2.9262 4.2721 5.4779 6.4969 7.2823 7.7874 7.9659 

Difference, 
percent 0.0000 0.8686 0.7652 0.8617 0.8468 0.8444 0.8349 0.8313 0.8214 

                 |<-----------------------------------------------Left half of SS-free equivalent straight beam------------------------------> 
 

  Figure 27 shows the deflection curves based on the data listed in table 13 for the CEV SS-free curved 
beam. Because of data proximity and to avoid plot congestion, deflection curves for the SS-free 
equivalent straight beam were not plotted from the data in table 14. The predicted deflection curve based 
on the curved-beam deflection equation (23) is represented by a solid line with solid circular symbols, 
whereas the deflection curve calculated from the SPAR program is represented by a dotted line with open 
circular symbols. The proximity of the predicted and SPAR deflection curves validates the accuracy of 
the deflection equation (23) formulated for simply supported curved beams. 
 

  For comparison, figure 27 also shows the deflection curve, 
  
yi

B = yi
B = yi − i n( ) yn  (eq. (14) for 

simply supported straight beams), represented by a dashed-dotted line with solid triangular symbols, to 
demonstrate the prediction accuracy. Note that for the SS-free support case, the deflection curve 
calculated from deflection equation (14) lies slightly under the SPAR deflection curve in the central 
region of the beam.  
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Case of Both Ends Simply Supported and Stationary (SS-Fixed) 

 Figure 28 shows the strains,  εi , generated from the SPAR program, for the CEV two-point supported 
curved beam under the SS-fixed support condition. The strain curve has a distorted M-shape instead of a 
V-shape (as in the straight-beam case) because of the curvature effect and support constraints. The strain 
data of figure 28 were used to calculate the deflections for the CEV SS-fixed curved beam using the 
SPAR program and the curved-beam deflection equation (23). Table 15 presents the resulting deflection 
data. The radial inward deflections are defined as positive, and the outward deflections are negative. 
 
Table 15. Comparison of deflections calculated from SPAR with those calculated from curved-beam 
deflection equation (23) for the CEV SS-fixed curved beam. 
 

  
yi

B     
y0

B  
(left end)    

y1
B  

   
y2

B  
   
y3

B   
y4
B     

y5
B  

   
y6

B  
   
y7

B     
y8

B  
(center) 

SPAR 0.0000 0.0882 0.3150 0.6351 1.0021 1.3693 1.6898 1.9164 2.0025 
Eq. (22), 

curved 0.0000 0.0838 0.3056 0.6200 0.9812 1.3427 1.6581 1.8811 1.9655 

Difference, 
percent 0.0000 439887 2.9841 2.3776 2.0856 1.9426 1.8760 1.8420 1.8477 

     |<----------------------------------------------Left half of CEV SS-fixed curved beam--------------------------------------> 
Note:  Inward deflection is considered positive; outward deflection is negative. 

 
Figure 29 shows the deflection curves based on the data listed in table 15 for the CEV SS-fixed 

curved beam. The theoretical deflection curve based on the curved-beam deflection equation (23) (solid 
line with solid circular symbols) is fairly close to the SPAR deflection curve (dotted line with open 

circular symbols). In figure 29, the deflection curve, 
  
yi

B = yi
B = yi − i n( ) yn , calculated from the 

straight-beam deflection equation (14) (dashed-dotted line with solid triangular symbols) somewhat 
overpredicts the deflections in the central region of the beam. 

 
 To improve the shape predictions for the SS-fixed case, the curved-beam deflection equation (23) can 
be modified to the following form:   
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Correction term to enforce yn
B= 0 

at right support (i = n).   

  

     ;      (i = 1,2,3,...,n)          (24) 

Based on the modified curved-beam deflection equation (24), the deflections of the CEV SS-fixed curved 
beam were recalculated, and the resulting deflection data are listed in table 16.  
 



 

 30 

Table 16. Comparison of deflections calculated from SPAR with those calculated from modified 
curved-beam deflection equation (24) for the CEV SS-fixed curved beam. 
 

  
yi

B     
y0

B  
(left end)    

y1
B  

   
y2

B  
   
y3

B   
y4
B     

y5
B  

   
y6

B  
   
y7

B     
y8

B  
(center) 

SPAR 0.0000 –0.0568 –0.0913 –0.0925 –0.0581 0.0059 0.0849 0.1560 0.1880 
Eq. (24), 

curved 0.0000 –0.0570 –0.0918 0.0930 –0.0588 0.0046 0.0832 0.1545 0.1868 

Difference, 
percent 0.0000 0.3521 0.5476 0.5405 1.2048 22.0339* 2.0024 0.9615 0.6383 

|<--------------------------------------------Left half of CEV SS-fixed curved beam----------------------------------------> 
Note: Inward deflection is positive; outward deflection is negative. 
*Caused by a small number divided by a small number. 
 

Note from table 16 that when the modified deflection equation (24) is used, the prediction error at the 
beam center (  y8 ) for the SS-fixed case could be reduced to nearly one-tenth (1/10) that when equation 

(23) is used (table 15). In table 16, the large error of 22.0339 percent for the deflection, 
   
y5

B , is caused by 
a small number divided by another small number, and it is insignificant. 

 
 Figure 30 compares the deflection curves calculated from the modified curved-beam deflection 
equation (24) with those calculated from the SPAR program using the data listed in table 16. The 
predicted deflection curve practically falls on top of the SPAR deflection curve, demonstrating the 
accuracy of the modified curved-beam deflection equation (24) established for the CEV SS-fixed curved 
beam.  

SINGLE–POINT COLLOCATIONS 
 The curved-beam deflection equations (20) and (21) formulated for two-point supported curved 
beams could provide sufficiently accurate shape predictions. For further optimization of shape prediction 
accuracy, however, the coefficients of the sine correction functions appearing in the curved-beam 
deflection equations (20) and (21) can be modified slightly by applying the single-point collocation 
method discussed in this section. 

Clamped Curved Beams 

 As shown in figure 11, the deflection curves generated from the curved-beam deflection equation (20) 
practically agree with the respective SPAR deflection curves (references). For optimum prediction 
accuracy, however, a single-point collocation method can be applied to further improve the correction 
functions in equation (20). Equations (20b–c) can be unified into a general form for   0 ≤ φn ≤ 360 ° arcs as 
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    ;    (i = 1,2,3,...,n)
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in which equation (20a) is used, and 

� 

η (in.) is the amplitude of the sine correction function. When the 
single-point collocation method was applied, the collocation point was chosen to be at the midpoint of the 
beam (load application point) where the deflection is at a maximum. 
 

 Let {  yn/2
C ,   yn/2

B } be the deflections at the center of the two-point supported curved beam calculated 
from the SPAR program and from the two-point supported straight-beam deflection equation (20a) or 

(21a), respectively, then the midpoint deflection differential   ( yn/2
C − yn/2

B )  will give the value of 

� 

η. 
Namely,  

            η ≡ yn/2
C − yn/2

B             (26) 

Table 17 lists the values of 

� 

η calculated from equation (26) for all the clamped curved beams.  
 
Table 17. Central deflections and amplitude of sine correction functions, η , for different clamped curved 
beams; n = 16. 
 

 φn , deg   yn/2
C , in. 
(SPAR) 

  yn/2
B , in. 

(  = yi − i / n( )2 yn ) 

η , in. 

(  yn/2
C − yn/2

B )   η / yn/2
C , percent 

0 (straight) 2.35078 2.365080 –0.014300* –0.6083** 
45 0.15144 0.147520 0.003920 2.5885 
90 (1/4 circle) 0.15317 0.143866 0.009304 6.0743 

135 0.15974 0.137798 0.021942 13.7361 
180 (1/2 circle) 0.17012 0.126289 0.043831 25.7648 
225 0.18499 0.105753 0.079237 42.8331 
270 (3/4 circle) 0.20548 0.087697 0.117783 52.4543 
315 0.23336 0.053076 0.180284 77.2557 
360 (full circle) 0.27090 –0.001092 0.271992 100.4031 
*Negative for straight beam. 
** Negligible. 

  
 Note in table 17 that the value of η  for the straight beam (

   φn = 0 ) is negative, because the right-end 

deflection,  yn , is positive (fig. 11a). Also note that the magnitude of η  for the straight beam (
   φn = 0 ) is 

greater than those for the   φn = 45 –90° curved beams. When η  is normalized by the corresponding SPAR 

central deflection,  yn/2
C , however, the magnitude of   η / yn/2

C  for the straight beam (
   φn = 0 ) becomes a 

negligible minimum among all cases. 
 
 Figure 31 shows the plot of the η  data listed in table 17 as a function of the curved-beam angle,  φn . 

When the η -curve of figure 31 is used, the value of η  for any curved-beam angle,  φn , can be established 
graphically. When the values of η  listed in table 17 are used, the deflection curves calculated from the 
general curved-beam deflection equation (25) match perfectly with the corresponding SPAR deflection 
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curves of figure 11 for all the curvature angles (  0 ≤ φn ≤ 360 °). For graphical visualization of the 

deflection curves, only a typical case of a   φn = 180 ° clamped curved beam is shown in figure 32. Note 

that the deflection curve, 
   
yi

B = yi
B = yi − i n( )2 yn  (eq. (20a) for clamped straight beams), lies somewhat 

below the SPAR deflection curve in the center region of the beam. With the single-point collocation, the 
corrected deflection curve calculated from equation (25) matches precisely with the SPAR deflection 
curve. Note that the values of η  can also be determined with the aid of experimentally generated 
deflection curves instead of using the deflection curves generated from the SPAR program. 

Simply Supported Curved Beams 

 The displacement equations (21b–g) for the simply supported curved beam can also be unified into a 
general form, with η representing the amplitude of sine correction functions for all the curved-beam 

angles (
   0 ≤ φn ≤ 360 ), as 
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     ;      (i = 1,2,3,...,n)      (27) 

in which equation (21a) was used, and the values of the exponent m of the sine correction function is 
m = 1, 3, or 4, depending on the value of  φn  (eqs. (21b–g)). The values of η  for the simply supported 
curved beams were calculated from equation (26) using the single-point collocation method described in 
the clamped curved-beam cases. Table 18 lists these values. 
 
Table 18. Central deflections, amplitudes, and exponents {η,m } of the sine correction functions for 
different simply supported curved beams; n = 16. 
 

 φn , deg   yn/2
C , in. 
(SPAR) 

  yn/2
B , in. 

(  = yi − i / n( )2 yn ) 

η , in. 

(  yn/2
C − yn/2

B ) 
m   η / yn/2

C , 
percent 

0 (straight) 9.40818 9.479265 –0.071085* ----- –0.7556** 
45 0.21423 0.229521 –0.015291* 1 –7.1377 
90 (1/4 circle) 0.22723 0.233778 –0.006548* 1 –2.8817 

135 0.24530 0.225642 0.019658 4 8.0139 
180 (1/2 circle) 0.27246 0.213297 0.059163 4 21.7144 
225 0.31359 0.186855 0.126735 4 40.4142 
270 (3/4 circle) 0.37707 0.135262 0.241808 4 64.1281 
315 0.47909 0.039780 0.439310 3 91.6968 
360 (full circle) 0.65333 –0.157195 0.810525 3 124.0606 

*Negative for φn = 0–90°. 
**Negligible. 
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 The values of η  listed in table 18 are plotted in figure 33 for visualization of the shape of the η  
curve from which the values of η  for other unlisted curved-beam angles,  φn , can be easily obtained 

graphically. In table 18, the magnitude of η  for the straight beam (
   φn = 0 ) appears to be greater than 

those for the   φn = 45 –180° curved beams. When η  is normalized by the corresponding SPAR central 

deflection,   yn/2
C , however, the magnitude of   η / yn/2

C  for the straight beam (
   φn = 0 ) becomes a 

negligible minimum among all cases. 
 
 When the values of η  listed in table 18 for the general curved-beam deflection equation (27) are 
used, the calculated deflection curves practically coincide with the corresponding SPAR deflection curves 

of figure 14. For graphical visualization of the deflection curves, only a typical case of 
   φn = 180  simply 

supported curved beam is shown in figure 34. Note that the deflection curve, 
  
yi

B = yi
B = yi − i n( ) yn  

(eq. (21a) for simply supported straight beams), lies somewhat below the SPAR deflection curve in the 
center region of the beam. With the single-point collocation, the corrected deflection curve based on 
equation (27) matches precisely with the SPAR deflection curve. In actual shape predictions, the values of 
η  can be determined in the light of actual measured deflection curves instead of using the SPAR 
deflection curves. 

STRAIN–SENSING STATION DENSITY 
 It is important to mention that when fiber-optic strain-sensing systems are used, the strain-sensing 
station density (value of n) can be easily increased at will by simply increasing the multiplexed Bragg 
grating density (that is, reducing the sensing intervals; ref. 3) without the need for time-consuming 
installations of additional strain sensors, as is the case with using conventional strain gages. The effect of 
strain-sensing station density on the shape prediction accuracy was investigated by increasing the value of 
n from 16 to 32. Increasing the number of strain-sensing stations implies the shrinking of the divided 
beam subdomains (that is, shrinking the sensing intervals), causing the theoretical piece-wise linear beam 
to approach the actual curved beam. Therefore, one might expect the shape prediction accuracy to 
improve, but the overall benefit was found to be miniscule. 
 
 For the cantilever curved beams, the shape prediction accuracy remained practically the same when 
the value of n was increased from 16 to 32. Likewise, for the two-point supported curved beams, the 
prediction accuracy was insensitive to the change in the n value from 16 to 32 as described in detail in the 
following section. 

 Clamped Curved Beams  

 Figure 35 shows the bending strain curves, generated from the SPAR program, for the clamped 

curved-beam cases (
   0 ≤ φn ≤ 360 ) based on n = 32. These strain curves are very similar to the strain 

curves based on n = 16 (fig. 10). The strain data of figure 35 were used to calculate the amplitude, η , of 
the sine correction functions for n = 32 from the single-point collocation equation (26) for different 
clamped curved-beam cases. Table 19 lists these values and also lists the corresponding values of η  for 
n = 16 (taken from table 17) for comparison. 
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Table 19. Central deflections and amplitudes of the sine correction function, η , calculated for different 
clamped curved beams; n = 32. 
 

 φn , deg   yn/2
C , in. 
(SPAR) 

  yn/2
B , in. 

(  ≡ yi − i / n( )2 yn ) 

η , in. 

(  ≡ yn/2
C − yn/2

B ) 
(n = 32) 

η , in. 
(table 17) 
(n = 16) 

0 (straight) 2.35078 2.370436 –0.019656* –0.014300* 
45 0.15144 0.144950 0.006490 0.003920 
90 (1/4 circle) 0.15317 0.144379 0.008791 0.009304 

135 0.15974 0.137835 0.021905 0.021942 
180 (1/2 circle) 0.17012 0.127108 0.043012 0.043822 
225 0.18499 0.110216 0.074774 0.079237 
270 (3/4 circle) 0.20548 0.089372 0.116108 0.117783 
315 0.23336 0.053559 0.179801 0.180284 
360 (full circle) 0.27090 –0.001129 0.272029 0.271992 

 * Negative for the straight beam. 
 
 Table 19 shows that η is nearly insensitive to the change in strain-sensing station density (value of n). 
Figure 36 shows the η curves based on the data listed in table 19 for the clamped curved beams. The 
η curves for n = 16 and n = 32 are extremely close, indicating that prediction accuracy is insensitive to 
the change in strain-sensing station density (value of n). 
 
 Figure 37 shows the deflection curves of different clamped curved beams based on n = 32. The 
corresponding deflection curves based on n = 16 (taken from fig. 33) also are plotted for comparison. 

Note that increasing the value of n from 16 to 32 did move the deflection curves, 
  
yi

B = yi  (eq. (10) for 

cantilever straight beams), upward and thereby reduced the magnitudes of the right-end deflections,  yn . 

The deflection curves,
   
yi

B = yi
B = yi − i n( )2 yn  (eq. (20a) for clamped straight beams), based on n = 16 

and n = 32 for each curved-beam angle, however, turned out to be extremely close, and their difference is 
graphically indistinguishable. Note in figure 37 that the single-point collocation deflection curves 
calculated from equation (25) based on n = 32 are practically coincidental with the corresponding SPAR 

deflection curves for the whole range of curved-beam angles (
   0 ≤ φn ≤ 360 ) (see fig. 32 for the n = 16 

case). Based on these observations, using n = 16 could be considered adequate in the present shape 
prediction analysis of the clamped curved beams (see ref. 4). 

Simply Supported Curved Beams 

 Figure 38 shows the bending strain curves, generated from the SPAR program, for the simply 

supported curved-beam cases (
   0 ≤ φn ≤ 360 ) for n = 32. Again, these strain curves are practically 

identical to the strain curves for n = 16 (fig. 13). The strain data of figure 38 were used to calculate the 
amplitude of the sine correction function, η , for n = 32 from the single-point collocation equation (26) 
for different simply supported curved beams. Table 20 lists these values and also lists the values of η  
based on n = 16 (taken from table 18) for comparison. 
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Table 20. Central deflections, amplitudes, and exponents {η , m} of the sine correction function for 
different simply supported curved beams; n = 32. 
 

 φn , deg yn/2
C

, in. 
(SPAR)

 
yn/2
B

, in. 
( ≡ yi − (i / n)yn ) 

η , in. 

( ≡ yn /2
C − yn /2

B ) 
(n = 32) (n = 16) 

η , in. 
(table 18) 

 
0 (straight) 9.40818* 9.41767 –0.066570** –0.071085** 

45 0.21423 0.216002 –0.001772** –0.015291** 
90 (1/4 circle) 0.22723 0.217717 –0.009513** –0.006548** 

135 0.24530 0.211281 0.034019 0.019658 
180 (1/2 circle) 0.27246 0.197559 0.074901 0.059163 
225 0.31359 0.170597 0.142992 0.126735 
270 (3/4 circle) 0.37707 0.120870 0.256200 0.241808 
315 0.47909 0.026165 0.452925 0.439310 
360 (full circle) 0.65333 –0.172672 0.826002 0.810525 

*Very much larger compared with curved-beam cases.  
**Negative for φn = 0–90°.  

  
Figure 39 compares the η  curves for n = 16 and n = 32, plotted from the data listed in table 20, for 

the simply supported curved beams. The two η  curves are quite close, indicating that the prediction 
accuracy is insensitive to the change in strain-sensing station density (value of n). 

 

 In figure 40, the deflection curves calculated from 
  
yi

B = yi
B = yi − i n( ) yn  (eq. (21a) for simply 

supported straight beams), based on n = 32 for different simply supported curved beams, are compared 

with the corresponding deflection curves, 
  
yi

B = yi
B = yi − i n( ) yn , based on n = 16 (taken from fig. 14). 

The two deflection curves, 
  
yi

B = yi
B = yi − i n( ) yn , based on n = 16 and n = 32 for each curved-beam 

angle are fairly close, but not as close as those in the clamped support cases (fig. 37). Figure 40 also 
shows that the single-point collocation deflection curves calculated from equation (27) based on n = 32 
are pictorially coincidental with the corresponding SPAR deflection curves for curved-beam angles in the 

range   0 ≤ φn ≤180 °. For larger curved-beam angles, 
   225 ≤ φn ≤ 360 , however, the left and right regions 

of the deflection curves based on equation (27) become slightly off from the corresponding SPAR 
deflection curves (see fig. 34 for the n = 16 case). Again, based on these observations, using n = 16 could 
be considered adequate for the present shape prediction analysis of the simply supported curved beams 
(see also ref. 4). 

DISCUSSION 
 In the shape prediction analysis of the CEV curved wall and other curved aerospace structures, using 
the clamped support condition is more realistic than using the simply supported condition. Under the 
clamped support condition, only two mathematical forms of deflection equations (20b–c) are needed for 
the shape predictions of clamped two-point supported curved beams, including a full circular ring. 
 
 The values of η  listed in tables 19 and 20 are for the central load of P = 2 lb only. For any other 
central load, P, the associated η  values (for  φn = 0–360°) can be obtained by simply scaling up (or 
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scaling down) the values of η  in tables 19 and 20 in proportion to the magnitude of the new central 
load, P. The present curved-beam shape analysis is for the symmetrical loading condition, which occurs 
in most of the actual curved structures, such as an aircraft fuselage subjected to landing impacts, or a 
bomber fuselage subjected to a side blast wave. For measurements of the radial displacements of the 
fuselage cross section, either a semicircumferential or full-circumferential fiber-optic strain-sensing line 
system can be used (see figure 41 for the landing impact case). 
 
 For rare nonsymmetrical loading cases, the mathematical functional forms of the curvature-effect 
correction terms must be properly modified accordingly. Furthermore, the present curved-beam shape 
prediction method can also be applied to shape predictions of irregular-shaped structures such as a generic 
CEV shell, which is the union of a windward shallow spherical shell, a leeward deep spherical shell, a 
shoulder toroidal shell, and a side conical shell. The shape prediction analysis of the CEV shell (circular 
cross section normal to the axis of symmetry, and rounded triangular cross section along the axis of 
symmetry) is currently under way, and the results are expected to be presented in a subsequent report.  

SUMMARY 
The Ko displacement theory originally developed for shape predictions of straight beams was further 

extended to shape predictions of curved beams with different curvatures. The surface strains for input to 
the deflection equations for shape predictions were analytically generated from finite-element nodal stress 
outputs. The shape prediction errors resulting from the use of straight-beam deflection equations for 
curved beams were examined in light of the finite-element deflection curves. Mathematical functional 
forms for curvature-effect correction terms were established and incorporated into the straight-beam 
deflection equations for shape predictions of both cantilever curved beams and two-point supported 
curved beams. The newly developed curved-beam deflection equations were applied to shape predictions 
of crew exploration vehicle (CEV) curved beams for accuracy validation. The principal findings of the 
present analytical shape prediction analysis of curved beams are as follows: 

 
1. For both cantilever straight beams (limit case of a curved beam) and two-point supported straight 

beams under tip load, the straight-beam deflection equation is very accurate in shape predictions. 
 
2.  When the straight-beam deflection equation was used for shape predictions of cantilever curved 

beams, the beam tip prediction errors were {0.0834, 1.4951, 6.1000, 14.3011, 26.6437} percent 
for cases of curved-beam angles of {0.0, 22.5, 45.0, 67.5, 90.0} degrees, respectively.  

 
3. When the newly established cantilever curved-beam deflection equation was used, the beam tip 

prediction errors could be brought down to {0.0834, 0.0849, 0.2127, 0.0126, 1.4978} percent for 
cases of curved-beam angles of {0.0, 22.5, 45.0, 67.5, 90.0} degrees, respectively. 

 
4.  For two-point clamped curved beams, two deflection equations were formulated for accurate 

shape predictions of a whole range of curved beams, including the circular ring. 
 
5.  For two-point simply supported curved beams, six deflection equations were formulated for 

accurate shape predictions of a whole range of curved beams, including the circular ring. 
 
6.  The newly formulated cantilever curved-beam deflection equation was applied to shape 

predictions of the CEV cantilever curved beam with a miniscule prediction error of 0.4646 
percent at the beam tip.  
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7.  The modified deflection equations for two-point supported curved beams were applied to shape 
predictions of the CEV two-point supported curved beam with negligible beam center prediction 
errors of {1.8477, 0.2349, 0.9222, 0.6383} percent, respectively, for the support cases of both 
ends clamped and free to move along the beam curve, both ends clamped and stationary, both 
ends simply supported and free to move along the beam curve, and both ends simply supported 
and stationary.   

 
8.  For both cantilever and two-point supported curved beams, the prediction accuracy was found to 

be insensitive to the change in strain-sensing station density from 16 to 32. 
 
9.  The single-point collocation method could be used to optimize the shape prediction accuracy of 

two-point supported curved beams.  
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FIGURES 

 
 

Figure 1. Nonuniform cantilever beam instrumented with equally spaced surface bending strain sensors. 
 

 
Figure 2. Plots of stress ratios, { kin ,kout }, and neutral axis offset factor, δ / R , for curved beams as 
functions of curvature factor, R / c . 
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Figure 3. Cantilever curved beam subjected to a tip load of P  = 1 lb. 

 
 
 

 
Figure 4. Bending strains, generated from SPAR, for different cantilever curved beams; P = 1 lb; n = 8. 
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Figure 5. Comparison of deflection curves calculated from SPAR with those calculated from 
straight-beam deflection equation (10) for different cantilever curved beams; P = 1 lb; n = 8. 
 
 

 
 

Figure 6. Comparison of deflection curves calculated from SPAR with those calculated from cantilever 
curved-beam deflection equation (19) for different cantilever curved beams; P = 1 lb; n = 8. 
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Figure 7. Uncorrected and corrected deflection prediction errors, { en / yn
C , en / yn

C }, at curved-beam tip 
plotted as functions of curved-beam azimuth angle, φn ; P = 1 lb; n = 8. 
 
 

 
 

Figure 8. Two-point supported curved beam under different support conditions subjected to a central 
upward load of P = 2 lb. 
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Figure 9. Deformed shapes, generated from SPAR, of two-point supported curved beams with different 
curvatures; both ends clamped; P = 2 lb. 
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Figure 10. Bending strains, generated from SPAR, for two-point supported curved beams with different 
curvatures; both ends clamped; P = 2 lb; n = 16. 
 

 
 

(a) φn  = 0˚ 
 

Figure 11. Deflection curves calculated for two-point supported curved beams with different curvatures; 
both ends clamped; P = 2 lb; n = 16. 
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(b) φn  = 45˚ 
 

 
 

(c) φn  = 90˚ 
 

Figure 11. Continued. 
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(d) φn  = 135˚ 
 

 
 

(e) φn  = 180˚ 
 

Figure 11. Continued. 
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(f) φn  = 225˚ 
 

 
 

(g) φn  = 270˚ 
 

Figure 11. Continued. 
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(h) φn  = 315˚ 
 

 
 

(i) φn  = 360˚ 
 

Figure 11. Concluded. 
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Figure 12. Deformed shapes, generated from SPAR, of two-point supported curved beams with different 
curvatures; both ends simply supported; P = 2 lb. 
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Figure 13. Bending strains, generated from SPAR, for two-point supported curved beams with different 
curvatures; both ends simply supported; P = 2 lb; n = 16. 
 

 
 

(a) φn  = 0˚ 
 

Figure 14. Deflection curves calculated for two-point supported curved beams with different curvatures; 
both ends simply supported; P = 2 lb; n = 16. 
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(b) φn  = 45˚ 
 

 
 

(c) φn  = 90˚ 
 

Figure 14. Continued. 
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(d) φn  = 135˚ 
 

 
 

(e) φn  = 180˚ 
 

Figure 14. Continued. 
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(f) φn  = 225˚ 
 

 
 

(g) φn  = 270˚ 
 

Figure 14. Continued. 
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(h) φn  = 315˚ 
 

 
 

(i) φn  = 360˚ 
 

Figure 14. Concluded. 
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Figure 15. Generic crew exploration vehicle fabricated with dual sandwich wall structures. 
 
 
 
 

 
 

Figure 16. Crew exploration vehicle cantilever curved beam subjected to a tip load of P = 1 lb. 
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Figure 17. Bending strains, generated from SPAR, for crew exploration vehicle cantilever curved beam 
and equivalent straight beam; P = 1 lb; n = 8. 
 

 
 

Figure 18. Comparison of SPAR deflection curves with corresponding predicted deflection curves 
calculated from deflection equations (10) and (19) for crew exploration vehicle cantilever curved beam 
and equivalent straight beam, respectively; P = 1; n = 8 lb. 
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Figure 19. Crew exploration vehicle two-point supported curved beam under different support conditions 
subjected to a central load of P = 2 lb. 
 

 
 

(a) Both ends clamped and free to move along beam curve (CC-free). 
 

 
 

(b) Both ends clamped and stationary (CC-fixed). 
 

Figure 20. Deformed shapes, generated from SPAR, of crew exploration vehicle two-point supported 
curved beams; both ends clamped; P = 2 lb. 
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Figure 21. Comparison of SPAR bending strains for crew exploration vehicle two-point supported curved 
beam and equivalent straight beam; both ends clamped and free to move along beam curve (CC-free); 
P = 2 lb; n = 16. 
 

 
 

Figure 22. Comparison of SPAR deflection curve with predicted deflection curve based on curved-beam 
deflection equation (22) for crew exploration vehicle two-point supported curved beam; both ends 
clamped and free to move along beam curve (CC-free); P = 2 lb; n = 16. 
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Figure 23. Bending strains, generated from SPAR, for crew exploration vehicle two-point supported 
curved beam; both ends clamped and stationary (CC-fixed); P = 2 lb; n = 16. 
 

 
 

Figure 24. Comparison of SPAR deflection curve with predicted deflection curve based on curved-beam 
deflection equation (22) for crew exploration vehicle two-point supported curved beam; both ends 
clamped and stationary (CC-fixed); P = 2 lb; n = 16. 
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(a) Both ends simply supported and free to move along beam curve (SS-free). 
 
 

 
 

(b) Both ends simply supported and stationary (SS-fixed). 
 

Figure 25. Deformed shapes, generated from SPAR, of crew exploration vehicle two-point supported 
curved beams; both ends simply supported; P = 2 lb. 
 
 

 
 

Figure 26. Comparison of SPAR bending strains for crew exploration vehicle two-point supported curved 
beam and equivalent straight beam; both ends simply supported and free to move along beam curve (SS-
free); P = 2 lb; n = 16. 
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Figure 27. Comparison of SPAR deflection curve with predicted deflection curve based on curved-beam 
deflection equation (23) for crew exploration vehicle two-point supported curved beam; both ends simply 
supported and free to move along beam curve (SS-free); P = 2 lb; n = 16. 
 

 
 

Figure 28. Bending strains, generated from SPAR, for crew exploration vehicle two-point supported 
curved beam; both ends simply supported and stationary (SS-fixed); P = 2 lb; n = 16. 
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Figure 29. Comparison of SPAR deflection curve with predicted deflection curve based on curved-beam 
deflection equation (23) for crew exploration vehicle two-point supported curved beam; both ends simply 
supported and stationary (SS-fixed); P = 2 lb; n = 16. 
 

 
 

Figure 30. Comparison of SPAR deflection curve with predicted deflection curve based on curved-beam 
deflection equation (24) for crew exploration vehicle two-point supported curved beam; both ends simply 
supported and stationary (SS-fixed); P = 2 lb; n = 16. 
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Figure 31. Plot of amplitude of sine correction function, η , as a function of curved-beam angle, φn , for 
the clamped curved beam; n = 16. 
 
 

 
 

Figure 32. Comparison of SPAR deflection curve with single-point collocation deflection curves for the 
clamped curved beam; φn  = 180°; P = 2 lb; n = 16. 
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Figure 33. Plot of amplitude of sine correction function, η , as a function of curved-beam angle, φn , for 
the simply supported curved beam; n = 16. 
 
 

 
 

Figure 34. Comparison of SPAR deflection curve with single-point collocation deflection curves for the 
simply supported curved beam; φn  = 180°; P = 2 lb; n = 16. 
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Figure 35. Bending strains, generated from SPAR, for the clamped curved beam; P = 2 lb; n = 32. 
 

 
 

Figure 36. Plot of amplitude of sine correction function,η , as a function of curved-beam angle, φn , for 
the clamped curved beam; n = 32. 
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(a) φn  = 0˚ 

 

 
 

(b) φn  = 45˚ 
 

Figure 37. Deflection curves calculated for two-point supported curved beams with different curvatures; 
both ends clamped; P = 2 lb; n = 32. 
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(c) φn  = 90˚ 
 

 
 

(d) φn  = 135˚ 
 

Figure 37. Continued. 
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(e) φn  = 180˚ 
 

 
 

(f) φn  = 225˚ 
 

Figure 37. Continued. 
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(g) φn  = 270˚ 
 

 
 

(h) φn  = 315˚ 
 

Figure 37. Continued. 
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(i) φn  = 360˚ 
 

Figure 37. Concluded. 
 
 

 
 

Figure 38. Bending strains, generated from SPAR, for the simply supported curved beam; P = 2 lb; 
n = 32. 
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Figure 39. Plot of amplitude of sine correction function, η , as a function of curved-beam angle for the 
simply supported curved beam; n = 32. 
 

 
(a) φn  = 0˚ 

 
Figure 40. Comparison of SPAR deflection curve with single-point collocation deflection curves for the 
simply supported curved beam; φn  = 180°; P = 2 lb; n = 32. 
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(b) φn  = 45˚ 
 

 
 

(c) φn  = 90˚ 
 

Figure 40. Continued. 
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(d) φn  = 135˚ 
 

 
 

(e) φn  = 180˚ 
 

Figure 40. Continued. 
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(f) φn  = 225˚ 
 

 
 

(g) φn  = 270˚ 
 

Figure 40. Continued. 
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(h) φn  = 315˚ 
 

 
 

(i) φn  = 360˚ 
 

Figure 40. Concluded. 
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(a) Semicircumferential strain-sensing line system. 
 

 
 

(b) Full-circumferential strain-sensing line system. 
 

Figure 41. Strain-sensing systems for measurements of radial displacements of aircraft fuselage cross 
sections caused by landing impacts. 
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