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Abstract. Observed properties of the strahl using high resolution 3D electron velocity distribution data obtained from the
Cluster/PEACE experiment are used to investigate its linear stability. An automated method to isolate the strahl is used to
allow its moments to be computed independent of the solar wind core+halo. Results show that the strahl can have a high
temperature anisotropy (T⊥/T‖ � 2). This anisotropy is shown to be an important free energy source for the excitation of high
frequency whistler waves. The analysis suggests that the resultant whistler waves are strong enough to regulate the electron
velocity distributions in the solar wind through pitch-angle scattering.
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1. INTRODUCTION

The typical collisional mean free path for solar wind
electrons at 1 AU is of the order of 108 km which is
comparable to the system length scale. This suggests that
these electrons are not in thermal equilibrium and should
contain a significant non-thermal component, as is in-
deed seen in the shape of its velocity distribution function
(VDF). The electron VDF is regulated by the conditions
in the solar corona from which the electrons emanate, by
the nature of the scattering processes between the source
and the measurements location (e.g.,Coulomb collisions,
wave-particle interactions), and by the dynamical forces
due to the global and local magnetic and electric fields.
Detailed observations of the electron VDFs can then pro-
vide information about the propagation conditions in the
interplanetary medium and to some extent can serve as a
probe for conditions in the solar corona itself.

The solar wind is generally comprised of three main
components: the core, a thermally isotropic population
observed below 10-15 eV and containing about 95% of
the overall density; the halo, a non-isotropic suprather-
mal population observed between 12 eV and 100 eV,
and the strahl, a highly field-aligned beam-like popula-
tion seen above 50 eV and often exhibiting a tempera-
ture anisotropy (T⊥/T||) of 2 or more. Together the halo
and strahl comprise the main source of the heat flux
transport in the solar wind. A fourth population is some-
times observed when the measurement point is magneti-
cally connected to the bow shock. This is either electrons
which have reflected off the shock or the leakage of post-
shocked electrons back into the upstream region.

Previous observational and theoretical studies have

provided important clues about the processes that reg-
ulate the strahl in the solar wind. Lemons and Feldman
[1] have investigated how collisions modify exospheric
models of solar wind suprathermal electron pitch-angle
distributions (PADs) and have compared their results
with measurements at 1 AU. Their results show PAD
widths which are larger than those predicted by exo-
spheric models, but are still not large enough to account
for the PADs measured in typical fast- and slow- so-
lar wind streams. They suggested that another source of
scattering such as wave-particle interactions must play a
role in the broadening of the solar wind pitch-angle dis-
tribution. The width of the PAD is therefore a measur-
able property that provides insights into the processes re-
sponsible for the angular broadening of the strahl VDFs
[2, 3, 4, 5, 6]. Observations of the strahl in high-speed so-
lar wind at intermediate and high latitudes and at larger
radial distances on Ulysses found its angular width to
be broader than that observed in the ecliptic plane [5].
Recent theoretical work on wave-particle resonant inter-
actions with electrons in the solar wind has shown that
whistler waves are capable of generating suprathermal
electrons sufficiently broad in pitch-angle to be consis-
tent with the observations of non-thermal VDFs at 1 AU
[7, 8]. The kinetic model used (i.e., quasi-linear theory
via pitch-angle diffusion) in these formulations includes
not only wave-particle resonant interactions, but also
Coulomb collisions and the mirror force experienced by
the electrons as they propagate into a decreasing mag-
netic field.

The intensity level of enhanced whistler waves deter-
mines the characteristics of their power spectrum and
the nature of their spectral properties determines which
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electrons can undergo wave-particle interactions. There
are at least four sources of whistler wave excitation:
the whistler heat-flux instabilities driven by the relative
drifts among the electron components, the anisotropic
whistler instabilities which are driven by the temper-
ature anisotropy (T⊥ > T‖or T⊥ < T‖) of the electron
components, and the classical scenario of MHD turbu-
lent cascade or wave-wave interactions. In this last sce-
nario, fluctuations in the plasma are driven at some large
“outer” scale and then decay by exchanging energy with
fluctuations at nearby spatial scales resulting in a net
flow of energy to smaller spatial scales (larger k). This
cascade of energy occurs over an inertial subrange of k-
space and it has been shown to follow a Kolomogorov
scaling of k−5/3. At even smaller scales the spectrum be-
comes steeper due to interaction with the plasma ions
and/or electrons via either cyclotron, Landau, or tran-
sit time damping on the species. These are the scales at
which the wave-particle interaction plays a role in regu-
lating and shaping the particle VDFs since they represent
the ultimate fate of the cascade of energy.

The overall anisotropy and heat-flux transport of the
total solar wind VDF can be attributed to the presence of
the halo and strahl. In the presence of the strahl the solar
wind VDF becomes anisotropic with T‖ > T⊥[4, 9, 10].
Using Wind data at 1AU in the ecliptic plane [11]
has pointed out that the overall temperature anisotropy
(T⊥/T‖) depends mainly on Coulomb collisions (strong
correlation between the temperature anisotropy and the
collisional age) and therefore plays a part in the regu-
lation of the solar wind VDF. Consequently they also
find that the electron heat-flux shows an upper bound
that is inversely proportional to the collisional age. It is
important to point out that the [11] results are strictly
defined for the total solar wind VDFs and do not dis-
tinguish between the various electron components (core,
halo, strahl, reflected/leakage).

Linear and particle-in-cell simulation studies on the
whistler instabilities have been carried out by many au-
thors (e.g., [12, 13, 14, 15, 16], and references within
among others). An overall summary of these investi-
gations clearly shows that the temperature anisotropy
T⊥/T‖ > 1 provides the most sensitive free energy source
for the generation and excitation of whistler waves. How-
ever, these studies have assumed that the anisotropy ex-
ists in the core electron VDF. This is certainly arguable
since the core electrons are Coulomb collision domi-
nated (e.g., [3, 1]) and therefore are isotropic in their
own frame. It is true that previous results suggesting
anisotropic core distributions have been reported in the
scientific literature (e.g. [9]), but these anisotropies are
first in the opposite sense (T⊥ < T‖) consistent with most
general observations of the overall electrons in the so-
lar wind, and second are seen in the energy range below
150 eV which is hardly representative of the core elec-

trons which are usually below 15 eV. If anything, these
anisotropies reflect that of the overall solar wind VDF or
at most that of the core+halo.

In this paper we will use a linear plasma wave analysis
of the strahl to illustrate what effect a highly anisotopic
strahl with T⊥ > T‖ has on the stability of the total so-
lar wind electron VDFs. Our analysis will be fully con-
strained by the observed measurements without invoking
any arbitrary or free parameters. The implications of this
result will be discussed.

2. CLUSTER DATA

The stability analysis presented in this paper is based on
a set of data taken on Jan 10, 2004 between 06 to 07 UT.
During this time period the Cluster spacecraft were in the
solar wind with no apparent local connection to the bow
shock (no presence of reflected/leakage particles).

The electron data were obtained from the Cluster-2
PEACE Low Energy Electron Analyzer (LEEA) [17]. At
the time the PEACE analyzer was returning full three-
dimensional electron VDFs every 4 seconds (satellite
spin period) with a resolution of 30E×12θ×32φ bins
The energy range covered was from 7.3 to 3952 eV in
equal logarithmically spaced steps and the angular cov-
erage was a full 4π steradians. Moment calculations used
in the paper were computed according to the standard
method described in Viñas and Gurgiolo [18]. This takes
into account corrections for the spacecraft potential using
the spin averaged potential supplied by the Electric Field
and Wave (EFW) Experiment [19] plus a 1.5 V contact
potential. The total potential, which varies with the lo-
cal plasma conditions, was on the order of 5 V (6.5V
when the contact potential is included). High resolution
magnetic field data (67 samples/s) from the FGM experi-
ment [20] were obtained from the Cluster Active Archive
(CAA) and used in for local wave analysis. Conversion of
the moments to a magnetic field coordinate system used
spin averaged values of the field. The proton data used
in the dispersion analysis was obtained from the CIS
experiment (prime parameters) [21] onboard Cluster-1,
the CIS sensor on Cluster-2 having failed. The use of
Cluster-2 for the electron data was made because the
instrument was returning data at higher angular reso-
lution on that spacecraft than on Cluster-1. Close sim-
ilarities between the PEACE moments computed from
both Cluster-1 and -2 suggests that using CIS data from
Cluster-1 should present no problem in the analysis.

3. STRAHL ANALYSIS

The isolation of the strahl from the other solar wind com-
ponents is accomplished by an automated 3D graphical-
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populations. This is why the temperature anisotropy in
the total solar wind distribution (i.e., core+halo+strahl)
has T|| > T⊥ while the strahl itself can show a tempera-
ture anisotropy of T⊥ > T‖. This is illustrated in Figure 3
which shows plots of the full solar wind (top panel) and
isolated strahl (bottom panel). Both plots are shown in
the frame of reference of the solar wind. In the upper plot
central portion of the VDF, which is visually isotropic, is
the core+halo. The elongation of the distribution to the
right is due to the strahl leading to a T|| > T⊥.We esti-
mate an angular width of the strahl to be about ±60◦ on
the average in this frame. The strahl when plotted in its
own reference frame is actually broader and elongated in
the perpendicular direction which is indicative of a tem-
perature anisotropy greater than 1 as is seen in Figure 2.

FIGURE 3. Plots of the full solar wind VDF (top) and of the
strahl (bottom) from one spin of data during the Jan 10. period.

4. DISPERSION ANALYSIS

To investigate the role that the temperature anisotropy of
the strahl plays in the stability of the overall solar wind
electron VDF, the basic in-situ moments (density, veloc-
ity, temperature) of the the core+halo and strahl must be
computed individually. To do this requires the ability to
isolate the two populations which was described in the
last section. The electron and magnetic field data shown
in Figure 2together with the CIS proton data were used
to derive the parameters required in the dispersion analy-

FIGURE 4. Plots of the plasma parameters used in the linear
stability analysis. Black traces refer to parameters associated
with the core+halo and red traces those associated with the
strahl.

sis. These are shown in Figure 4. Plotted are: the ratio of
plasma to cyclotron frequency, the core+halo and strahl
density normalized to total density, the parallel drift ve-
locity of the strahl normalized to the core+halo paral-

lel thermal velocity, the parallel β ‖e for the core+halo
and strahl and the parallel β ‖p of protons. The parallel

plasma β ‖s is representative of the parallel temperature

and is defined as β ‖s =
(
8πnetot T‖s/B2

)
for each plasma

component.
The dispersion analysis assumes a plasma composed

of an isotropic core+halo a field-aligned, anisotropic
strahl and a proton population in a homogeneous
medium with a constant magnetic field. The calculation
was carried out by numerically solving the dispersion
relation [22] for parallel propagating electromagnetic
whistler waves given by:

D(k,ω) = 1− k2c2

ω2
+

k2c2

ω2 ∑
s

S±s (k,ω) = 0 (1)

where the summation over the subscript s represents
the particle species, ω is the complex frequency (i.e.,
ω = ωr + iγ), k is the parallel wave vector, and c is the
speed of light. S±s (k,ω) is a function defined as

S±s (k,ω) =
ω2

ps

k2c2

[
ξsZ

(
ξ±

s
)
+

(
1− T‖s

T⊥s

)
Z′ (ξ±

s )
2

]

where Z (ξ±
s ) is the Fried and Conte plasma dispersion

function and ξ±
s =

(
ω − ku‖s ±Ωcs

)
/
(
kv‖s

)
is a param-

eter that represents the resonance condition. The param-
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5. DISCUSSION AND SUMMARY

What we have presented above is a set of local observa-
tions on the stability of the strahl without merging this
into a larger overall picture of the dynamics of propaga-
tion of the solar wind as it propagates outward from the
Sun. This is well beyond the scope of this paper and in-
volves questions such as what sustains the strahl temper-
ature anisotropy and what effects do the whistler waves
generated by the strahl play in the overall dynamics of
the solar wind electrons.

The data suggests that the strahl, at least during the
time frame looked at is approximately in a state of
“equilibrium”. The energy being dissipated by the strahl
in driving the whistler waves is being somehow com-
pensated for to sustain the temperature anisotropy. One
possible scenario is the following. The strahl, initially
isotropic, propagates away from the Sun. It encoun-
ters waves generated in the turbulent cascade of low
frequency MHD Alfvènic waves. This wave field con-
tains both inward and outward propagating fluctuations
which cascade down into the whistler regime and elec-
tron scales [23]. The inward propagating waves are able
to resonate with the strahl causing a pitch-angle scatter-
ing, creating the observed temperature anisotropy. The
anisotropic strahl then becomes itself unstable driving
whistler waves. The system enters an “equilibrium” state
when the energy supplied by the cascade balances that
lost through the instability.

Significant and more precise work must be done to
fully consider all of the ramifications. This will probably
require the use of particle-in-cell simulations and/or self-
consistent kinetic transport models that includes wave-
particle interactions.
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