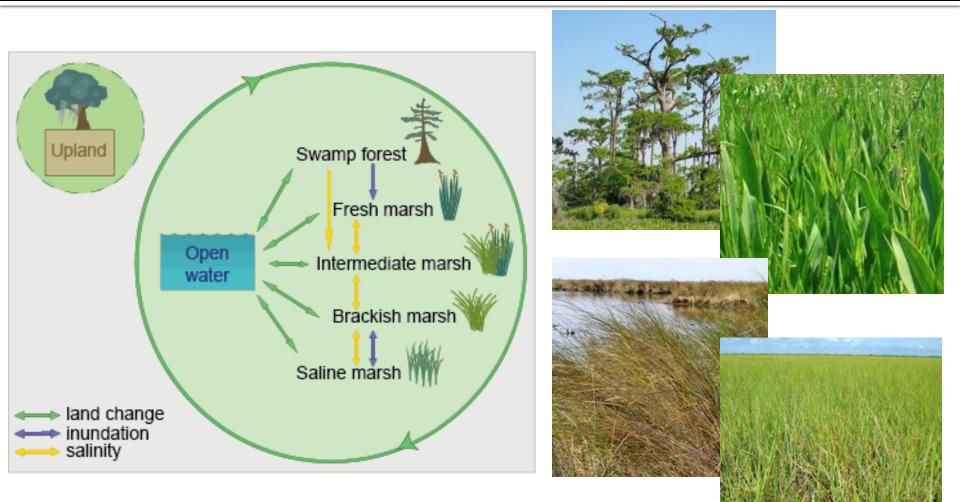


A collaborative project with Hancock High School, Kiln, MS

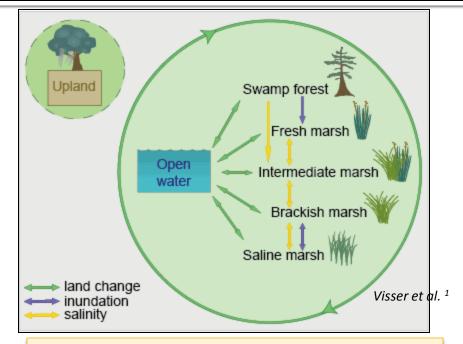
Stennis Space Center Salinity Drifter Project

Maria Kalcic, CSC Mark Turowski, Jacobs Tech. Callie Hall, NASA

Funding provided by : Director, Stennis Space Center


Background

- Salinity is an important property of coastal waters:
 - The amount of salinity in coastal waters determines the types of vegetation and habitats for many species of birds, mammals, fish and shellfish.
 - Salinity changes can result from rising sea level, subsidence, storm surge, and erosion.
 - Changes in salinity can result in loss of vegetation, habitats and spawning grounds, as well as coastal erosion.


Habitat Switching Algorithm

from yrl; http://www.clear.lsu.edu/habitat_switching/

Habitat Switching Module

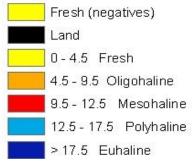
Habitat switching between marsh types depends on salinity and inundation. The module simulates shifts in vegetative community type given long-term shifts in salinity and inundation due to restoration projects. Switches at 1-year time step

Year 0 habitat	Inter- mediate marsh	Brackish marsh	Saline marsh
Fresh marsh	\$ > 2.5		
Inter- mediate marsh	1 < s ≤ 6 ➡	s > 6	
Brackish marsh	s ≤ 6	6 < s ≤ 15 and ♥ pfl ≤ 85%	s > 15 or s > 6 and pfl > 85%

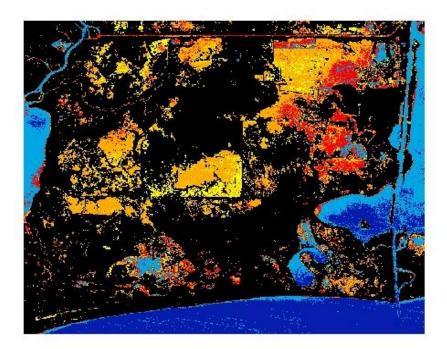
s=average salinity (ppt) over the time step; pfl=average percentage inundation over the time step

¹ Visser, J.M., C. Kaiser, and A.B. Owens. 2008. Forecasting 50-years of Habitat Switching in Coastal Louisiana: No Increased Action & Preliminary Draft Master Plan, Vol. IV, Chapter 4. In Coastal Louisiana Ecosystem Assessment & Restoration (CLEAR) Program: A tool to support coastal restoration., edited by R. R. Twilley. Baton Rouge. 12/22/2010

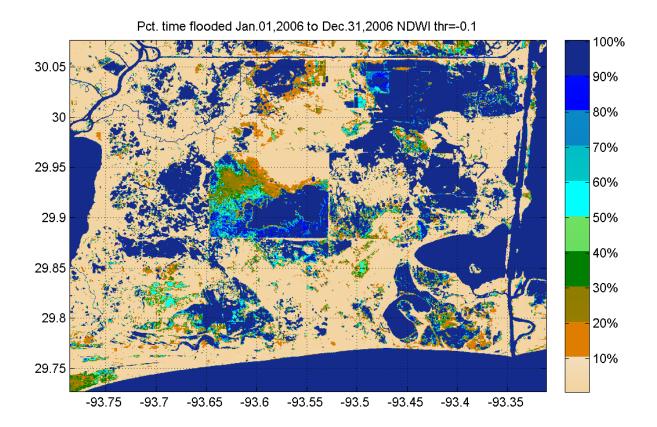
Salinity Estimates from Landsat For Sabine Calcasieu Basin



In-situ samples used to derive model of salinity from Landsat image.


Legend

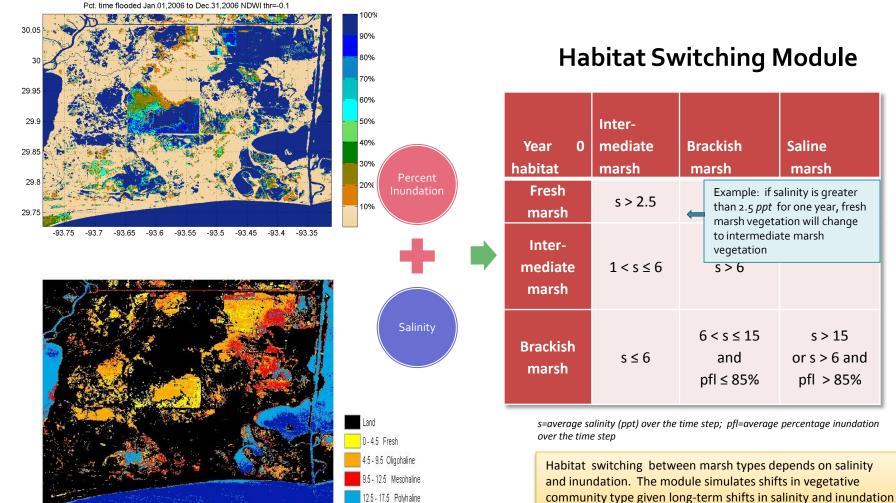
Analyst approximation


<VALUE>

Variables: NDVI, McFeeters, Julian Day R² = 0.84 N = 42 (dropped 6 outliers) Dark Object Subtraction

Percent of time inundated in 2006

Landsat Estimates of Persistent Flooding and Salinity as Potential Inputs to Habitat Switching Module


Saline

marsh

s > 15

or s > 6 and

pfl > 85%

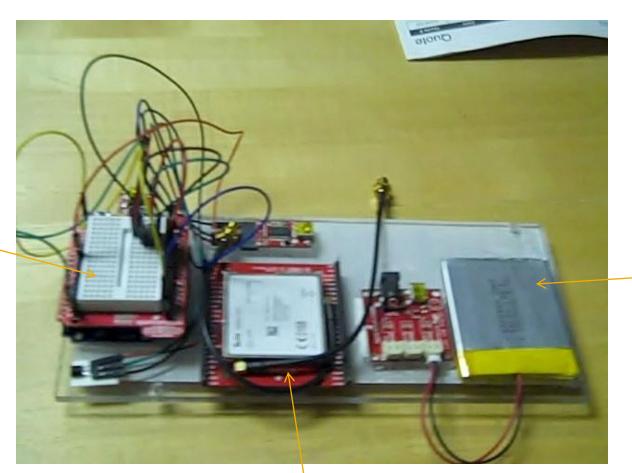
17.5 Euhaline

Habitat Switching Module

due to restoration projects.

12/22/2010

7



- Salinity modeling requires ground truth salinity, which is scarce
- The NASA Office of the Center Director for Stennis Space
 Center funded a pilot project to design a low-cost salinity
 measuring system that high-school students could build and
 monitor.
- The salinity values are fed to NASA's website via a cellular modem and the internet for use by NASA scientists.

Prototyping the System

Battery Charger

Cellular modem and GPS

Arduino

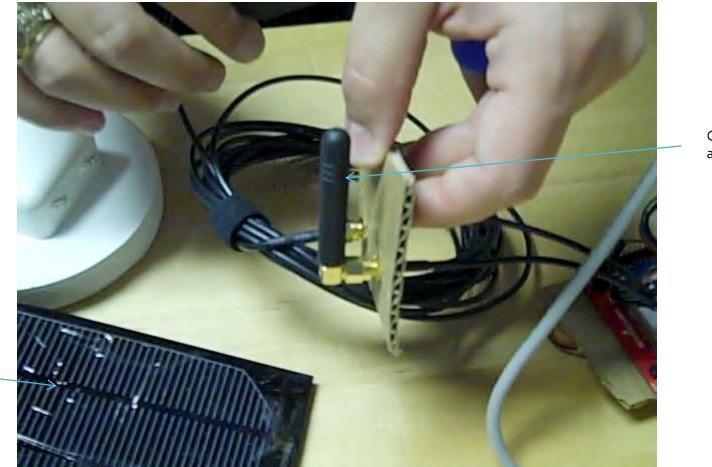
System as packaged for field tests

PVC casing

Solar panel

Salinity Probe and Casing

Opening for water flow



Tip of salinity probe is exposed to water through small opening.

Cellular antenna used to transmit data

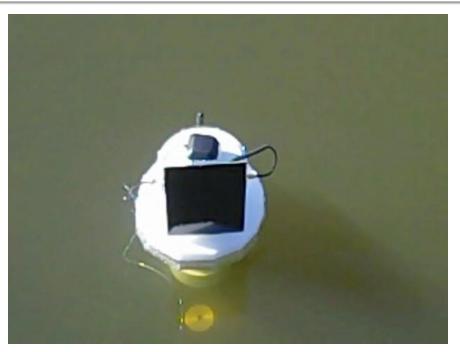
Cellular antenna

Solar panel

Preparing to launch

Left: Mark Turowski, design engineer with Jacobs Technology, prepares to launch the buoy.

Right top: Solar panel is mounted vertically to collect solar reflections off the water (specular reflection). Solar power is used to charge the battery.


Right bottom: Weight is affixed to bottom to help keep unit in upright position.

12/22/2010

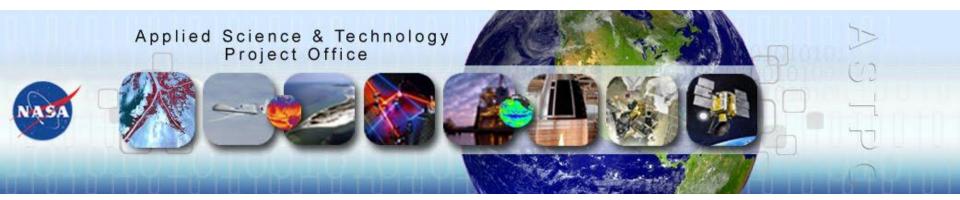
System is launched in the Pearl River at Stennis Space Center

System is lowered into the water from the pier; it is tethered with fishing line.

System floating in the river. GPS antenna and solar panel are visible

Data are transmitted to Twitter by cell phone modem every 15 minutes

Contents:	date	time	latitude	longitude	conductivity temperature (C)
turows16:	161110	0, 164835 .(000,3020.908	0N,08938.45	32W,2307.3521,19.9276
Today, Novemb	oer 16, 2010,	31 minutes ag	• 🔶		
turows16: 16	1110,1648	835.000,3020).9080N,08938.45	532W,2307.3521,	19.9276
turows16:	161110	0, 163351. 4	470,3020.908	9N,08938.45	24W,2330.9580,19.8509
Today, Novemb	oer 16, 2010,	45 minutes ag	• 🔶		
turows16: 16	1110,1633	351.470,3020	0.9089N,08938.45	524W,2330.9580,	19.8509
turows16:	161110	0, 161909 .(000,3020.907	4N,08938.45	17W,2214.1279,19.6975
Today, Novemb	oer 16, 2010,	1 hour ago 🔶			
				517W,2214.1279,	


Google Spreadsheet is used to import the data from the Twitter feed and to compute salinity (from conductivity) and display charts of salinity and temperature.

File Edit View Insert Format Form (0) Tools Help								maria.t.kalcic is viewing				
þ	r a 🙇 - 🛔	\$ % 12	23 - 10pt ·	В Ањс	<u>A</u> • • • •		Ξ 🖘 Σ 🔹 🔝	6				
Formula:											Show all formulas	
	A	γ	AD AD	AH	AI	AJ	AK	AL	AM	AN		AO
	Sample Date	Local Sample Time	Latitude	Longitude	Temperature (C)	Salinity (ppt)		Salinity (ppt)				
	Tue, 16 Nov 2010	10:48:35	30.3485	89.6409	19.93			Summey (ppc)				
	Tue, 16 Nov 2010	10:33:51.5	30.3485	89.6409	19.85	0.0170	0.0190	~	\sim			Salini
	Tue, 16 Nov 2010	10:19:9	30.3485	89.6409	19.70							(ppt)
	Tue, 16 Nov 2010	10:4:33.4	30.3484	89.6409	19.62	0.0170	0.0183					
	Tue, 16 Nov 2010		30.3485	89.6409	19.54	0.0173			$\langle \rangle$			
	Tue, 16 Nov 2010		30.3485	89.6409	19.47	0.0176			× \			
	Tue, 16 Nov 2010		30.3485	89.6409	19.39		0.0176		L			
	Tue, 16 Nov 2010		30.3484	89.6409	19.24							
	Tue, 16 Nov 2010		30.3485	89.6409	19.24		0.0169				\wedge	
	Tue, 16 Nov 2010		30.3484	89.6409	19.08		0.0100					
	Tue, 16 Nov 2010 Tue, 16 Nov 2010		30.3484 30.3484	89.6409 89.6409	19.24 19.47	0.0183						
	Tue, 16 Nov 2010		30.3485	89.6409	19.47	0.0189	0.0162					
			30.3483	89.6408	19.47	0.0189						
	Tue, 16 Nov 2010		30.3485	89.6409	19.54	0.0189			Tîme			
	Tue, 16 Nov 2010		30.3485	89.6408	19.54							
	Tue, 16 Nov 2010		30.3484	89.6409	19.54							
	Tue, 16 Nov 2010		30.3484	89.6409	19.54							
	Tue, 16 Nov 2010		30.3484	89.6409	19.54							
	Tue, 16 Nov 2010		30.3485	89.6409	19.54			Temperature (de	arees Celsius)			
									igrees ceisius)			
							20.00)				Tempe
											· / -	(C)

Results are uploaded to NASA's Applied Science and Technology Project Office Webpage

Webpage to be inserted here