
Qualitative Event-based Diagnosis: Case Study on the
Second International Diagnostic Competition

Matthew Daigle 1 and Indranil Roychoudhury 2

1 University of California, Santa Cruz, NASA Ames Research Center, Moffett Field, CA, 94035, USA
matthew.j.daigle@nasa.gov

2 SGT Inc., NASA Ames Research Center, Moffett Field, CA, 94035, USA
indranil.roychoudhury@nasa.gov

ABSTRACT
We describe a diagnosis algorithm entered into
the Second International Diagnostic Competition.
We focus on the first diagnostic problem of the in-
dustrial track of the competition in which a diag-
nosis algorithm must detect, isolate, and identify
faults in an electrical power distribution testbed
and provide corresponding recovery recommen-
dations. The diagnosis algorithm embodies a
model-based approach, centered around quali-
tative event-based fault isolation. Faults pro-
duce deviations in measured values from model-
predicted values. The sequence of these de-
viations is matched to those predicted by the
model in order to isolate faults. We augment
this approach with model-based fault identifica-
tion, which determines fault parameters and helps
to further isolate faults. We describe the diag-
nosis approach, provide diagnosis results from
running the algorithm on provided example sce-
narios, and discuss the issues faced, and lessons
learned, from implementing the approach.

1 INTRODUCTION
Timely and robust detection, isolation, and identifica-
tion of faults in engineering systems lies at the core of
systems health management technologies. This paper
presents a model-based, qualitative, event-based fault
diagnosis scheme that was entered into the Second In-
ternational Diagnostic Competition (DXC’10) (Poll et
al., 2010). The competition allows for a compara-
tive study of different diagnostic approaches, and in-
cludes multiple diagnostic problems. We focus on di-
agnostic problem I (DPI) of the industrial track of the
competition, which consists of fault diagnosis and re-
covery for a subset of the Advanced Diagnosis and
Prognosis Testbed (ADAPT) (Poll et al., 2007), called
ADAPT-Lite. ADAPT is an electrical power distribu-
tion system, representative of those found in space-
craft. Our entry into DXC’10 is called QED, for qual-
itative event-based diagnosis.

QED extends the TRANSCEND diagnosis scheme
described in (Mosterman and Biswas, 1999; Daigle et

al., 2010). In this scheme, fault isolation is achieved
through analysis of the transients produced by faults,
manifesting as deviations in observed behavior from
predicted nominal behavior. We incorporate addi-
tional diagnostic information, known as relative mea-
surement orderings, which provide a partial order-
ing of measurement deviations for different faults,
leading to an enhanced event-based fault isolation
scheme (Daigle et al., 2007; 2009). DPI requires fault
identification, and includes abrupt, incipient, and in-
termittent fault profiles. TRANSCEND deals only with
abrupt profiles, so we incorporate extensions for incip-
ient faults (Roychoudhury, 2009), and new work for
identification of intermittent faults.

The paper is organized as follows. Section 2
overviews the diagnosis approach. Section 3 provides
the system model. Section 4 describes fault detection
and symbol generation. Section 5 discusses fault isola-
tion, and Section 6 describes fault identification. Sec-
tion 7 describes fault recovery. Section 8 presents di-
agnosis results, and Section 9 concludes the paper.

2 DIAGNOSIS APPROACH
We focus on Diagnostic Problem I (DPI) of the indus-
trial track of DXC’10. The problem here is to decide
whether the mission should be aborted or continued. In
order to make this decision, we must determine if the
system is faulty, and if the fault warrants an abort rec-
ommendation or not, given the system observations.

The diagnosis architecture is shown in Fig. 1. The
system receives inputs u(t) and produces outputs y(t).
Due to the simplicity of the monitored system, we use
a predictive model instead of an observer. Our sys-
tem model runs simultaneously, producing predicted
outputs ŷ(t), given the inputs u(t). Using statisti-
cal methods, the fault detection module decides when
a measurement has deviated from its nominal value,
triggering fault isolation. Measurement deviations,
viewed as events, are abstracted into a symbolic rep-
resentation using the symbol generator. The sequence
of these symbols, where a symbol is denoted by σ, is
used to isolate faults F . Fault isolation consists of can-
didate generation at the point of fault detection, and
hypothesis refinement as new symbols are provided.

1

https://ntrs.nasa.gov/search.jsp?R=20110008499 2019-08-30T15:00:43+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10559231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

21st International Workshop on Principles of Diagnosis

Figure 1: Diagnosis and recovery architecture.

Figure 2: ADAPT-Lite schematic.

Each fault f ∈ F is associated with a component, its
fault mode, and its fault parameters. Fault identifica-
tion computes, for each fault f ∈ F , the values of the
fault parameters. An oracle is provided by DXC’10
that decides for each fault f whether an abort is rec-
ommended, producing a set of recommendations R.
The decision module selects a recommendation from
R and outputs the associated control actions C.

3 SYSTEM MODELING
Our diagnosis approach is model-based, requiring a
model of both nominal and faulty behavior. It is used
for prediction of nominal values and within the fault
detection, isolation, and identification modules. In
the following, we describe the models of nominal and
faulty behavior of the ADAPT-Lite system.

3.1 Nominal Model
The schematic of ADAPT-Lite is given in Fig. 2. Sen-
sors are denoted in italics. Sensors prefixed with an E
are voltage sensors, those with an IT are current sen-
sors, and those with ISH or ESH are for states of circuit
breakers and relays. TE228 is the battery temperature
sensor, and ST516 is the fan speed sensor. Note that
the inverter converts DC power to AC, and E265 and
IT267 provide rms values of the AC waveforms. We
describe models for each of the components in turn.

The battery consists of two 12 V lead-acid batter-
ies in series. We lump these together into a single
battery model. Battery models typically must include
a set of complex nonlinear behaviors (Ceraolo, 2000;
Daigle et al., 2009). However, most of these character-
istics are not evident within the short, four-minute time
frame of the experimental scenarios. Therefore, we
utilize a simplified electrical circuit equivalent model,
consisting of a single large capacitance, C0, in series

with a capacitor-resistor pair, Cs and Rs, that subtracts
from the voltage provided by C0 (see Fig. 2). In real-
ity, Rs is a function of state of charge, depth of charge,
and temperature, but, for our purposes, we may assume
it to be constant. Cs is much smaller than C0. Since
the battery voltage decreases faster at lower voltages,
we express C0 as a function that decreases with volt-
age. The battery also has a large parasitic resistance in
parallel that accounts for the self-discharge of the bat-
tery due to various parasitic processes, which may be
omitted here. The battery may then be described as

v̇0 =
1
C0

iB

v̇s =
1
Cs

(
iB −

vs

Rs

)

vB = v0 − vs,

where vB is the battery voltage, iB is the battery cur-
rent, v0 is the voltage across C0, and vs is the voltage
drop across the Cs-Rs pair. The battery temperature is
unchanging over the scenario length so we express it
as a constant TB . Deviation from TB implies a fault.

The inverter transforms DC power to AC power.
When operating nominally, the voltage vrms is con-
trolled very close to 120 V AC. From a power bal-
ance of the AC and DC sides of the inverter, we have
vinviinv = e · vrmsirms, where e is the inverter ef-
ficiency, vinv is the input DC voltage to the inverter,
and iinv is the input DC current to the inverter. The in-
verter still draws a small amount of current even when
irms = 0, and this is captured as a DC resistance par-
allel to the inverter, Ron. We have

iinv =
vrmsirms

e · vinv
+

vinv

Ron
.

2

21st International Workshop on Principles of Diagnosis

(a) Offset. (b) Drift. (c) Intermittent offset.

Figure 3: Fault profiles.

The DC and AC resistive loads are modeled as pure
resistances, with Rdc and Rac, respectively. The fan
has both resistive and inductive properties, so intro-
duces a phase difference in its current from the input
voltage. We express its equivalent impedance as Zfan
and phase offset as φ. The inverter current irms is the
vector sum of the AC load and fan currents. Nomi-
nally, the fan is always on, so we can express its speed
as a constant ω. Any deviation from ω implies a fault.

Relays and circuit breakers are modeled as ideal
switches. For DPI, there are no mode changes dur-
ing nominal operation, so observed mode changes are
directly attributed to faults.

Using the available data sets, we have identified the
parameters of our model and obtained very accurate
descriptions of nominal behavior.

3.2 Fault Modeling
We consider both parametric faults, defined as unex-
pected changes in system parameter values, and dis-
crete faults, defined as unexpected changes in the oper-
ating mode of a component. Parametric faults include
changes in the AC and DC resistances, Rac and Rdc,
and additive terms to sensor equations. These param-
eters may assume offset, drift, and intermittent offset
profiles, as shown in Fig. 3 (tf denotes the time of fault
occurrence).

For an offset, the faulty value pf (t) is defined by
pf (t) = p(t) + ∆p,

where p(t) is the nominal value, and ∆p is the offset.
A drift is defined by its slope m, i.e,

pf (t) = p(t) + m(t− tf).
For intermittent offsets, the offset alternates be-
tween zero and a nonzero value. The profile is de-
fined by three parameters, the mean offset µ∆p, i.e,
mean(∆p1,∆p2, . . .), the mean faulty time µf , i.e,
mean(∆tf1,∆tf2, . . .), and the mean time it is nomi-
nal µn, i.e, mean(∆tn1,∆tn2, . . .).

Discrete faults include stuck faults of the relays and
circuit breakers, inverter failure, load failure, fan over-
speed and underspeed faults, the introduction of a bat-
tery parasitic resistance Rp, and sensor stuck faults.
Note that sensor stuck faults are defined as y(t) = c,
where c is a constant, and sensor noise is absent.

4 FAULT DETECTION AND SYMBOL
GENERATION

Each sensor is assigned a fault detector and a sym-
bol generator. For each sensor output y(t), we de-
fine the residual as r(t) = y(t) − ŷ(t), where ŷ(t) is

the model-predicted output signal. Statistically signif-
icant nonzero residual signals indicate faults. Follow-
ing fault detection for a sensor, its symbol generator
is initiated to calculate magnitude, slope, and discrete
change symbols that are used for fault isolation.

4.1 Fault Detection
We use the Z-test for robust fault detection using a set
of sliding windows (Daigle et al., 2010). A small win-
dow, W2, is used to estimate the current mean µr(t) of
a residual signal:

µr(t) =
1

W2

t∑

i=t−W2+1

r(i).

The variance of the nominal residual signal, σ2
r(t), is

computed using a large window W1 preceding W2, by
a buffer Wdelay , which ensures that W1 does not con-
tain any samples after fault occurrence. The variance
is computed using:

σ2
r(t) =

1
W1

t−W2−Wdelay∑

i=t−W2−Wdelay−W1+1

(r(i)− µ′r(t))
2,

where

µ′r(t) =
1

W1

t−W2−Wdelay∑

i=t−W2−Wdelay−W1+1

r(i).

A pre-specified confidence level determines the
bounds z− < 0 and z+ > 0 for a two-sided Z-test.
The fault detection thresholds, ε−r (t) and ε+

r (t), are
dynamically computed using:

ε−r (t) = z−
σr(t)√

W2
− E

ε+
r (t) = z+ σr(t)√

W2
+ E,

where E is a modeling error term. A fault is detected
if µr(t) lies outside of the thresholds at time t. The
parameters W1, W2, Wdelay, the z bounds, and E must
be tuned to optimize performance.

Note that for stuck faults in sensors (recall that these
faults eliminate noise from the signal y(t)), a sensor
that is stuck within nominal ranges will not be detected
by the above method. Hence, an additional detection
test is required for these faults. For sensor y,

stucky(t) =
{

true,
∑Ns

i |y(t)− y(t− i)| = 0
false, otherwise

,

3

21st International Workshop on Principles of Diagnosis

where Ns is a pre-defined limit. If the past Ns consec-
utive samples of y(t) are all the same, then stuck(t) =
true. The value of Ns depends on the particular sen-
sor. For some sensors in ADAPT-Lite, Ns must be
quite large (e.g., Ns = 400), because the sensors nor-
mally repeat the same value for long periods of time.
For the discrete sensors ISH236 and ESH244A, we
effectively set Ns = ∞, because these sensors are
binary-valued and noiseless.

4.2 Symbol Generation
Robust methods based on the Z-test are also used for
symbol generation (Daigle et al., 2010). The first sym-
bol is derived directly from the result of fault detection.
If the measurement residual, r(t), is greater than ε+

r (t)
(or less than ε−r (t)), we obtain a + (or -).

The second symbol calculated is for the direction of
the slope of the residual. We start with an estimate of
the initial residual value, µr0(td), at the time of fault
detection, td, over a small window W3:

µr0(td) =
1

W3

td+W3−1∑

i=td

r(i).

The mean of the residual slope is computed over a win-
dow from td to t:

µrd(t) =
1

t− td + 1

(
t∑

i=td

r(i)− µr0

)

Using bounds z− and z+, the thresholds are:

ε−rd
(t) = z−σr

(
1√
W3

+
1√
Wn

)
− Es

ε+
rd

(t) = z+σr

(
1√
W3

+
1√
Wn

)
+ Es.

The - (+) symbol is generated when µrd < ε−rd
(t)

(µrd > ε+
rd

(t)). The window used to calculate the
slope is increased until the symbol is successfully gen-
erated, or t − td becomes larger than a pre-specified
limit, at which the slope is reported as 0, implying
that the true slope is either zero, or unknown but very
small. If the first and second symbols do not match,
we interpret this as a discontinuity in the signal, other-
wise, a smooth change is assumed.

We compute also a discrete change symbol, which
is used to decide whether a signal has switched be-
tween a nonzero and zero value, which is useful
for distinguishing between parametric and discrete
faults (Daigle et al., 2010). To compute the discrete
change symbol, we do not use the residual, but use the
observed and estimated values of the signal. We com-
pute the mean of the measured signal, y(t), and the
mean of the estimate, ŷ(t), over a small window, Wc:

µy(td) =
1

Wc

td+Wc−1∑

i=td

y(i)

µŷ(td) =
1

Wc

td+Wc−1∑

i=td

ŷ(i).

We wish to determine whether each signal belongs to
a population with zero mean, and choose the variance
of the population to be the variance of the residual as
a good approximation of the true variance of the zero-
mean distribution. The thresholds are computed as:

ε−yd
= ε−ŷd

= z−
σr(td)√

Wc
− Ec

ε+
yd

= ε+
ŷd

= z+ σr(td)√
Wc

+ Ec,

where Ec is a modeling error term. If µy(td) is out-
side its bounds, we say it is nonzero, otherwise we say
it is zero. Similarly, if µŷ(td) is outside its bounds, we
say it is nonzero, otherwise we say it is zero. If the
estimate is nonzero and the measurement is zero, we
report Z, and if the estimate is zero and the measure-
ment is nonzero, we report N, else, we report X.

5 FAULT ISOLATION
We utilize a qualitative diagnosis methodology that
isolates faults based on the transients they cause in sys-
tem behavior, manifesting as deviations in observed
measurement values from nominal measurement val-
ues (Mosterman and Biswas, 1999). The transients are
abstracted using qualitative + (increase), - (decrease),
and 0 (no change) values and N (zero to nonzero), Z
(nonzero to zero), and X (no discrete change) values
to form fault signatures. Fault signatures represent
these measurement deviations from nominal behav-
ior as the immediate (discontinuous) change in magni-
tude, the first nonzero derivative change, and discrete
zero/nonzero value changes in the measurement from
the estimate caused by mode changes.

In addition to fault signatures, we also capture the
temporal order of measurement deviations, termed rel-
ative measurement orderings (Daigle et al., 2007),
based on the intuition that fault effects will manifest
in some parts of the system before others. Measure-
ment orderings are based on analysis of the transfer
functions from faults to measurements (Daigle et al.,
2007). The combination of fault signatures and mea-
surement orderings forms qualitative event-based in-
formation for fault isolation (Daigle et al., 2009).

Measurement orderings do not allow one to elimi-
nate a fault hypothesis based on the lack of observing
a measurement deviation. However, for ADAPT-Lite,
there are a substantial number of cases where this is
desirable. When a sensor fault occurs, it will cause a
deviation in a single measurement only, so, if only one
measurement deviation has been observed for a sig-
nificant amount of time after fault detection, we may
assume that it is a sensor fault and eliminate all can-
didates that are inconsistent with that assumption. For
specific measurements, we also expect deviations to
occur within a certain amount of time. For example,
faults that affect the fan speed should cause deviations
in ST516 within 30 s of td. If ST516 has not deviated
by then, all such faults may be eliminated.

The fault signatures and measurement orderings can
be computed manually or automatically from a system
model. The temporal causal graph (TCG) representa-
tion, derived from the system model, can be used with
a forward propagation algorithm to predict qualitative

4

21st International Workshop on Principles of Diagnosis

Table 1: Selected Fault Signatures for ADAPT-Lite
Fault E240 E265 IT240 IT267 ST516
AC483 ∆p > 0 0+X +0X -0X -0X 00X

DC485 ∆p > 0 0+X 00X -0X 00X 00X

E240 ∆p > 0 +0X 00X 00X 00X 00X

E240 m > 0 0+X 00X 00X 00X 00X

E240 µ∆p > 0 +0X 00X 00X 00X 00X

EY260 stuck open +0X -0Z -0Z -0Z 0-X

FAN416 underspeed 0+X +0X -0X -0X 0-X

effects of faults on measurements and their possible se-
quences of deviations (Mosterman and Biswas, 1999;
Daigle, 2008). A TCG captures system variables as
nodes in a graph, and the mathematical relations be-
tween them as edges. Fault parameters appear on
edges, allowing the propagation of parameter changes
to be propagated over the system variables. Since there
are no mode changes in the considered system, gener-
ation of signatures and orderings is performed offline,
and provided as input to the diagnosis algorithm.

Selected fault signatures for ADAPT-Lite are shown
in Table 1, where the first symbol is the immediate
change in magnitude, the second is the slope, and the
third is the discrete change. For example, a positive
offset in E240 will cause an abrupt increase in the
E240 residual with no change in slope, and no dis-
crete change behavior (+0X). No other sensors are af-
fected (00X). An intermittent offset may also cause
this initial transient, therefore, fault identification is
necessary to distinguish these faults. The underspeed
fault of the fan will cause a smooth increase in bat-
tery voltage (0+X), an abrupt increase in inverter volt-
age (+0X), abrupt decreases in battery and inverter
currents (-0X), and a smooth decrease in fan speed
(0-X). Many measurement orderings may be derived
for a number of faults also. Because of the capacitive
effect of the battery, faults cause changes in currents
before changes in voltages, except for discrete failures
which cause voltages to go directly to zero. For fan
faults, the inverter current is affected before the change
in fan speed. If we ever see the fan speed deviate first,
then this allows us to immediately conclude that it is a
sensor fault in ST516.

6 FAULT IDENTIFICATION
Fault identification is initiated immediately after the
initial set of fault candidates is produced after fault de-
tection. Each candidate has its own identification rou-
tine that updates its estimate at every time step. When
the identification result is inconsistent with the fault
mode, the fault candidate is eliminated; in this way
identification helps in the isolation step.

Our fault identification procedure is related to (Roy-
choudhury et al., 2008; Bregon et al., 2009) in that it
uses submodels for fault identification. However, we
use simpler methods for estimating the fault param-
eters in our approach. For faults dealing with Rac,
Rdc, and Rp, we directly calculate the parameter value
p̂(t) at each time step t as a function of sensor val-
ues at t, and (except for Rp, in which the goal is to
calculate Rp directly), compute the offset at t using

∆p(t) = p̂(t)− p(t), where p(t) is the nominal value.
For sensor faults, we compute the current offset at each
time step using ∆p(t) = y(t)− ŷ(t), where ŷ(t) is the
model-predicted output at time t. In each case, we then
analyze the history of ∆p over [td, t] to determine the
offset, drift, or intermittent offset parameters at t.

The resistance value Rdc is given by

Rdc(t) =
vB(t)
idc(t)

,

where for vB(t) we use E281, and for idc(t) we use
IT281. The resistance value Rac is given by

Rac(t) =
vac(t)√

iac(t)2 −
(

vac(t)
Zfan

sinφ
)2
− vac(t)

Zfan
cos φ

,

where for vac(t) we use
√

2E265, and for iac(t) we use√
2IT267. Recall that φ is the phase offset introduced

by the fan load, and Zfan is its equivalent impedance.
The nominal values of Zfan and φ were calculated by
solving the following expression at steady state using
two different values Rac and measured values of iac
and vac:

|iac| =
∣∣∣∣

vac

Zfan
(cos φ + j sin φ) +

vac

Rac

∣∣∣∣ .

This equation is derived from the complex impedance
expressions for the fan and Rac.

To identify the parasitic load Rp, we make two
simplifying assumptions. First, since Cs is relatively
small, the battery voltage reaches a new steady-state
value soon after the fault is injected, and we may omit
Cs from the model. Second, since C0 is very large, the
voltage v0 will not change substantially over the dura-
tion of the scenario, and we may assume it is constant
during that period. Given this, the equivalent circuit
simplifies to that shown in Fig. 4. The value of the
parasitic load may then be calculated directly as

Rp(t) =
vB(t)

1
Rs

(v0 − vB(t))− iB(t)
, t ≥ td.

Here, vB(t) is provided by E240, and iB(t) is provided
by the sensor IT240. The voltage v0 is calculated over
a small portion of data at the beginning of the scenario
(where Rp is guaranteed to be absent) as

v0 = vB + iBRs,

i.e., when Rp is not attached, i0 = iB , and IT240 may
be used as iB . We use the value of Rs estimated during
model identification.

Given a history of ∆p values over [td, t], we com-
pute the fault parameters for the given fault mode. For
offset faults, we simply take the mean of ∆p(t), and
this provides the offset. For drift faults, we compute
the slope over three different intervals, as shown in

5

21st International Workshop on Principles of Diagnosis

Figure 4: Battery equivalent circuit.

Figure 5: Identification of drift faults.

Fig. 5. We calculate

m1(t) =
∆p2 −∆p1

1
2 (t− td)

m2(t) =
∆p3 −∆p2

1
2 (t− td)

m3(t) =
∆p3 −∆p1

t− td
m(t) = median(m1(t), m2(t), m3(t)).

For a large t − td, the effects of noise are diminished
and accurate estimates may be achieved. Taking the
median further decreases the sensitivity to noise. Other
techniques may be used, such as taking the mean of a
few samples around td and around t, and computing
slope based on those, however, the method we adopt
here has proven effective for the selected case study.

For intermittent offset faults, we utilize a limit l
above which ∆p(t) is considered faulty, and below
which is considered nominal. The limit l is typically
chosen as something within 1-2% of the nominal value
of y(t) or p(t). We step through the signal ∆p(t), and
maintian two counters kn and kf . Each time we tran-
sition from a nominal value to a faulty value, we incre-
ment kf , and when we transition from a faulty value
to a nominal value, we increment kn. In effect, these
two counters keep track of the number of times the
signal was faulty and nominal. For each new nominal
value, we increment a second counter τn that keeps
track of the total amount of time the signal is nominal.
Similarly, for each new faulty value, we increment a
counter τf that keeps track of the total amount of time
it is faulty. Then, the fault parameters are

µ∆p = mean(vf), µf = mean
(

τf

kf

)
µn = mean

(
τn

kn

)
.

Fault identification is also used to help further iso-
late faults. For example, AC483 failing, EY272 be-
coming stuck open, and an increase in the AC483

resistance all have the same qualitative fault signa-
tures and measurement orderings, so cannot be distin-
guished based on that information alone. But, for each
of these, we can calculate an equivalent resistance off-
set. If the true fault is a failure in AC483 or EY272,
then the Rac equation yields a large negative value,
but if a resistance offset is the true fault, then the Rac
equation will yield a reasonable value, allowing us to
differentiate the faults.

Identification is also used to help differentiate be-
tween different fault profiles. Both persistent and in-
termittent offsets give the same signatures and order-
ings, but if the fault is truly persistent, then the fault
parameters for the intermittent fault mode will have
very small values for µn. If µn is less than 0.5 s by
60 s past td, we can eliminate the intermittent fault
mode as a candidate. Identification may also help cor-
rect isolation mistakes. If a drift is small enough, then
the corresponding slope symbol may be calculated as
0, wrongly identifying offset as the fault mode. But,
we can compute the offset at td and at t, and if they
are significantly different from each other (e.g., a 25%
difference), then the fault mode is actually a drift.

7 FAULT RECOVERY
Towards the scenario end, a decision must be made as
to whether the mission should be aborted or continued.
The fault identification module computes a candidate
set F , with each f ∈ F being defined by the compo-
nent, its fault mode, and the associated fault parame-
ters. The oracle is viewed as a function O(f) which,
for a given fault, computes a recommended set of com-
mands C. For DPI, either C = {abort} or C = ∅.

Each command set has an associated cost. The cost
is zero when the correct command is chosen by the
decision module. If the algorithm recommends abort
when the mission should be continued, the associated
cost is that of the mission. If the algorithm recom-
mends to continue when it should have been aborted,
the associated cost is that of the mission and the ve-
hicle. Therefore, we take the conservative approach
where:

C =
{
{abort}, {abort} ∈ {O(f) : f ∈ F}
∅, otherwise,

i.e., if an abort is recommended for at least one f ∈ F ,
we recommend abort. This is satisfactory because we
have a high confidence in our diagnosis algorithm.

8 EXPERIMENTAL RESULTS
The results from running QED on the provided fault
scenarios are as shown in Tables 2 and 3. The nom-
inal scenarios are omitted, as no false positives were
detected. The time of fault occurrence is denoted by
tf , of detection by td, and of isolation by ti. All times
are in seconds. The correct fault was always isolated,
and the fault parameters, in most cases, are close to
the actual values. Unique diagnoses were not obtained
in four cases, where the faults are not actually distin-
guishable: (i) AC483 failing and its relay EY272 get-
ting stuck open, (ii) the fan failing and its relay EY275
failing, (iii) DC485 failing and its relay EY284 becom-
ing stuck open, and (iv) the inverter failing and the pre-
ceding circuit breaker CB262 failing. In each of these

6

21st International Workshop on Principles of Diagnosis

Table 2: Mean Detection and Isolation Times
Fault Class Size of Class td − tf ti − tf

All Faults 34 6.21 42.91

Physical Faults 22 5.30 36.64

Sensor Faults 12 7.90 54.42

Abrupt Faults 27 2.95 29.33

Incipient Faults 7 18.81 95.30

Persistent Faults 25 8.38 50.24

Intermittent Faults 9 0.21 22.57

cases, the lack of a relay or circuit breaker sensor re-
sults in the ambiguity. In these cases, the recommen-
dation is always the same, so the correct recommenda-
tion was made. For all other cases, the candidate was
uniquely isolated and the fault parameters were iden-
tified with enough precision to also obtain the correct
recommendation.

The mean detection and isolation times (in seconds)
are shown in Table 2. Here, we divide the faults into
different classes. On average, detection took under
10 s, and isolation took under 60 s. Physical faults
could be detected and isolated faster than sensor faults,
and abrupt faults could be detected and isolated signif-
icantly faster than incipient faults. Because intermit-
tent faults were always abrupt, they could be detected
and isolated faster than the persistent faults, which in-
cluded drift faults.

As an illustrative example, we consider a resistance
offset in AC483 that occurs at 180.4 s with ∆p = 15,
shown in Fig. 6. At 180.4 s, a decrease in IT240 is de-
tected. The initial candidate list contains resistance in-
creases in AC483, AC483 failing, resistance increases
in DC485, DC485 failing, each of the circuit breakers
failing, each of the relays failing, the fan failing or in
the underspeed mode, the inverter failing, or faults in
IT240. At 180.4 s, a decrease in IT267 is detected,
eliminating faults in IT240 and DC485. At 183.4 s,
QED computes that IT240 did not go to zero, so the
fault in CB236 is eliminated. At 183.5 s, QED com-
putes that IT267 has not gone to zero, eliminating the
remaining circuit breaker faults and the inverter failure
as candidates. At 191.3 s, QED computes the slope of
IT240 as 0, eliminating the resistance drift fault. At
210.3 s faults in the fan and its relay are eliminated be-
cause deviations in ST516 have not been observed. At
220 s, AC483 failed and EY272 stuck open are elimi-
nated because the equivalent resistance offset for these
faults does not agree with the calculated resistance off-
set. Also, the intermittent resistance offset is elimi-
nated because µn was calculated as 0 s. This leaves a
resistance offset of AC483 as the remaining candidate,
and the offset is calculated as 13.9, which differs from
the true value by 7.3%. The corresponding recommen-
dation is to continue the mission.

9 CONCLUSIONS
We described our entry into DXC’10, called QED,
which incorporates principles of qualitative event-
based fault isolation. We extended our approach with
fault identification and several heuristics to further
improve fault isolation and identification, based on

0 50 100 150 200
2

2.1

2.2

2.3

2.4
IT267

Time (s)

Cu
rre

nt
 (A

 rm
s)

Measured
Predicted

0 50 100 150 200
15.5

16

16.5

17

17.5
IT240

Time (s)

Cu
rre

nt
 (A

)

0 50 100 150 200
120.35

120.4

120.45

120.5

120.55

120.6
E265

Time (s)

V
ol

ta
ge

 (V
 rm

s)

0 50 100 150 200
800

850

900

950

1000
ST516

Time (s)

Figure 6: Selected measurements for AC483 offset
with ∆p = 15.

knowledge of the system. We found it crucial to also
utilize the results of fault identification to help resolve
further ambiguities in fault isolation. The performance
of the algorithm hinges on correct symbol generation,
but it can be difficult to tune the slope calculation be-
cause it is also used for discontinuity detection. We
believe that a separate reliable method of discontinuity
detection is necessary to alleviate this problem.

Although successful on the provided diagnosis sce-
narios, there are potential problems that could arise
when applied to the competition data set. Our fault
detectors and symbol generators were tuned for opti-
mal performance with the provided scenarios, but may
be too sensitive for some of the competition data, re-
sulting in false alarms or incorrect symbol generation,
which may result in incorrect diagnoses, and, conse-
quently, incorrect recovery recommendations. In many
places, we make final fault isolation decisions based
on manually selected quantitative thresholds, so incor-
rect diagnoses cannot be later corrected using new ev-
idence (e.g., finding out a stuck sensor is not really
stuck). This issue may be overcome using nonmono-
tonic or probabilistic reasoning. The approach is lim-
ited to single faults, so the capability to handle multi-
ple faults, of which initial progress has been described
in (Daigle, 2008), would be needed to apply the ap-
proach to the full ADAPT system. In order to help
manage the complexity of the much larger system, dis-
tributed diagnosis approaches such as those explored
in (Roychoudhury et al., 2009; Roychoudhury, 2009;
Daigle et al., 2010) may be useful as well.

REFERENCES
(Bregon et al., 2009) A. Bregon, B. Pulido, and

G. Biswas. Efficient on-line fault isolation and iden-
tification in Transcend for nonlinear systems. In
Proceedings of the 20th International Workshop on
Principles of Diagnosis, pages 291–298, June 2009.

(Ceraolo, 2000) Massimo Ceraolo. New dynamical
models of lead-acid batteries. IEEE Trans. on
Power Systems, 15(4):1184–1190, November 2000.

7

21st International Workshop on Principles of Diagnosis

Table 3: Diagnosis Results
True Candidate tf td ti F C
AC483 ∆p = −21 90.2 90.2 150.2 AC483 ∆p = −21.82 {abort}
AC483 ∆p = 15 180.4 180.4 220 AC483 ∆p = 13.91 {abort}
AC483 m = −0.1 32 41.3 101.3 AC483 m = −0.09 {abort}
AC483 m = 0.071 30 42.1 102.1 AC483 m = 0.069 {abort}
AC483 µ∆p = −21, µf = 3.6, µn = 19.6 29.9 30 33.2 AC483 µ∆p = −20.4, µf = 3.61, µn = 17.16 ∅
AC483 µ∆p = −148, µf = 3.8, µn = 5.7 30.5 30.6 33.6 AC483 µ∆p = −148.7, µf = 3.73, µn = 5.12 {abort}
AC483 failed 50.1 50.1 110.1 AC483 failed, EY272 stuck open {abort}
BAT2 Rp = 6 120.8 157.4 160.7 BAT2 Rp = 6.0 ∅
CB266 failed 61.5 61.5 64.7 CB266 failed {abort}
DC485 ∆p = −2.5 59.5 59.7 119.7 DC485 ∆p = −2.56 {abort}
DC485 ∆p = 4.5 150.5 150.5 210.5 DC485 ∆p = 3.85 {abort}
DC485 m = −0.005 35 77.6 137.6 DC485 m = −0.0044 {abort}
DC485 m = 0.021 30 44.6 220 DC485 m = 0.021 {abort}
DC485 µ∆p = −3, µf = 3.9, µn = 7.7 30.5 30.7 34.2 DC485 µ∆p = −2.94, µf = 3.73, µn = 7.42 {abort}
DC485 µ∆p = −2.8, µf = 4.1, µn = 6.1 30.6 30.8 35.1 DC485 µ∆p = −2.96, µf = 4.17, µn = 5.53 {abort}
DC485 µ∆p = −3.2, µf = 3.9, µn = 13.5 30.5 30.8 34.3 DC485 µ∆p = −3.07, µf = 3.82, µn = 12.1 ∅
DC485 failed 70.8 70.8 75.2 DC485 failed, EY284 stuck open {abort}
E240 ∆p = −1 110 110 170 E240 ∆p = −0.99 ∅
E242 m = 0.005 75 108.3 168.3 E242 m = 0.0055 ∅
E265 c = 0 150 150 164.6 E265 c = 0 ∅
E281 µ∆p = 0.9, µf = 2.7, µn = 17.8 35 35.3 39 E281 µ∆p = 0.99, µf = 3.14, µn = 18.56 ∅
EY244 stuck open 131.6 131.6 131.7 EY244 stuck open {abort}
FAN416 failed 80.8 80.8 84.2 EY275 stuck open, FAN416 failed {abort}
FAN416 overspeed 91 91.1 96.7 FAN416 overspeed {abort}
FAN416 underspeed 101 101.1 115.7 FAN416 underspeed ∅
INV2 failed 111 111 113.4 CB262 failed, INV2 failed {abort}
IT240 m = 0.005 90 106.6 166.6 IT240 m = 0.0047 {abort}
IT240 µ∆p = 7.8, µf = 3.1, µn = 6.2 35 35 95 IT240 µ∆p = 7.77, µf = 3.08, µn = 5.98 {abort}
IT267 ∆p = −1 40 40.2 100.2 IT267 ∆p = −1 {abort}
IT267 m = 0.015 50 53.2 113.2 IT267 m = 0.015 {abort}
IT267 µ∆p = −0.3, µf = 3.1, µn = 15 40 40.4 100.4 IT267 µ∆p = −0.3, µf = 3.11, µn = 14.77 ∅
IT281 ∆p = 0.2 120 120.9 180.9 IT281 ∆p = 0.2 ∅
IT281 µ∆p = −1, µf = 3, µn = 5.2 50 50.3 110.3 IT281 µ∆p = −1, µf = 3, µn = 5.2 {abort}
ST516 c = 840 170 209.6 209.6 ST516 c = 840 {abort}

(Daigle et al., 2007) M. J. Daigle, X. D. Koutsoukos,
and G. Biswas. Distributed diagnosis in forma-
tions of mobile robots. IEEE Trans. on Robotics,
23(2):353–369, April 2007.

(Daigle et al., 2009) M. J. Daigle, X. Koutsoukos, and
G. Biswas. A qualitative event-based approach to
continuous systems diagnosis. IEEE Trans. on Con-
trol Systems Technology, 17(4):780–793, July 2009.

(Daigle et al., 2010) M. Daigle, I. Roychoudhury,
G. Biswas, X. Koutsoukos, A. Patterson-Hine, ,
and S. Poll. A comprehensive diagnosis method-
ology for complex hybrid systems: A case study on
spacecraft power distribution systems. IEEE Trans-
actions of Systems, Man, and Cybernetics, Part A,
4(5):917–931, September 2010.

(Daigle, 2008) M. Daigle. A Qualitative Event-based
Approach to Fault Diagnosis of Hybrid Systems.
PhD thesis, Vanderbilt University, 2008.

(Mosterman and Biswas, 1999) P. J. Mosterman and
G. Biswas. Diagnosis of continuous valued systems
in transient operating regions. IEEE Trans. on Sys-
tems, Man and Cybernetics, Part A, 29(6):554–565,
1999.

(Poll et al., 2010) S. Poll, A. Feldman, D. Garcia,
J. de Kleer, T. Kurtoglu, and S. Narasimhan. Second
international diagnostics competition – DXC’10. In
Proceedings of the 21st International Workshop on
Principles of Diagnosis, October 2010.

(Poll et al., 2007) S. Poll et al. Evaluation, selection,
and application of model-based diagnosis tools and
approaches. In AIAA Infotech@Aerospace 2007
Conference and Exhibit, May 2007.

(Roychoudhury et al., 2008) I. Roychoudhury,
G. Biswas, and X. Koutsoukos. Comprehensive
diagnosis of continuous systems using dynamic
bayes nets. In Proceedings of the 19th Interna-
tional Workshop on Principles of Diagnosis, pages
151–158, September 2008.

(Roychoudhury et al., 2009) I. Roychoudhury,
G. Biswas, and X. Koutsoukos. Designing
distributed diagnosers for complex continuous sys-
tems. IEEE Transactions on Automation Science
and Engineering, 6(2):277–290, April 2009.

(Roychoudhury, 2009) I. Roychoudhury. Distributed
Diagnosis of Continuous Systems: Global Diagno-
sis Through Local Analysis. PhD thesis, Vanderbilt
University, August 2009.

8

