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Abstract 27 

This research uses the critical reflectance technique, a space-based remote sensing method, to 28 

measure the spatial distribution of aerosol absorption properties over land. Choosing two regions 29 

dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to 30 

analyze the potential limitations of this method for the type of aerosol to be encounterd in the 31 

selected study areas, and to show that the retrieved results are relatively insensitive to 32 

uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance 33 

technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to 34 

retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 

biomass burning events. The retrieved results were validated with collocated Aerosol Robotic 36 

Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match 37 

AERONET products to within ±0.03, the magnitude of the AERONET uncertainty. The overlap 38 

of the two retrievals increases to 88%, allowing for measurement variance in the MODIS 39 

retrievals as well.  The ensemble average of MODIS-derived SSA for the Amazon forest station 40 

is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical 41 

reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in 42 

South America exhibits higher spatial variation than in South Africa. The accuracy of the 43 

retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 

how aerosols affect the regional and global climate. 45 

46 



 

I. Introduction 47 

 48 
Atmospheric aerosols absorb solar radiation, warm the atmosphere (Penner et al., 1992), and 49 

cool the Earth surface (Ramanathan et al., 2001). Therefore, they disturb the atmospheric 50 

temperature profile (Ackerman et al., 2000; Ramanathan et al., 2007; Davidi et al., 2009), and 51 

affect cloud properties (Koren et al., 2004; Koren et al., 2008; Feingold et al., 2005) and 52 

precipitation (Ramanathan et al., 2001; Ramanathan et al., 2005; Menon et al., 2002). These 53 

effects are particularly important over areas with high aerosol concentration (Sato et al, 2003; 54 

Wang et al., 2004), such as the southern Africa region (Ichoku et al., 2003), the Amazon region 55 

(Procopio et al., 2004), the Asian region (Ramana & Ramanathan, 2006), and Yellow Sea, 56 

Arabian Sea, and Saharan Coast region (Zhu et al., 2007). A quantitative understanding of the 57 

role of absorbing aerosols in climate change is also required to formulate reliable policy 58 

recommendations (Hansen et al., 2000).  59 

Aerosol absorption is typically expressed in terms of aerosol single scattering albedo 60 

(
tcoefficienabsorptionaerosoltcoefficienscatteringaerosol

tcoefficienscatteringaerosol
SSA


 ). The importance of 61 

aerosol SSA to climate modification was first studied back in the 1970s (Atwater, 1970; Mitchell 62 

JR, 1971). However, even though SSA is the biggest contributor to the total uncertainty in 63 

aerosol direct radiative forcing (McComiskey et al., 2008), accurate aerosol SSA retrieval 64 

remains challenging still today (Heintzenberg et al., 1997; Moosmuller et al., 2009).  Many 65 

approaches have been developed to study aerosol absorption properties, including microphysical 66 

simulations (Ackerman & Toon, 1981; Martins, et al., 1998), data analysis from AERONET  67 

(Dubovik et al., 2002), and in situ measurements (Clarke, et al., 1987; Reid, et al., 1998; Bond et al., 68 

1999; Martins, et al., 2009), and ground based remote sensing techniques (Dubovik et al., 1998). 69 



 

Space based remote sensing techniques to measure aerosol absorption have also been 70 

increasingly developed. More specifically, TOMS and combination of multi sensors on different 71 

satellites have been used to study aerosol absorption. However, the retrieval of SSA from TOMS 72 

is limited in the UV range (320-440nm), and the result is sensitive to the assumed aerosol layer 73 

height (Herman, et al., 1997; Torres, et al., 1998). Moreover, the combination of satellite sensors, 74 

such as TOMS and ERBE (Hus, et al., 2000), TOMS and MODIS (Hu, et al., 2007), OMI and 75 

MODIS (Satheesh, et al., 2009), TOMS, MODIS and MISR (Hu, et al., 2009), and A-train 76 

satellite sensors (MODIS, OMI, and CALIPSO) (Jeong & Hsu, 2008), have been used to retrieve 77 

SSA. Nevertheless, these retrievals are still limited to the UV range, and the error sources 78 

introduced by using multi platforms with different resolutions, slightly different observation 79 

times, and different calibrations have not yet been well studied.  80 

Recently, some other space based techniques have been proposed to study aerosol absorption as 81 

well. Measuring aerosol SSA over ocean from space, by using ocean sun glint as a bright 82 

background against aerosol absorption, was proposed by Kaufman, et al., in 2002.  MISR also 83 

has the ability to distinguish weakly absorbing (having 1%-4% of hematite, SSA in the range of 84 

0.98-0.99) and strongly absorbing (having 10% hematite, red channel SSA of about 0.94) dust 85 

components (Kalashnikova, et al., 2005; Kalashnikova, et al., 2006).  Moreover, based on the 86 

fact of differing sensitivities of polarized and unpolarized reflectance to aerosol absorption, 87 

Glory will be used to retrieve SSA from polarimetric measurements in a single pixel 88 

(Mishchenko, et al., 2007, Table 2). Even with these efforts, however, aerosol absorption 89 

measurement with satellite remote sensing still remains challenging and more studies are needed. 90 

Compared with the techniques discussed above, the “critical reflectance” method is also a 91 

promising space based remote sensing technique to retrieve SSA (Fraser & Kaufman, 1985).  92 



 

According to the Fraser and Kaufman (1985) radiative transfer simulations, there exists a 93 

specific surface reflectance for which increased aerosol loading (being represented here by 94 

aerosol optical depth or AOD) does not change the reflectance at the TOA (top of the 95 

atmosphere). This unchanging reflectance at the TOA is defined as the critical reflectance, which 96 

has a one-to-one relationship to aerosol SSA (Fraser & Kaufman, 1985). This technique has been 97 

utilized with several space based remote sensing instruments to retrieve aerosol SSA: (1) using 98 

Landsat Multi-Spectral Sensor Imagery as well as aircraft radiance data to retrieve aerosol SSA 99 

over the DC area (Kaufman, 1987); (2) using AVHRR images in visible and near-IR bands to 100 

retrieve the SSA of forest smoke (Kaufman, et al., 1990); (3) using Landsat TM images to 101 

retrieve dust SSA, where the result agreed well with AERONET SSA (Kaufman, et al., 2001).  102 

This research applies the critical reflectance technique to MODIS data to retrieve aerosol SSA. 103 

The first MODIS sensor aboard NASA’s Terra satellite was launched in 1999 and the second one 104 

on the Aqua satellite launched in 2002. Each MODIS sensor provides a global data set every 1-2 105 

days with a 16-day repeat cycle. The sensors collect the Earth images at 36 spectral bands in the 106 

wavelength range from 0.4 µm to 14.4 µm with a swath width of 2330 km (cross track) and 107 

continuous along-track coverage. Specifically, the seven aerosol bands are: 0.62-0.67, 0.84-0.87, 108 

0.46-0.48, 0.55-0.57, 1.2-1.3, 1.63-1.65, and 2.11-2.16 µm, nominally 0.67, 0.86, 0.47, 0.55, 109 

1.24, 1.64, and 2.12 µm respectively. This research discusses how to calculate the critical 110 

reflectance from MODIS data and the sensitivity of potential factors affecting the retrieval, such 111 

as detector zenith angle (DZA) and AOD difference between the polluted day and the clean days. 112 

We also present validation results with collocated AERONET measurements as well as regional 113 

SSA maps.  114 



 

 115 

II. Calculating Critical Reflectance from MODIS Data 116 

In this section, we use two days of MODIS images 16 days apart at the AERONET Mongu site 117 

(latitude= -15.25°, longitude= 23.15°) with low AOD (0.36 at 0.67 µm) day 266 and high AOD 118 

(0.7 at 0.67 µm) day 250 in year 2000 to describe how to calculate the critical reflectance 119 

parameter. The 16 days apart are used to assume the same angular geometry. In the rest of this 120 

study, we will refer to the low AOD day as the “clean day” and the high AOD day as the 121 

“polluted day”. Figure 1 shows the RGB images of the southern African region on the clean day 122 

(the image on the left) and the polluted day (the image on the right).  Next, a 60   60 km area 123 

(latitude= [-15.545 to -14.95]; longitude= [22.85 to 23.45]; blue color box in the image on the 124 

left and the purple color box in the image on the right) centered at Mongu is selected for detailed 125 

illustration.  126 

 127 

Prior to the calculation of the critical reflectance, the cloud mask algorithm by Martins, et al. 128 

(2002) is applied to MODIS level 1B calibrated reflectance data (0.5 km resolution). After being 129 

projected on the grid of 100 pixels per degree (approximately 1km resolution), the results on 130 

both days in the 60   60 km range are mapped in Fig. 2.    131 

Next, the 3600 (60   60) pixels from both images in Fig. 2 are evenly divided into a 3   3 132 

matrix to produce nine cells with equal numbers of 400 (20   20) pixels each. Then, using a 133 

scatter plot such as shown in Fig. 3 (showing the data from the first cell), we compare the 134 

reflectance from pixels in every cell on day 266 to each corresponding pixel on day 250. These 135 

data points are then fitted with a robust fit technique (the red color line in Fig. 3; DuMouchel & 136 

O'Brien, 1989), which minimizes the effect of potential outlier points. The corresponding 137 



 

reflectance at the TOA that represents the crossing point between the fitted red line and the y=x 138 

black line is by definition the critical reflectance. The intercept of the fitted red color line on the 139 

y-axis is defined as the effective path radiance. Our radiative transfer simulations showed that 140 

the effective path radiance is approximately 10 times the AOD difference between the clean day 141 

and the polluted day. This result will be used later in the section describing the aerosol SSA 142 

retrieval. 143 

 144 

III. Sensitivity Studies 145 
 146 

Aerosol SSA can be retrieved from the measured critical reflectance by inputting aerosol models 147 

(aerosol size distribution and the real part of aerosol refractive index) on a Mie code (Wiscombe, 148 

1980) and on a radiative transfer model (Santa Barbara DISORT Atmospheric Radiative Transfer  149 

- SBDART by Ricchiazzi, et al., 1998). To better understand this application and assess the 150 

quality of the aerosol SSA retrieval results, we developed a series of sensitivity tests and 151 

validated the results with collocated AERONET measurements. In the following sections, we 152 

show these tests and validation outcomes, discuss factors affecting the retrieval results, and 153 

display SSA maps.  154 

 155 
Aerosol SSA can be retrieved through its unique correlation with the measured critical 156 

reflectance. This technique has the distinct advantages of possible global coverage over land, 157 

daily measurements, and the no need to know the Earth surface reflectance. It also carries the 158 

following potential limitations: (a) it requires reasonable knowledge of the involved aerosol 159 

models, (b) the critical reflectance should be AOD independent, (c) background aerosols on the 160 

clean day and aerosols on the polluted day should have the similar SSA, (d) the Earth surface 161 

must exhibit Lambertian reflectance, and (e) there needs to be a large enough AOD difference 162 



 

between these two days. There are other limitations as well, such as the studied area should have 163 

enough surface reflectance variability, aerosols should be homogeneously distributed within the 164 

studied cell range, and the surface reflectance should be the same on the clean day and the 165 

polluted day. In order to understand the importance of these limitations, a series of sensitivity 166 

studies have been completed as shown in the following sub sections.  167 

In addition, to study these sensitivities and validate aerosol SSA retrieved from MODIS, we have 168 

to use other available column aerosol SSA measurements. Furthermore, high accuracy of aerosol 169 

SSA - e.g. SSA uncertainty of 0.01 - is required to make accurate climatic predications. 170 

However, the availability of aerosol SSA measurements qualifying these two conditions is 171 

significantly limited. The Glory mission (to be launched in November 2010) by NASA might 172 

improve this situation in the future. At present, we use AERONET measurements, in which 173 

aerosol SSA uncertainty is 0.03 when AOD (at 440 nm) is greater than 0.4 (Dubovik et al., 174 

2004), for our validation. To be consistent, we compare the uncertainty caused by each 175 

corresponding limitation also with 0.03, even though our goal is to measure aerosol SSA with 176 

much smaller uncertainty. If the difference  is significantly smaller than 0.03, we regard that the 177 

limitation has little effect on the retrieved aerosol SSA and the uncertainty is acceptable; in 178 

contrast, if the difference is greater than 0.03, it indicates that the limitation significantly affects 179 

the aerosol SSA retrieval and needs to be considered in the retrieval algorithm.  180 

 181 

(a) Aerosol Models 182 

 183 
Aerosol models including aerosol size distribution and the real part of aerosol refractive index 184 

from the research by Dubovik et al (2002) are used here as a first guess in our SSA retrieval. 185 

These aerosol models are generated from AERONET data before 2000; however, MODIS 186 



 

provides data after 2000. To see whether the models can represent the data from the years after 187 

2000, the real part of aerosol refractive index is studied, and the result shows that the mean real 188 

part of the refractive index for biomass burning aerosols over Mongu is 1.51, which agrees well 189 

with the value of 1.51 from Dubovik et al’s model (Dubovik, et al., 2002, table 1). Similar 190 

comparisons over other AERONET sites also show good agreements between the data before 191 

and after 2000. Therefore, Dubovik et al’s aerosol models are used in our research to represent 192 

the aerosol properties. 193 

In addition, the data analysis shows that the ratio of its standard deviation of the real refractive 194 

index over its mean value is approximately 2.3% over Mongu. The sensitivity study in Fig. 4 195 

indicates that the 2.3% variation of the mean for a mean value of 1.495 (the real refractive index 196 

from AERONET retrieval over Mongu on day 250 in year 2000) leads to an aerosol SSA 197 

uncertainty of 0.01, 0.017, and 0.021 (with the imaginary refractive index as 0.012, 0.024, and 198 

0.036 respectively, where 0.024 is the AERONET retrieved imaginary refractive index).   This is 199 

an acceptable uncertainty compared to the AERONET 0.03 error.  This analysis indicates that the 200 

sensitivity to real refractive index is relatively small and a relatively coarse first guess is 201 

acceptable.  202 

 203 

 204 

(b) Dependence of Critical Reflectance on AOD 205 

The definition of critical reflectance assumes it to be AOD independent (Fraser & Kaufman, 206 

1985, Figure 2). Nevertheless, a closer look at the crossing point shows that the simulated lines 207 

cross each other in the neighborhood of one point, instead of exactly at that point (Kaufman, 208 

1987), which implies that critical reflectance is weakly dependent on AOD. A sensitivity study to 209 

determine the importance of this effect was performed. According to Fig. 5, when AOD on the 210 



 

polluted day increases from 0.5 to 1.0 and AOD on the clean day remains as 0.1, the variation of 211 

the critical reflectance is 0.01. This extreme case with the uncertainty of AOD between 0.5 to 1.0 212 

leads to an SSA uncertainty of ±0.0125 (at SSA=0.8) and ±0.005 (at SSA=0.95), as in Fig.6., 213 

which are both significantly smaller than the 0.03 uncertainty from AERONET. In reality, we 214 

will have a much better handle on the AOD uncertainties and will significantly reduce these error 215 

bars.   216 

 217 

 218 

(c) Varying Aerosol SSA on the Clean Day and on the Polluted Day  219 

The basic critical reflectance technique also assumes that the background aerosols in both clean 220 

days and polluted days have the same SSA. However, this condition might not be satisfied. To 221 

study how aerosol SSA variation affects the retrieval results, we assume that on the polluted day 222 

aerosol SSA (at 0.67 µm) is 0.898 and AOD is 0.7, on the clean day AOD is 0.2 and SSA (on 223 

clean day) varies from 0.986 to 0.824 as in column 2 of Table. 1. The results of a similar analysis 224 

of SSA are also shown in Table 1: on the polluted day SSA is 0.972 and varies from 0.910 to 225 

0.993 on the clean day. The real part refractive index is kept at 1.51 for both days. The results in 226 

column 5 of Table 1 show that the difference between the retrieved SSA and the SSA on the 227 

polluted day varies between -0.026 to 0.019 (when SSA on the polluted day is 0.898) and -0.006 228 

to 0.018 (when SSA on the polluted day is 0.972). Considering these differences are still smaller 229 

than the AERONET aerosol SSA uncertainty 0.03 even under extreme cases, we regard that 230 

varying the aerosol SSA between the clean day and the polluted day affects retrieved aerosol 231 

SSA with acceptable uncertainty.   232 

 233 
 234 

(d) DZA 235 
 236 



 

The data analysis shows that detector zenith angle (DZA) affects retrieval results when it is 237 

bigger than 40 degrees.  This issue can be demonstrated through the results of a group of cases 238 

over Senanga in 2000. According to Fig. 7, when DZA is greater than 40 degrees, the deviation 239 

of MODIS SSA from AERONET SSA increases as DZA increases. In addition, in order to keep 240 

the deviation below 0.03, DZA needs to be smaller than 40 degrees. This result is likely due to 241 

the fact that our retrieval applies the simplified assumption of Lambertian Earth surface 242 

reflectance, instead of the reflectance with angular distribution usually modeled by the Bi-243 

directional Reflectance Distribution Function (BRDF) (Maignan, et al., 2004). This issue will be 244 

addressed in more detail in our future research with the incorporation of the Earth surface BRDF 245 

in radiative transfer simulations. At this point, we will only select cases with DZA< 40 degrees 246 

as a quality assurance procedure. The similar analysis of SSA with scattering angle and SSA 247 

with solar zenith angle does not show SSA dependence on these two geometries as its 248 

dependence on DZA. 249 

 250 
 251 

(e) AOD Difference between the Clean day and the Polluted Day 252 

Besides DZA, AOD difference (between the clean day and the polluted day) affects the signal to 253 

noise ratio and hence the accuracy of the SSA retrieval. A group of cases over Mongu in 2000 is 254 

used to study this issue. As shown in Fig.8, in order to keep the deviation of MODIS SSA from 255 

AERONET SSA below 0.03, the AOD difference needs to be greater than 0.2 to have a high 256 

enough signal to noise ratio.  257 

 258 
 259 
In summary, these sensitivity studies concerning the aerosol model about the real part of aerosol 260 

refractive index, AOD dependence of the critical reflectance, and variations of the aerosol SSA 261 



 

between on the clean day and the polluted day show that the uncertainties of retrieved aerosol 262 

SSA caused by these factors are acceptable for a satellite retrieval of aerosol SSA. In addition, to 263 

produce retrieval results in good agreement with AERONET measurements, a case need to 264 

satisfy two conditions: DZA is smaller than 40 degrees, and the AOD difference between clean 265 

day and polluted day is bigger than 0.2.       266 

 267 

IV. Algorithm and Validation Strategy 268 

After doing sensitivity studies, we apply the critical reflectance technique on some cases of 269 

MODIS data to retrieve aerosol SSA. Our studied regions are dominated by biomass burning 270 

aerosols and are collocated with the AERONET sites as follows: Senanga (African savanna), 271 

Mongu (African savanna), Mwinilunga (African savanna), and Alta Floresta (Amazon forest). 272 

The studied cases are selected based on evaluating MODIS RGB images, MODIS data, and 273 

AERONET data to determine that: (1) cloud cover is minimal over the study areas on both the 274 

clean day and polluted day, 16 days apart; (2) MODIS DZA is less than 40 degrees; (3) these two 275 

days have AOD difference (at 670 nm) greater than or equal to 0.2; and (4) AERONET has level 276 

2 aerosol SSA retrievals available for the polluted day. All retrieval results are validated with 277 

collocated AERONET retrieval products, and regional SSA maps are produced.  278 

As discussed in section I, aerosol SSA can be retrieved from the critical reflectance 279 

measurements performed with MODIS data as shown in Fig. 1, 2, and 3. Next, as quality control, 280 

we have removed cells bearing any of the following properties: (1) having negative critical 281 

reflectance; (2) SSA greater than 1 or smaller than 0; (3) an SSA uncertainty derived from robust 282 

fitting (DuMouchel & O'Brien, 1989) greater than 0.03; (4) root mean square error (RMSE) 283 



 

greater than 0.006 between the data points and the fitting results; and (5) the effective path 284 

radiance smaller than 0.02 (corresponding to an AOD difference greater than 0.2.  285 

In addition, recent studies have shown that aerosol SSA varies with biomass burning stages and 286 

the aerosol aging process (Abel et al., 2003; Zaveri et al., 2010). Therefore, AERONET level 2 287 

aerosol SSA measured at the closest time to the MODIS overpass time is used for the validation, 288 

instead of the daily average. In these AERONET level 2 closest time SSA retrievals, the SZA is 289 

in the range of 53 degrees to 76 degrees. We compare the AERONET SSA with the mean and 290 

the standard deviation of our retrieved aerosol SSA. In order to calculate aerosol SSA variance 291 

with less than nine samples, we apply a chi square distribution correction and set a confidence 292 

interval of 50% (Bevington, 1969).     293 

 294 
According to our quality assurance analysis, accurate biomass burning aerosol SSA can be 295 

retrieved with the critical reflectance technique at 0.47, 0.55, and 0.67 µm channels; however, 296 

there is not enough signal to noise ratio at the other four aerosol channels (0.86, 1.24, 1.64, and 297 

2.12 µm) to retrieve biomass burning aerosol SSA, i.e., there are no cells left out of nine total 298 

after applying our data quality criteria. Next, we validate aerosol SSA retrieved from MODIS 299 

data with collocated AERONET measurements (AERONET SSAs at 0.47 and 0.55 µm used here 300 

is the 1st
 
order interpolation AERONET SSAs at 0.440 and 0.676 µm).  301 

 302 

V. Results 303 

(a) Aerosol SSA Measurements over 60   60 km Area   304 

Aerosol SSA was retrieved by applying the algorithm described above, and the result was 305 

compared with collocated AERONET measurements in South Africa and South America. 306 

According to Fig. 9, approximately one standard deviation (68% by only considering the mean; 307 



 

88% by considering the mean and the variance) of all the studied cases satisfies the requirement 308 

that the absolute difference between MODIS SSA and AERONET SSA is smaller than 0.03. 309 

Figure 9 also indicates that aerosol SSA has a larger spatial variation (represented by larger error 310 

bars) in South America than in South Africa.  Specifically, the mean value of the sample 311 

variance is 0.04 for the cases in South America and 0.02 in South Africa.  312 

 313 
In addition, the comparison of the mean and sample variance of aerosol SSA over time for each 314 

studied locations between MODIS retrievals and AERONET measurements is displayed in 315 

Table. 2. According to Table. 2, aerosol SSA retrievals from MODIS are biased lower than 316 

AERONET measurements over Mwinilunga, which might be caused by problems in either 317 

MODIS or AERONET retrievals. Table 2 also shows that climatologically for the other sites, 318 

MODIS retrieval results agree well with AERONET measurements. The biggest difference 319 

between MODIS mean and AERONET mean is 0.02. This indicates that aerosol SSA retrieved 320 

from MODIS is accurate enough to be used in climatologic studies. 321 

 322 

(b) Regional Aerosol SSA Maps 323 

The above validation results show that applying the critical reflectance technique with MODIS 324 

data can retrieve aerosol SSA in reasonable agreement with AERONET results within 325 

AERONET uncertainty levels. Next, by expanding the studied areas, we produce regional 326 

aerosol SSA maps, which have wide applications in climate modeling and radiative forcing 327 

calculations. For example, Figure 10 and Figure 11 show aerosol SSA (at 470 nm) maps over 328 

South Africa and South America. In addition, the means and the standard deviations 329 

(representing the spatial variation) of aerosol SSA at 470, 550, and 670 nm over both regions are 330 

listed in Table. 3.  Again, these results also indicate that aerosol SSA has a larger spatial 331 



 

variation in South America than in South Africa, which is in consistent with the results from Fig. 332 

9. The SSA map over the Amazon shows significant connection between the distribution of SSA 333 

and AOD. Both results (AOD and SSA) show greater values in the northern part of the Amazon, 334 

which is compatible with the particle properties and aerosol loading of forest smoke versus and 335 

Cerrado smoke (Dubovik et al., 2002).     336 

 337 

VI. Conclusions 338 
 339 

 340 
In this research, the critical reflectance technique is applied on MODIS data from biomass 341 

burning regions by comparing reflectance at TOA in two days (a clean day and a polluted day 16 342 

days apart) to retrieve the aerosol SSA on the polluted day. First, this study describes a method 343 

to determine critical reflectance from MODIS data. Second, sensitivity studies that examine a 344 

range of aerosol conditions expected for our study areas - about aerosol models, the variation of 345 

the real part of aerosol refractive index, AOD dependence of the critical reflectance, and the 346 

variation of background aerosol SSA between a clean day and a polluted day – indicate that these 347 

factors have manageable effect on the retrieval results. In the mean time, a DZA smaller than 40 348 

degrees and an AOD difference greater than 0.2 are required to provide accurate retrieved 349 

aerosol SSA values. We did not test the effect of our assumptions of particle size and shape on 350 

retrievals of SSA because the all smoke aerosol is expected to be spherical and with minimal 351 

variation in size distribution.  Critical reflectance retrievals and subsequent mapping to SSA may 352 

show greater sensitivities and uncertainties for other aerosol types and different surfaces.  353 

Aerosol mixtures of smoke and dust may be especially difficult.    354 

Validation results show that the retrieved aerosol SSA from MODIS agrees well with collocated 355 

AERONET measurements. The ensemble average SSA results from the critical reflectance 356 



 

techniques are in good agreement with collocated AERONET ensemble averages, within 0.02 in 357 

all cases, except for the Mwinilunga station that seems to present some artificial bias.   358 

Moreover, the analysis of aerosol SSA from MODIS retrievals concludes that aerosol SSA has a 359 

larger spatial variation in South America than in South Africa, and that we can see the South 360 

American north-south gradient in SSA and AOD reported by previous studies. Likewise the 361 

critical reflectance method also reproduces findings that show African savanna SSA about 0.08 362 

to 0.09 lower than what is measured in the Amazon forest. 363 

However, the power of the critical reflectance method is not in its ability to reproduce previous 364 

point measurements or retrievals, either spatially (AERONET) or temporally (field experiments).  365 

The true contribution of the critical reflectance method, demonstrated here, is to offer frequent 366 

quantitative measures of spectral aerosol SSA over broad regions, and to capture the spatial and 367 

temporal variability of this essential particle property. 368 

369 



 

Acknowledgements. We would like to thank NASA for funding this project with under the grant 370 

NNX08AJ78G. We also would like to thank the MODIS team and AERONET team for their excellent 371 

work on the instrument development, maintenance, and calibration. We thank their effort on data quality 372 

control and providing data to the public as well. Thanks also go to Kelley Wells, Tom Eck, TianLe Yuan, 373 

and Ralph Kahn for many helpful comments.      374 

375 



 

References: 376 

Ackerman, A.S., Toon, O.B., Stevens, D.E., Heymsfield, A.J., Ramanathan, V., & Welton, E.J. 377 

(2000). Reduction of Tropical Cloudiness by soot. Science, Vol. 288, No. 5468, pp. 1042-1047. 378 

Ackerman,T.P., & Toon,O.B. (1981). Absorption of visible radiation in atmosphere containing 379 

mixtures of absorbing and nonabsorbing particles. Applied Optics, Vol. 20, No. 20, pp. 3661- 380 

3668. 381 

Atwater,M.A. (1970). Planetary Albedo Changes Due to Aerosols, Science, Vol. 170, No 3953, 382 

pp. 64-66. 383 

Bevington, P.R. (1969). Data reduction and error analysis for the physical sciences. New York: McGraw-384 

Hill.  385 

Bond, T. C., Anderson,T. L., & Campbell,D. (1999) Calibration and inter comparison of filter-based 386 

measurements of visible light absorption by aerosols, Aerosol Sci Tech, Vol. 30, pp. 582-600. 387 

Clarke, A.D., Noone, K.J., Heintzenberg, J., Warren,S.G., & Covert.D.S. (1987).Aerosol light absorption 388 

measurement techniques: analysis and intercomparisons. Atmospheric Environment, Vol. 21, No. 6, pp. 389 

1455-1465. 390 

Davidi,A., Koren, I., & Remer, L. (2009). Direct measurements of the effect of biomass burning 391 

over the Amazon on the atmospheric temperature profile. ACPD, Vol. 9, pp. 12007-12025. 392 

Dubovik O, Holben, B.O., Lapyonok, T., Sinyuk, A, Mishchenko, I, Yang, P., et al (2002). Non 393 

spherical aerosol retrieval method employing light scattering by spheroids. Geophys Res Lett, 394 

Vol. 29, NO. 10, 10.1029/2001GL014506  395 

Dubovik,O., Holben, B.N., Kaufman, Y.J., Yamasoe, M., Smirnov,A., & Tanre,D., ey al. (1998). 396 

Single-scattering albedo of smoke retrieved from the sky radiance and solar transmittance 397 

measured from ground. J. Geophys. Res., Vol. 103, No. D24, pp. 31,903-31,923. 398 



 

DuMouchel, W. H., & F. L. O'Brien (1989). Integrating a robust option into a multiple 399 

regression computing environment. Computer Science and Statistics: Proceedings of the 21st 400 

Symposium on the Interface. Alexandria, VA: American Statistical Association. 401 

Feingold,G., Jiang,H., & Harrington, J.Y. (2005). On smoke suppression of clouds in Amazonia, 402 

Geophys Res Lett, Vol.32, L02804, doi: 10.1029/2004GL021369. 403 

Fraser,R.S. & Kaufman, Y. J. (1985). The relative importance of Aerosol Scattering and 404 

Aabsorption in Remote Sensing. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE 405 

SENSING, Vol. GE-23, No.5, pp. 625-633. 406 

Hansen, A.D.A., Rosen, H., & Novakov, T. (1984). The aethalometer-an instrument for the real - 407 

time measurement of optical absorption by aerosol particles. Sci Total Environ, Vol.36, pp. 191-408 

196. 409 

Hansen,J., Sato,M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first 410 

century: an alternative scenario. PNAS, Vol. 97, Part. 18, pp 9875-9880. 411 

Herman,R.J.,Bhartia,K.P., Torres,O., Hsu,C., Seftor,C., & Celarier,E. (1997). Global distribution 412 

of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res., Vol. 102, No. D14, pp. 413 

16911-16922. 414 

Hsu, N. C., J. R. Herman, and C. Weaver (2000), Determination of radiative forcing of Saharan 415 

dust using combined TOMS and ERBE data, J. Geophys. Res., 105(D16), 20,649-20,661.  416 

Hu, R.M., Martins, R.V., & Fairlie, T.D. (2007). Global retrieval of columnar aerosol single 417 

scattering albedo from space-based observations. J. Geophys. Res., Vol. 112, D02204, doi: 418 

10.1029/2005JD006832. 419 



 

Hu, R.M., Sokhi, R.S., & Fisher, B.E.A. (2009). New algorithms and their application for 420 

satellite remote sensing of surface PM2.5 and aerosol absorption. Aerosol Science, Vol. 40, pp. 421 

394-402. 422 

Ichoku, C., Remer, L.A., Kaufman, Y.J., Levy, R., Chu,D.A., & Tanre, D., et al. (2003). MODIS 423 

observation of aerosols and estimation of aerosol radiative forcing over southern Africa during 424 

SAFARI 2000. J. Geophys. Res., Vol. 108, No. D13, pp. 8499-8511. 425 

Jeong, M-J., & Hsu, N. C. (2008). Retrievals of aerosol single-scattering albedo and effective 426 

aerosol layer height for biomass-burning smoke: Synergy derived from ""A-Train"" sensors. 427 

Geophys Res Lett, Vol. 35, L24801, doi: 10.1029/2008GL036279. 428 

Kalashnikova, O.V., Kahn, R., Sokolik, I.N., & Li,W-H. (2005). Ability of multiangle remote 429 

sensing observations to identify and distinguish mineral dust types: Optical models and retrievals 430 

of optically thick plumes. J. Geophys. Res., Vol. 110, D18S14, doi:10.1029/2004JD004550. 431 

Kalashnikova, O.V., & Kahn, R., (2006). Ability of multiangle remote sensing observations to 432 

identify and distinguish mineral dust types: 2. Sensitivity over dark water. J. Geophys. Res., Vol. 433 

111, D11207, doi:10.1029/2005JD006756. 434 

Mishchenko, M.I., Cairns, B., Kopp, G., Schueler,C.F., Fafaul, B.A., & Hansen,J.E., et al. 435 

(2007). Accurate Monitoring of Terrestrial Aerosols and Total Solar Irradiance- Introducing the 436 

Glory Mission. American Meteorological Society, pp. 677-691.  437 

Kaufman, Y. J. (1987). Satellite Sensing of Aerosol Absorption. Journal of Geophysical 438 

Research, Vol. 92, No.D4, pp. 4307-4317. 439 

Kaufman,Y.J., Tucker, C.J., & Fung,I. (1990). Satellite Measurements of Large-Scale Air 440 

Pollution:Methods. J. Geophys. Res., Vol. 95, No.D7, pp. 9927-9939. 441 



 

Kaufman,Y.J., Tanre,D., Dubovik, O., Karnieli, & Remer,L.A. (2001).Absorption of sunlight by 442 

dust as inferred from satellite and ground-based remote sensing. Geophys Res Lett, Vol. 28, No. 443 

8, pp. 1479-1482. 444 

Kaufman,Y.J., Tanre,D., & Boucher,O. (2002). A satellite view of aerosols in the climate 445 

system. Nature, Vol 419, pp. 215-223.   446 

Koren,I., Kaufman,Y.J., Remer,L.A., & Martins,J,V. (2004). Measurements of the effect of 447 

Amazon Smoke on inhibition of Cloud Formation. Science, Vol. 303, No. 5662, pp. 1342-1345. 448 

Koren,I., Martins,J,V., Remer,L.A., & Afargan, H. (2008). Smoke invigoration versus inhibition 449 

of clouds over the Amazon. Science, Vol. 321, pp. 946-949. 450 

Martins, J. V., Artaxo, P., Liousse, C., Reid, J. S., Hobbs, P. V., & Kaufman Y. J.  (1998), Effects of 451 

black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in 452 

Brazil, J. Geophys. Res., 103(D24), 32,041–32,050, doi:10.1029/98JD02593. 453 

Martins, J. V., Didier, T., Remer, L., Kaufman,Y, Mattoo, S., & Levy, R., (2002). MODIS cloud 454 

screening for remote sensing of aerosols over oceans using spatial variability : First result and evaluation 455 

of aerosol from the Terra Spacecraft (MODIS). Geophys Res Lett, Vol. 29, No. 12, 456 

10.1029/2001GL013252. 457 

Martins, J. V., Artaxo,P.,  Kaufman,Y.J., Castanho, A.D., & Remer,L.A. (2009). Spectral 458 

absorption properties of aerosol particles from 350-2500nm. Geophys Res Lett, Vol. 36, L13810. 459 

 McComiskey, S. E. Schwartz, B. Schmid, H. Guan, E. R. Lewis, P. Ricchiazzi, and J. A. Ogren 460 

(2008), Direct aerosol forcing: Calculation from observables and sensitivities to inputs, J. 461 

Geophys. Res., 113, D09202, doi:10.1029/2007JD009170. 462 

Mitchell, JM.JR. (1971). The Effect of Atmospheric Aerosols on Climate with Special Reference to 463 

Temperature near Earth's surface. Journal of Applied Meteorology, Vol. 10, Issue. 4, pp. 703-714. 464 



 

Moosmuller, H., Chakrabarty,P.K., & Arnott,W.P. (2009).  Aerosol Absorption and its 465 

measurement: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, Vol.110, 466 

issue. 11, pp. 844-878.  467 

Penner, J.E., Dickinson,E.R., & O'Neill, A.C. (1992). Effects of aerosol from Biomass burning 468 

on the global radiation budget. Science, Vol.256, No.5062, pp. 1432-1434. 469 

Ramana,M.V. & Ramanathan,V. (2006). Abrupt transition from natural to anthropogenic aerosol 470 

radiative forcing: observations at the ABC-Maldives Climate Observatory.  J. Geophys. Res., 471 

Vol. 111, D20207, doi:10.1029/2006JD007063 472 

Ramanathan, V., Ramana,M.V., Roberts, G., Kim, D., Corrigan, C., & Chung, C., et al. (2007). 473 

Nature, Vol. 448, pp. 575-579. 474 

Ramanthan, V., Chung, C., Kim, D., Bettge,T., Buja,L., & Kiehl,J.T., et al. (2005). Atmospheric 475 

brown clouds: impacts on South Asian climate and hydrological cycle. PNAS, Vol. 102, No. 15, 476 

pp. 5326- 5333. 477 

Ramanthan, V., Crutzen, P.J., Kiehl,J.T., & Rosenfeld, D. (2001) . Aerosols,climate,and the 478 

hyfrological cycle. Science, Vol. 294, pp. 2119-2124. 479 

Reid, J. S., Hobbs, P. V.,  Liousse,  C.,  Martins, J. V.,  Weiss, R. E., & Eck, T. F.(1998). 480 

Comparisons of techniques for measuring shortwave absorption and black carbon content of 481 

aerosols from biomass burning in Brazil, J. Geophys. Res., 103(D24), pp. 32,031-32,040. 482 

Satheesh, S. K., Torres,O.,  Remer,L.A., Babu,S.S., Vinoj, V. & Eck,T.F., et al. (2009).  483 

Improved assessment of aerosol absorption using OMI-MODIS joint retrieval, J. Geophys. Res., 484 

Vol. 114, D05209, doi:10.1029/2008JD011024. 485 

Sato, M., Hansen,J., Koch,D., Lacis,A., Ruedy, R., & Dubovik, O, et al. (2003). Global 486 

atmospheric black carbon inferred from AERONET. PNAS, Vol. 100, No. 11, pp. 6319-6324. 487 



 

Torres, O., P. K. Bhartia, J. R. Herman, Z. Ahmad, and J. Gleason (1998), Derivation of aerosol 488 

properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis, J. 489 

Geophys. Res., 103(D14), 17,099-17,110. 490 

Wang, C. (2004). A modeling study on the climate impacts of black carbon aerosols. J. Geophys. 491 

Res., Vol. 109, D03106, doi: 10.1029/2003JD004084. 492 

Zhu, A, V.Ramanathan, F.Li & D.Kim (2007), Dust plumes over the Pacific, Indian, and                             493 

Atlantic oceans: Climatology and radiative impact, J.Geophys.Res., 112, D16208,      494 

doi:10.1029/2007JD008427.495 



 

Figure captions: 496 

FIG.1. MODIS RGB images over Africa. The image on the left is for Julian day 266 of year 497 

2000 (clean day), and the blue color box in it represents the 60   60 km region around the 498 

AERONET site Mongu. Likewise, the image on the right is for day 250 of year 2000 (polluted 499 

day), and the purple color box represents the same 60   60 km region as the blue color box on 500 

the left image. The blue color box and purple color box are used respectively to contrast the 501 

clean day and the polluted day. 502 

FIG.2. Projected apparent reflectance for the polluted and clean day at 670 nm after applying a 503 

common cloud mask to both days. The image on the left shows the reflectance in the blue color 504 

box in Fig.1 with an average AOD (at 670 nm) =0.36. The image on the right shows the 505 

reflectance in the purple color box in Fig.1 with an averaged AOD (at 670 nm) =0.7. The color 506 

bar represents the apparent reflectance. 507 

FIG.3. This figure demonstrates how to calculate critical reflectance using MODIS data from 508 

two days.  The blue dots are the scatter plot of the reflectance from the first cell (20   20 km 509 

range) on the polluted day (the y-axis) versus that on the clean day (the x-axis). The red color 510 

line represents the robust fit of the data.  The black color line represents y=x, when reflectance 511 

(at the TOA) on the clean day equals reflectance (at the TOA) on the polluted day. The 512 

reflectance value at the crossing point (as shown by the arrows in the figure) between the black 513 

color line and the red color line is defined as “critical reflectance”. The intercept of the fitted red 514 

color line on the y- axis is defined as “effective path radiance”.     515 

FIG.4. Sensitivity study for the variation of the real part of aerosol refractive index.  The x- axis 516 

represents the real part of the refractive index, and the y-axis represents aerosol SSA calculated 517 



 

from Mie theory.  The real refractive index as 1.49, the imaginary refractive index as 0.024, and 518 

the input size distribution are from AERONET retrieval results over Mongu on day 250 in year 519 

2000. This result shows that an uncertainty of real part of aerosol refractive index of 2.3% leads 520 

to an SSA uncertainty of 0.01, 0.017, and 0.021 when the imaginary refractive index is 0.012, 521 

0.024, and 0.036 respectively.   522 

FIG.5. This figure shows the AOD dependence of the critical reflectance. The x-axis represents 523 

AOD (at 670 nm) on a polluted day, and the y- axis represents the calculated critical reflectance 524 

for AOD values (at 670 nm; on a clean day) of 0.1 (red solid line), 0.2 (green solid line), and 0.3 525 

(continued light blue line). The simulations use the following conditions: solar zenith angle 526 

(SZA)=26.8 degrees, solar azimuth angle (SAZA)=37.77 degrees, detector zenith angle 527 

(DZA)=38.65 degrees, user azimuth angle (phi)=277.38 degrees, wavelength=0.67 µm, and 528 

SSA=0.8. When AOD on the clean day varies from 0.1 to 0.3, the variation of critical reflectance 529 

is 0.005 (AOD of 0.5 on polluted day) and 0.003 (AOD of 1 on polluted day). In addition, when 530 

AOD on the polluted day varies from 0.5 to 1, the variation of critical reflectance is 0.01(AOD of 531 

0.1 on the clean day). 532 

FIG.6. The sensitivity study of aerosol SSA (at 670 nm) to varying critical reflectance. The x- 533 

axis represents SSA, and the y-axis represents critical reflectance. The green curve shows the 534 

unique correlation between critical reflectance and SSA. AOD on the clean (polluted day) day is 535 

0.2 (0.7). It shows that the critical reflectance uncertainty of 0.01 leads to an SSA uncertainty of 536 

0.025 (when SSA=0.8). Similarly, a critical reflectance uncertainty of 0.028 causes an SSA total 537 

uncertainty of 0.01 (when SSA=0.95).   538 



 

FIG.7. This figure demonstrates that DZA affects aerosol SSA retrievals. The x-axis represents 539 

DZA for each case, and the y-axis represents the absolute difference between the retrieved 540 

aerosol SSA (over Senanga in 2000) from MODIS on TERRA and AERONET level 2 daily-541 

averaged aerosol SSA. The red color bar over each data point represents the AERONET SSA 542 

uncertainty of 0.03. The result indicates that the difference between aerosol SSA retrieved from 543 

MODIS and from AERONET increases as DZA increases. This effect is likely caused by the 544 

simplified assumption of a Lambertian surface reflectance in the radiative transfer simulations.   545 

FIG.8. This figure demonstrates that AOD differences affect aerosol SSA retrievals. The x-axis 546 

represents the AOD difference at 670 nm between the clean day and the polluted day, and the y-547 

axis represents the absolute difference between aerosol SSA (over Mongu in 2000) retrieved 548 

from MODIS and AERONET level 2 daily-averaged aerosol SSA. The result shows that AOD 549 

difference needs to be greater than 0.2 in order to produce a high enough signal to noise ratio and 550 

to keep the deviation of MOIDS SSA from AERONET SSA below 0.03.  551 

FIG.9. Comparison of aerosol SSA retrieved from MODIS with collocated AERONET 552 

measurement in South Africa (plots on the left) and South America (plots on the right). The x- 553 

axis represents the case numbers, and the y-axis represents the difference between aerosol SSA 554 

from AERONET and from MODIS. In addition, bars over each data point represent SSA 555 

variance (among the remaining cells in 60   60 km range) at a 50% of confidence interval and 556 

with a chi square distribution correction. Since AERONET SSA has an uncertainty of 0.03, the 557 

aerosol SSA retrieved from MODIS agrees well with AERONET measurements (68% by only 558 

considering the mean; 88% by considering the mean and the variance), i.e., the absolute 559 

difference between aerosol SSA from AERONET and MODIS is smaller than 0.03. The result 560 

also shows that aerosol SSA has a larger spatial variation in South America than in South Africa.  561 



 

FIG. 10. Regional AOD and aerosol SSA (at 470 nm) maps. The figures on the left represent the 562 

region over South Africa with latitude = [-15 to -11] and longitude = [21 to 25] on day 254 in 563 

2000 (day 238 as the clean day). The figures on the right represent the region over South 564 

America with latitude = [-12 to -8] and longitude = [-60 to -56] on day 241 in 2006 (with 225 as 565 

the clean day). Both images have a resolution of 20 20 km. 566 

FIG. 11. Regional AOD and aerosol SSA (at 470 nm) maps. The figures on the left represent the 567 

region over South Africa with latitude = [-18 to -14] and longitude = [22 to 26] on day 250 in 568 

2000 (day 266 as the clean day). The figures on the right represent the region over South 569 

America with latitude = [-16 to -12] and longitude = [-60 to -56] on day 252 in 2004 (with 268 as 570 

the clean day). Both images have a resolution of 20 20 km. 571 

572 



 

 573 

Table. 1.  Sensitivity study for varying aerosol SSA between the clean day and the polluted day. 574 

Wavelength = 0.67 µm; AOD (on clean day) = 0.2; AOD (on polluted day) = 0.7; SZA = 26.8º; 575 

SAZA = 37.77º; DZA = 38.65º; DAZA = 277.38º; Real part of the refractive index = 1.51. The 576 

first (last) four rows in the first column represents aerosol SSA on polluted day as a constant 577 

0.898 (0.972); the second column represents varying aerosol SSA on clean day; the third column 578 

represents the simulated critical reflectance; the fourth column represents the retrieved aerosol 579 

SSA; and the last column is the difference between the retrieved aerosol SSA and the real aerosol 580 

SSA on the polluted day. The results show that the uncertainty caused by varying aerosol SSA 581 

between the clean day and the polluted day is acceptable.  582 

583 



 

    584 

SSA (on 

polluted day) 

SSA (on 

clean day) 

Critical 

reflectance 

SSA (Retrieved) SSA (retrieved) – SSA 

(polluted day) 

 

 

 

    0.898 

 

0.986 

 

0.205 

 

0.872 

 

-0.026 

 

0.934 

 

0.226 

 

0.887 

 

-0.011 

 

0.855 

 

0.263 

 

0.909 

 

0.011 

 

0.824 

 

0.281 

 

0.917 

 

0.019 

 

 

 

 

 

0.972 

 

 

0.993 0.461 0.966 -0.006 

0.986 

 

0.473 0.968 -0.004 

0.934 

 

0.601 0.983 0.011 

0.910 

 

0.691 0.990 0.018 
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586 



 

Table 2. The mean and sample variance of aerosol SSA from MODIS retrievals  and AERONET 587 

measurements over different locations. The table shows that MODIS retrievals are biased smaller 588 

than AERONET measurements over Mwinilunga, which might be caused by either problems in 589 

MODIS or in the AERONET retrievals. Over other sites, the maximum difference between 590 

MODIS SSA and AERONET SSA is 0.02. This high accuracy aerosol SSA retrievals from 591 

MODIS indicates its promising application in climatological studies over a given region.       592 

 593 

AERONET 

sites 

SSA (at 470 nm) SSA (at 550 nm) SSA (at 670 nm) 

AERONET MODIS AERONET MODIS AERONET MODIS 

Alta Floresta 

 

0.92 0.02 

(22 cases) 

0.92 0.03 

 

0.91 0.03 

(22 cases) 

0.92 0.03 0.92 0.03 

(18 cases) 

0.90 0.03 

Senanga 

 

0.86 0.01 

(7 cases) 

0.87 0.01 0.85 0.01 

(7 cases) 

0.87 0.01 0.84 0.01 

(7 cases) 

0.86 0.01 

Mongu 

 

0.88 0.02 

(14 cases) 

0.86 0.02 

 

0.87 0.03 

(14 cases) 

0.86 0.02 0.86 0.03 

(14 cases) 

0.84 0.02 

Mwinilunga 

 

0.90 0.02 

(3 cases) 

0.86 0.01 0.90 0.02 

(3 cases) 

0.85 0.01 0.89 0.03 

(3 cases) 

0.84 0.01 

 594 

595 



 

Table 3. This table shows the mean and the standard deviation of aerosol SSA at 470, 550, and 596 

670 nm for the same cases as shown in SSA maps in Fig. 10 and Fig. 11. The data in the table 597 

shows aerosol SSA has a larger spatial variation in South America than in South Africa, which is 598 

consistent with the result from Fig.9.      599 

 600 

Case Information Aerosol SSA: mean   standard deviation  

 470 nm  550 nm  670 nm 

latitude = [-15 to -11]; longitude = [21 to 25] 

over South Africa; on day 254 in 2000 

0.86 0.02 0.84 0.02 0.82 0.02 

latitude=[-18 to -14]; longitude=[22 to 26 ] 

over South Africa; on day 250 in 2000 

0.86 0.02 0.84 0.02 0.81 0.02 

latitude =[-12 to -8]; longitude = [-60 t0 -56] 

over South America; on day 241 in 2006 

0.90 0.03 0.90 0.03 0.87 0.04 

latitude=[-16 to -12 ]; longitude=[-60 to -56] 

over South America; on day 252 in 2004 

0.91 0.04 0.92 0.03 0.91 0.03 

 601 

602 



 

 603 

FIG.1. MODIS RGB images over Africa. The image on the left is for Julian day 266 of year 604 

2000 (clean day), and the blue color box in it represents the 60   60 km region around the 605 

AERONET site Mongu. Likewise, the image on the right is for day 250 of year 2000 (polluted 606 

day), and the purple color box represents the same 60   60 km region as the blue color box on 607 

the left image. The blue color box and purple color box are used respectively to contrast the 608 

clean day and the polluted day. 609 

 610 

 611 

612 



 

FIG.2. Projected apparent reflectance for the polluted and clean day at 670 nm after applying a 613 

common cloud mask to both days. The image on the left shows the reflectance in the blue color 614 

box in Fig.1 with an average AOD (at 670 nm) =0.36. The image on the right shows the 615 

reflectance in the purple color box in Fig.1 with an averaged AOD (at 670 nm) =0.7. The color 616 

bar represents the apparent reflectance. 617 

 618 
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620 



 

FIG.3. This figure demonstrates how to calculate critical reflectance using MODIS data from 621 

two days.  The blue dots are the scatter plot of the reflectance from the first cell (20   20 km 622 

range) on the polluted day (the y-axis) versus that on the clean day (the x-axis). The red color 623 

line represents the robust fit of the data.  The black color line represents y=x, when reflectance 624 

(at the TOA) on the clean day equals reflectance (at the TOA) on the polluted day. The 625 

reflectance value at the crossing point (as shown by the arrows in the figure) between the black 626 

color line and the red color line is defined as “critical reflectance”. The intercept of the fitted red 627 

color line on the y- axis is defined as “effective path radiance”.     628 

 629 

630 



 

FIG.4. Sensitivity study for the variation of the real part of aerosol refractive index.  The x- axis 631 

represents the real part of the refractive index, and the y-axis represents aerosol SSA calculated 632 

from Mie theory.  The real refractive index as 1.49, the imaginary refractive index as 0.024, and 633 

the input size distribution are from AERONET retrieval results over Mongu on day 250 in year 634 

2000. This result shows that an uncertainty of real part of aerosol refractive index of 2.3% leads 635 

to an SSA uncertainty of 0.01, 0.017, and 0.021 when the imaginary refractive index is 0.012, 636 

0.024, and 0.036 respectively.   637 

 638 

639 



 

FIG.5. This figure shows the AOD dependence of the critical reflectance. The x-axis represents 640 

AOD (at 670 nm) on a polluted day, and the y- axis represents the calculated critical reflectance 641 

for AOD values (at 670 nm; on a clean day) of 0.1 (red solid line), 0.2 (green solid line), and 0.3 642 

(continued light blue line). The simulations use the following conditions: solar zenith angle 643 

(SZA)=26.8 degrees, solar azimuth angle (SAZA)=37.77 degrees, detector zenith angle 644 

(DZA)=38.65 degrees, user azimuth angle (phi)=277.38 degrees, wavelength=0.67 µm, and 645 

SSA=0.8. When AOD on the clean day varies from 0.1 to 0.3, the variation of critical reflectance 646 

is 0.005 (AOD of 0.5 on polluted day) and 0.003 (AOD of 1 on polluted day). In addition, when 647 

AOD on the polluted day varies from 0.5 to 1, the variation of critical reflectance is 0.01(AOD of 648 

0.1 on the clean day). 649 

 650 

651 



 

FIG.6. The sensitivity study of aerosol SSA (at 670 nm) to varying critical reflectance. The x- 652 

axis represents SSA, and the y-axis represents critical reflectance. The green curve shows the 653 

unique correlation between critical reflectance and SSA. AOD on the clean (polluted day) day is 654 

0.2 (0.7). It shows that the critical reflectance uncertainty of 0.01 leads to an SSA uncertainty of 655 

0.025 (when SSA=0.8). Similarly, a critical reflectance uncertainty of 0.028 causes an SSA total 656 

uncertainty of 0.01 (when SSA=0.95).   657 
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659 



 

 FIG.7. This figure demonstrates that DZA affects aerosol SSA retrievals. The x-axis represents 660 

DZA for each case, and the y-axis represents the absolute difference between the retrieved 661 

aerosol SSA (over Senanga in 2000) from MODIS on TERRA and AERONET level 2 daily-662 

averaged aerosol SSA. The red color bar over each data point represents the AERONET SSA 663 

uncertainty of 0.03. The result indicates that the difference between aerosol SSA retrieved from 664 

MODIS and from AERONET increases as DZA increases. This effect is likely caused by the 665 

simplified assumption of a Lambertian surface reflectance in the radiative transfer simulations.   666 
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668 



 

FIG.8. This figure demonstrates that AOD differences affect aerosol SSA retrievals. The x-axis 669 

represents the AOD difference at 670 nm between the clean day and the polluted day, and the y-670 

axis represents the absolute difference between aerosol SSA (over Mongu in 2000) retrieved 671 

from MODIS and AERONET level 2 daily-averaged aerosol SSA. The result shows that AOD 672 

difference needs to be greater than 0.2 in order to produce a high enough signal to noise ratio and 673 

to keep the deviation of MOIDS SSA from AERONET SSA below 0.03.  674 
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FIG.9. Comparison of aerosol SSA retrieved from MODIS with collocated AERONET 677 

measurement in South Africa (plots on the left) and South America (plots on the right). The x- 678 

axis represents the case numbers, and the y-axis represents the difference between aerosol SSA 679 

from AERONET and from MODIS. In addition, bars over each data point represent SSA 680 

variance (among the remaining cells in 60   60 km range) at a 50% of confidence interval and 681 

with a chi square distribution correction. Since AERONET SSA has an uncertainty of 0.03, the 682 

aerosol SSA retrieved from MODIS agrees well with AERONET measurements (68% by only 683 

considering the mean; 88% by considering the mean and the variance), i.e., the absolute 684 

difference between aerosol SSA from AERONET and MODIS is smaller than 0.03. The result 685 

also shows that aerosol SSA has a larger spatial variation in South America than in South Africa.  686 
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FIG. 10. Regional AOD and aerosol SSA (at 470 nm) maps. The figures on the left represent the 689 

region over South Africa with latitude = [-15 to -11] and longitude = [21 to 25] on day 254 in 690 

2000 (day 238 as the clean day). The figures on the right represent the region over South 691 

America with latitude = [-12 to -8] and longitude = [-60 to -56] on day 241 in 2006 (with 225 as 692 

the clean day). Both images have a resolution of 20 20 km.  693 
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FIG. 11. Regional AOD and aerosol SSA (at 470 nm) maps. The figures on the left represent the 697 

region over South Africa with latitude = [-18 to -14] and longitude = [22 to 26] on day 250 in 698 

2000 (day 266 as the clean day). The figures on the right represent the region over South 699 

America with latitude = [-16 to -12] and longitude = [-60 to -56] on day 252 in 2004 (with 268 as 700 

the clean day). Both images have a resolution of 20 20 km. 701 
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