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I. Introduction 

 

Scenario, Present Day – In a simulation de-brief, flight controllers discover the need to build a multi-discipline 

composite display. They submit a software change request to platform services. Constrained by a traditional 

software change process, the changes roll out and are available for use months later. 

Scenario 2011 – In a simulation, flight controllers discover the need to build a multi-discipline composite 

display. After the de-brief is over, one flight controller stays an extra hour. Using Mission Control Technologies 

(MCT) certified composable user objects, the controller builds the new displays. Within the hour, the display is 

ready for use.  

Exploration Scenario – A future mission control center has continued what the International Space Station Flight 

Controllers have begun—the combining of what were previously multiple flight control positions into one. A 

slimmed down mission control center is guiding a descent to the lunar surface. Using an MCT multi-disciplinary 

display composition, a flight controller executes a procedure. Within each procedure step, commands and telemetry 

are composed, so no context switching between software packages is required. On a nearby console, another 

operator is viewing some of the same information. She has composed only the telemetry points she needs, and she’s 

viewing them as plots, not alphanumerics, as in the procedure steps.  

These scenarios illustrate the capability of technology now being installed and tested in NASA Johnson Space 

Centers (JSC) Mission Control Center (MCC). MCT is developed by NASA Ames Research Center (ARC), in 

collaboration with JSC. Key MCT concepts are: 

• Users are provided with composable software components (called user objects) which they may compose 

without the need for change requests or other platform service support. 

• “Walls” between traditional software applications are eliminated, allowing for operations that are 

unconstrained by traditional application barriers and stovepipes. 

• Policy control for managers enable and limit flexibility, as per organizational policy. 

• Certified software components for platform service providers allowi them to provide users with secure 

software that the users can configure themselves. 

What is MCT?” We’ll give an overview here then spend much of this paper answering that question in more 

detail. 

https://ntrs.nasa.gov/search.jsp?R=20110010878 2019-08-30T15:18:55+00:00Z
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Figure 1.  Users, designers, and developers perceive software differently (modified, original courtesy of IBM) 

A. Different Perspectives 

As we talk about software, it’s important to remember that users, designers, and developers see things from 

different perspectives. Where a user sees and interacts with software only through the user interface, a developer 

sees code, objects and toolkits. Let’s take a simple example—an object. Mention the word “object” to a developer 

and they are likely thinking about class diagrams, inheritance, and polymorphism. A user, on the other hand, simply 

sees things on the screen. They can interact with those things through the user interface, but they do not typically 

perceive those things through the underlying code. A designer understands the intent of the user interface design and 

interactions, whereas a user must discover how the software works through direct interaction.  

MCT is: 

For Users 

 
From a user’s perspective, MCT is a collection of composable user objects, which we sometimes refer to as 

“things.” A user object is a functional piece of software, such as a telemetry value, a procedure step, a timeline, or 

an activity. It is something that users can manipulate, compose, inspect, and edit. All the MCT user objects are 

presented to users in a single unified environment (Figure 2). 
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Figure 2.  MCT user environment contains all user objects 

B. For Developers 

 
For developers, MCT is component software built on industry standards. Developers write MCT components in 

Java, the user interface in Swing, and build the components as OSGi plug-ins using the MCT component model. 

Typically a component corresponds to a user object, thought this is not required. 
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Figure 3.  MCT Architecture Overview 

C. For Platform Service Providers 

 
For platform service providers (PSS), MCT enables the deployment of certified software that users may 

reconfigure without PSS support. This potentially solves the ongoing problem of user requests for software changes 

that cannot be met in a timely fashion using a traditional monolithic approach to software. PSS can provide certified 

components, and users can compose those components without change requests or PSS support. 

II. Background and Perspective: Information Composite Approaches, Now and Then 

There have been, and remain, multiple approaches to compositing information. Here we review a few of the key 

concepts and related projects, past and present.  
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D. Historical 

Here we discuss two of the many past efforts to which MCT has conceptual heritage. A comprehensive look at 

all the related efforts would be outside the scope of this paper. 

1. Opendoc 

Opendoc was led by Apple, with collaboration from IBM. The idea was to create a document-centric system 

using non-typed (meaning not tied to a specific application) documents as containers for parts tied to editors. Figure 

4 contrasts conventional monolithic applications with the Opendoc approach. The Opendoc document contains a 

part for each type of content, such as text or an image. Each part has its own editor. Content can be edited in place in 

the document. The composition container is the document. The unit of composition, as perceived by the user, is the 

part. 

 

Figure 4.  Opendoc approach contrasted with monolithic applications 

MCT retains the idea of “live” objects. The practical impact of live objects is that user objects can be edited in 

place, without opening separate applications or editors. For example, a procedure step may be viewed, and also 

edited, without opening a separate procedure editor. The procedure may also be locked to prevent editing. 

For more information on Opendoc see: 

http://en.wikipedia.org/wiki/Opendoc 

 

2. IBM Common User Access 

IBM’s common user access (CUA) provided guidelines for developing consistent object oriented (OO) graphical 

user interface (GUI) styles. The key concept as it relates to MCT is that of the OO GUI style. In an OO style GUI, 

the user interacts directly with “user objects” that represent entities in the applicable domain. For IBM CUA a 

typical example would be office objects. 
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Figure 5.  IBM CUA Interface as implemented in OS-2. Note the use of template objects. 

Key aspects of an OO style GUI are: 

• Users interact directly with representations of domain objects. 

• User objects behave consistently as per users’ domain expectations. This allows users to classify or predict 

object behavior, i.e., the interface does what a user familiar with the domain would expect. 

Figure 5 shows a CUA interface as it was implemented in OS-2. OS-2 had limited user composability. The 

container was any object that acted as a container for other objects, such as a folder, or the workspace, which was 

the master object container.  

For more information on OO GUI Styles see: 

http://en.wikipedia.org/wiki/Object-oriented_user_interface 

E. Current 

Coming forward into the present world, the most common example of information composition that all of us 

have easy access to is that of web widgets. Web widgets allow users to create information composites from 

heterogeneous data sources. Figure 6 shows an example, assembled from Google Widgets. Note the range of 

information types, the fixed layout grid, and the heterogeneous user interface, i.e., user interactions for each widget 

may be different. Web widgets are part of an open world. There is no attempt at system-wide consistency as with the 

objects of IBM’s CUA. This allows for a wide range of creative options, but may not be optimal for consistency of 

user interactions or training such as we have in the domain of space operations. 



American Institute of Aeronautics and Astronautics 

7 

 

Figure 6.  A Google home page showing web widgets 

The container for web widgets is the web page. The user perceived unit of composition is the widget. 

 

The Eclipse Rich Client Platform allows for the creation of composite applications by the addition of 

components into a consistent environment. Applications are presented to users as perspectives and views. Users can 

choose perspectives and views as per the choices presented to them by designers/developers. 
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Figure 7.  Two composite applications built in Eclipse, the top showing a business application, the bottom 

showing JPL/ARC’s Ensemble. 

For more information on Eclipse, see www.eclipse.org 

III. MCT Object Oriented Style Graphical Interface 

MCT implements an object oriented graphical user interface style. The user interface is composed of relevant 

objects from the space operations domain. The initial versions of MCT have telemetry objects. Already in work are 

objects for procedures and core trajectory. All the objects are composable, with consistent behaviors. The user unit 

of composition is the user object. The MCT container is called a collection. 

Now, let’s take a look at the MCT user environment, the contained objects, and some compositions. 
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Figure 8.  The MCT User Environment Contains all user objects. 

F. The User Environment Contains all user objects 

The user environment in MCT is the “root” object, meaning that it contains all available user objects. Note that 

this does not mean root in the object oriented sense of inheritance; rather, it refers to containment. The user 

environment is the master container of all user objects. See Figure 8. For the user, this means that, if they need to 

find any user object, they have one place that they know will always have it.  

The inspector on the right shows details of any object. Note that the inspector can display multiple views. This 

implements a key principle of MCT—that the same object may be viewed in different ways. For telemetry, current 

view options are alphanumeric, plot and info. 

Objects may be located by browsing or searching the user environment. Given that there are tens of thousands of 

user objects, we expect search to be used frequently. See Figure 9. 
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Figure 9.  Searching the MCT user environment 

G. The Same Thing  May be Viewed Differently 

A user object is always the same “thing,” the underlying properties remain the same, but it may be viewed 

differently. Figure 10 shows an example of this for telemetry objects. 

 
Figure 10.  A telemetry user object shown in alpha, plot, and info views 



American Institute of Aeronautics and Astronautics 

11 

H. Displays are Compositions of Objects, Grouped into Collections 

Figure 11 shows an a simple user composition. On the left is a directory showing every user object in the 

composition. In the center is the canvas area, that’s where the user objects are composed. On the right is the 

inspector. Displays may be built up through multiple levels of compositions. 

 

Figure 11.  A simple user-assembled composition 

I. A User Object is the Same Thing Everywhere 

A fundamental principle of MCT is that a user object is the same thing everywhere. In practice this means that 

user objects may be composed into any kind of display, anywhere, and the underlying object properties do not 

change. A piece of telemetry may be shown as an alphanumeric on a telemetry display, or composed into a 

procedure on another. It’s still the same thing. Figure 12 shows one example of a single telemetry point in different 

collections, with different views.  

 
Figure 12.  A user object is the same thing everywhere 
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IV. Capability Phasing 

The initial MCT deliveries contain user objects for telemetry and monitoring. A developers toolkit enables third 

parties to develop user objects (which developers would refer to as components). Third-party code currently under 

development includes procedures, core trajectory, and prototype command objects.  

V. MCT Project Status 

MCT completed the initial prototypes and testing in JSC’s Operations Technology Facility (OTF) in FY07. MCT 

was funded as a formal project beginning in FY08. The initial Module One delivery took place in Summer of 2009. 

Iterations are delivered to JSC roughly every five weeks. MCT has “graduated” from the OTF to the first phase of 

installation in the MCC, in the Common Development Environment (CDE). After testing and verification are 

complete in CDE, the next step is to move onto the MCC opsnet, into uncertified operations. This will provide 

MCC-wide access to flight controllers so that they can build displays and use MCT for flight following. This is 

expected to take place in the Summer of 2010. Following several months of operations in the uncertified 

environment, MCT should graduate to operations in FY11. 
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