ENERGY SYSTEMS DIVISION

Presentation to Yuzhnoye SDO Propulsion Technology Development Overview

National Aeronautics and Space Administration April 5, 2011

John Applewhite
Chief, Propulsion Systems Branch

JSC ROLE IN PROPULSION

Past and Present to the Future

- Reaction Control System
 - Descent & Ascent Propulsion

APOLLO

 Reaction Control & Orbit **Maneuvering Systems** Main Propulsion **Systems**

- O2/H2 & Hydrazine Control & Reboost
- US Propulsion Module Orbiter Reboost

ISS -

X-38

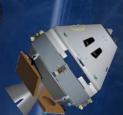
• Liquid Propulsion Lead • Test & Verification

- High Performance Non-Toxic **Propulsion**
- ISRU Compatible Propellants
- Integrated Propulsion, Power, **ECLSS**
- Propellant Storage & Transfer

EXPLORATION

Hydrazine CM RCS, MMH/NTO SM Main & RCS LO₂-Methane Design Concer for CM & Lander

Hydrazine De-Orbit Module


Cold Gas GN₂ RCS

PROPULSION CHALLENGES FOR FUTURE EXPLORATION MISSIONS

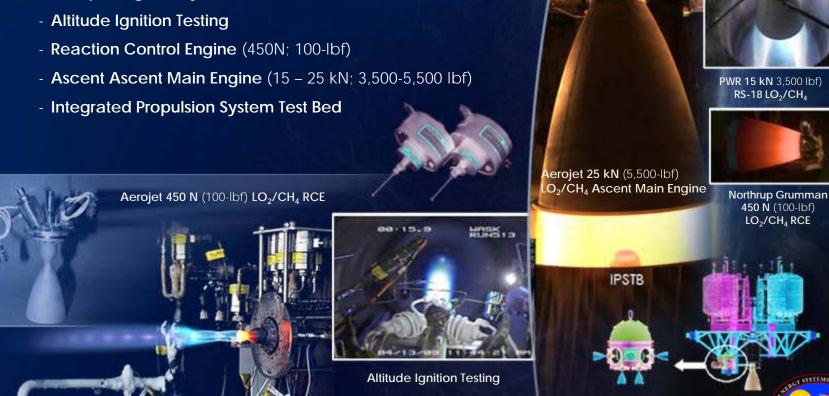
Advanced Space Storable Propellants For In-Space Reusable Multi-Mission Service Vehicles

- Non-Toxic Propellants
- Better Performance than Earth Storable Hypergolic
- Highly Integrated Propulsion, Power, ECLSS
- Compatible with In-Situ Resource Utilization (ISRU)

High Power Electric Propulsion Systems For Missions to GEO, Outpost, & Planetary Destinations

- Enable <1 year transit times
- 100's KW to MW class at 1,000 to 10,000 sec lsp
- High thrust capability (e.g. 25 N/MW at 5,000 sec Isp using Argon)
- VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) as example

Long-Term Cryogenic Storage & Transfer LO₂, LH₂, and CH₄ for Spacecraft and Transfer Stages

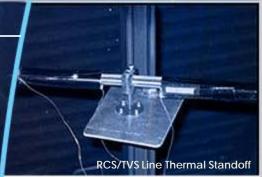

- 1 to 5+ years on-orbit storage
- Transfer capability for Re-supply & Propellant Depot operations
- Zero-G liquid acquisition & mass gauging, automated fluid couplings, and low heat leak valve technologies

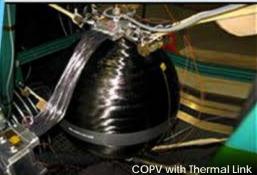
ADVANCED PROPULSION

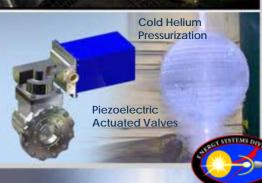
Significant Agency Investment In —————LO₂/CH₄ Propulsion Technology Development

- Compact Igniter Systems

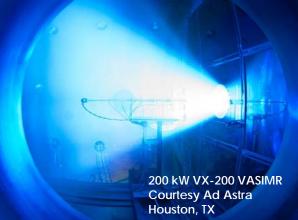
CRYOGENIC FLUID MANAGEMENT-


Technology Development to ——— Support Space Storable Cryogenic Propulsion Systems


- Cold Helium Storage (90 K; -300 F)
- Low Heat Leak Piezoelectric Valve Actuation
- Tank Applied Multi-Layer Insulation (MLI)
- Thermodynamic Vent System for RCS Feedline Conditioning
- Cryogenic Feedsystem Analysis Tool Development
- Integrated System Testing at High Vacuum (10-5 torr)



Thruster Pod Simulator


IN-HOUSE DEVELOPMENT

Sustained JSC IR&D Investment in Propulsion Technologies

- Low Cost Reaction Control Engine (22-66 N; 5-15 lbf)
- **4:1 Throttling LO₂-CH₄ Main Engines** (11–18 kN; 2,500–4,200 lbf)
- Co-Axial Swirl Uni-element Injector (270 N; 60 lbf)
- Dual Bell Nozzle Development
- Piezoelectric Regulator / Isolation Valve
- VASIMR Electric Propulsion Integration, High Temperature Heat
 Rejection, and Propellant Delivery System Design

Coaxial Swirl Uni-element Injector

MINIATURE PROPULSION

Low Thrust Solutions for Free Flyer **Robotic and EVA Propulsion**

- Cold Gas (GN₂, Xenon) and Warm Gas (Tridyne) solutions
- Non-Toxic for Extra / Intravehicular (EVA/IVA) compatibility
- Thrust range from < 0.05 N (0.01 lbf) to > 5 N (1 lbf)
- Designed for re-usability and on-orbit maintenance
- High Performance Green Propellants (ADN, NOFBX) offer potential upgrade options

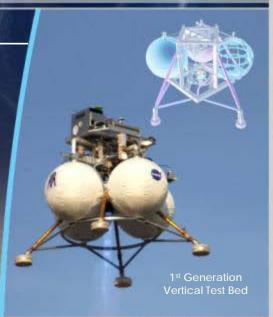
Delete this graphic

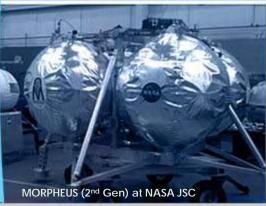
Mini-AERCam Prototype

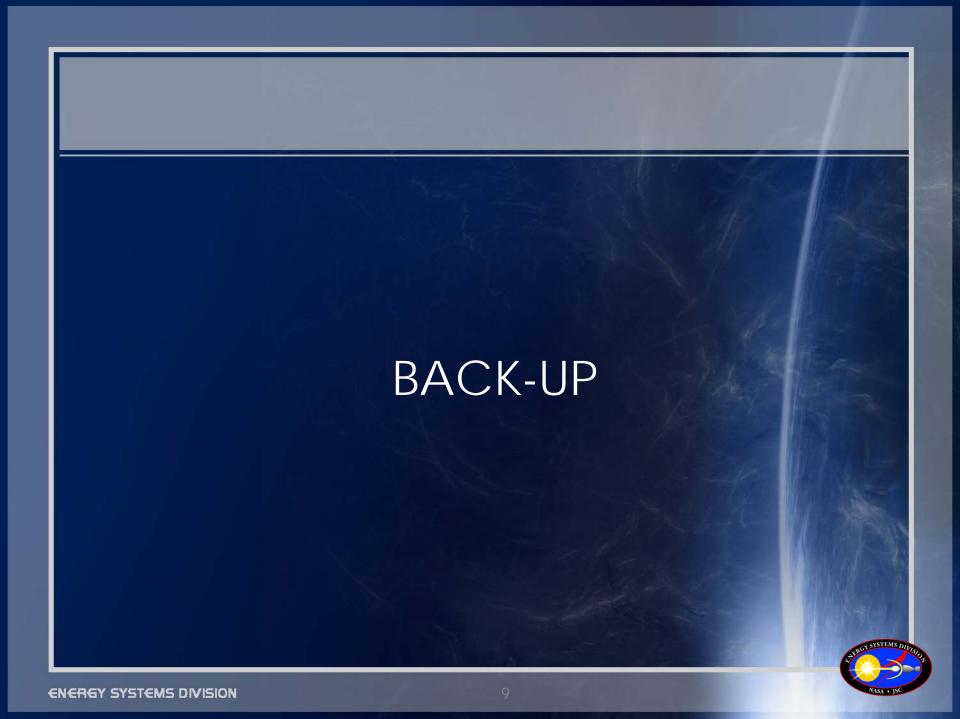
IN-HOUSE DEVELOPMENT

MORPHEUS TERRESTRIAL FREE FLYER TEST BED

Free Flyer Test Bed


- Modular design enables enhancements and system upgrades.
- Ability to fly analog trajectories such as Lunar descent.
- LO₂/CH₄ propulsion for low-cost testing with rapid recycle time.

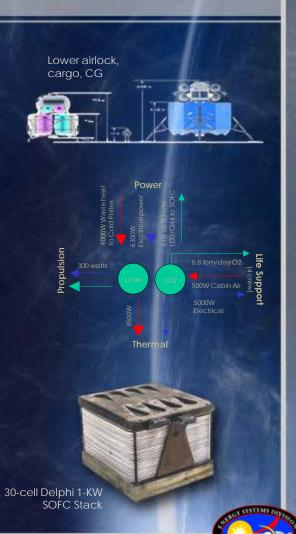

Versatile Platform for Fully Integrated Vehicle-Level Demonstrations


- Non-toxic propulsion system technologies.
- Integrated propulsion/avionics/GN&C architectures including Autonomous Landing Hazard Avoidance Technology (ALHAT).
- Ground operations, flight operations, range safety.

Vehicle Architecture is Evolvable

- Integrated Propulsion, Power, and ECLSS (emulator) across common ISRU-compatible fluids.
- Higher energy trajectories to assess aerodynamic controllability for Mars entry and Pad abort vehicles

LO₂-CH₄ ADVANTAGES FOR SPACECRAFT PROPULSION


- LOX/CH4 provides distinct advantages for spacecraft applications requiring:
 - High performance
 - Long duration in-space storage
 - High density, low volume packaging
 - Non-toxic and low cost propellants
 - Fluid common with other systems (ECLSS/breathing O2, Fuel Cell reactants)
 - Compatibility with Mars and Lunar In-Situ Resource Utilization (ISRU)

Propellant	I_{sp} (94% ODE, 150:1)	Bulk Density S.G.	Energy Density BD x Isp	Space Storable (w/o Active Cooling)	ISRU Compatibility	Toxicity (TLV ppm)	Prop Cost (\$/kg)
Hydrazine	240	1.004	241	Yes (heaters)	No	Yes (0.01)	\$\$\$\$
NTO/MMH	323	1.200	388	Yes (heaters)	No	Yes (3/0.2)	\$\$\$\$
LO ₂ /LCH ₄	364	0.804	293	Yes (6m-1yr)	Yes	Non-Toxic	\$
LO ₂ /LH ₂	455	0.360	164	No	Yes	Non-Toxic	\$\$

LO₂-CH₄ ADVANTAGES FOR SPACECRAFT PROPULSION

- Performs and packages well for most in-space vehicle applications
 - Service and Crew Module auxiliary and main propulsion.
 - Lunar or Martian surface ascent and descent stages.
 - Propellant depots/tankers and servicing vehicles.
 - Upper stage/spacecraft on-orbit RCS.
- LO2 supports high degree of integration between Propulsion, Power, and ECLSS.
 - Solid Oxide Fuel Cell enables both common reactant storage and a lightweight cooling system
- Better packaging than LH₂ and simplifies main and auxiliary propulsion system integration.
- Significantly lower test cost compared to hypergolic propellants.
- ISRU compatibility makes LO2/CH4 enabling for sustained Mars or Lunar exploration.

