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Time Dependent Flow Problems

Time The growth in computer hardware performance and capacity has enabled
large scale computations of complex physical models.

Introduction These calculations raise several questions:

o How accurate is the simulation?
o Can predictions be trusted?

o Can differences between computation and experiment be rigorously
reconciled?

“y 1
| \k—ii?ﬂ

Helicopter Aerodynamics®  Launch Vehicle Analysis® Abort Systems Analysis'

'POC: S. Rogers, 2POC: G. Klopfer, 3POC: N. Chaderjian (NASA)


file:///u/wk/barth/talks/SIAM_AN_2010/movies/v22_adapt.mp4
file:///u/wk/barth/talks/SIAM_AN_2010/movies/ares2.mp4
file:///u/wk/barth/talks/SIAM_AN_2010/movies/stu1.mp4
file:///u/wk/barth/talks/SIAM_AN_2010/movies/ares4.mpeg

Overview

Space-

L o The main topic of discussion is error representation and error control of
functional outputs via dual problems (Erickson et. al.,1995), (Becker
and Rannacher, 1997).

Introduction

o Particular attention is given to the time-dependent calculation of the
compressible Navier-Stokes flow. Specifically, we examine the
backwards-in-time dual problem and issues associated with

o the deterioration (blowup) of dual problems with increasing Reynolds
number,
o the loss of sharpness in error bounds over long time integrations.

o In the remainder of the presentation, we briefly examine a novel
uncertaintly quantification technique proposed by Estep and Neckels
(2006) for the quantification of uncertain functional outputs given
aleatoric (statistical) random variable inputs.

o Surprisingly, the dual problems in the Estep and Neckels technique are
identical to those arising in a posteriori error estimation (!!) but now the
dual problem is used to construct a piecewise linear approximation of
the random variable response surface.



Ngas(\ Motivating Computational Challenge #1: Cylinder Flow

Space-

e Cylinder flow at Mach = 0.10, logarithm of |vorticity| contours

Cylinder ’/.
Flow

Re=1000 Re=3900 Re=10000 Re=50000

o Quartic space-time elements
o 25K element mesh

o Viscous walls only imposed on cylinder surface
o Reynolds number based on cylinder diameter

Question: How is the ability to estimate and control numerical error effected
by increasing Reynolds number?
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Conservation law system in R9*"

Nonlinear u’t+dlvf:07 u,f,‘GRm 1:1,...,d
Conserva-

tion

Laws

Convex entropy extension

Ui+divF <0, UF cR



Space-Time Discontinuous Galerkin Formulation

Time Piecewise polynomial approximation space:
m
V= {Vh | Vhlkxmn € (Pk(K X /")) }

Find v, € V" such that for all w, € V"

N-—1
B(Vh, Wh)pG = »_ B"(Vh,Wn)pG =0 ,

n=0
Space-time ‘
DG B"(V,W)DG = /Z / _(U(V)'W,t-‘rfl(V)'W,X,)dth
Pyer 7K
t /,n > aKW(Xf) ~h(v(x-),v(x;); n) dsdt
KeT

+

/ (W) - u(u(e 1)) — w(eh) - u(v(t?))) dx
Q

O Proposed by Reed and Hill (1973), LeSaint and Raviart (1974) and further
developed for conservation laws by Cockburn and Shu (1990)

O u the conservation variables, v the symmetrization variables
o h a numerical flux function, h(v—,vy;n) = —h(vy,v_; —n), h(v,v;n) = f(v) - n



Nasa The Discontinuous in Time Approximation Space
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Time
DG

Space-time
DG

o Natural setting for the discontinuous Galerkin (DG) method for
hyperbolic problems

o Utilized in the space continuous Galerkin least-squares method
(Hughes and Shakib, 1988)

o Often used in the discretization of parabolic problems (Douglas and
Dupont, 1976)

o Requires solving the implicit slab equations.

Time
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Discontinuous timeslab

; Space-time prism element
intervals


file:///u/wk/barth/talks/SIAM_AN_2010/Figures/space-time/space_time.pnm
file:///u/wk/barth/talks/SIAM_AN_2010/Figures/space-time/prism.pnm

Nonlinear Stability of Space-Time DG Formulations

Space-
Time
DG

Theorem E: Global space-time entropy inequality (Cauchy IVP):

/U(u*(ti))dxg/U(u(v,,(x, ) dxg/U(u(vh(x, £))) dx
Q Q Q

meal(Q) /Q”("h(xv %)) dx

S whenever the numerical flux satisfies the system extension of Osher’s
bG famous “E-flux” condition

u () =

VX - (h(v_,vi;n) —f(v(0))-n) <0, VO € [0,1] ,v(0) = v_ + O[v]*

o Several flux functions satisfy this technical condition when recast in
entropy variables, e.g. Lax-Friedrichs, HLLE, Roe with modifications,
etc.



Nonlinear Stability of Space-Time DG Formulations
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Time
DG

Suppose u y remains bounded in the sense

z-uy(va(x,t)z <Co. Vz#£0

O0<c < <
l1z][*

and Theorem E is satisfied for the Cauchy IVP, then following L, stability
Space-time result is readily obtained
DG

L, Stability:

[u(va(-, 1Y) = u™ ()l < (657 Co)' "2 u(Va(-, 1)) — U™ (£2)l|iy(e) -



Space-Time Error Control

el Given a system of PDEs with exact solution v € R™ in a domain €, the overall
objective is to construct a locally adapted discretization with numerical solution uy, that
achieves

@ Norm control [Babuska and Miller, 1984]
|lu — up|| < tolerance
o Functional output control [Erickson et. al. (1995), Becker and Rannacher, 1997]
|J(u) — J(up)| < tolerance , J(u): R — R

Error Rep-
resentation Example functional outputs:

o Time-averaged lift force, drag force, pitching moments
@ Average flux rates through specified surfaces
O Weighted-average functionals of the form

Ty
// (x, 1) - N(u)dx dt
To

for some user-specified weighting W(x, t) and nonlinear function N(u)



Error Representation: Linear Case

e Assume B(, -) bilinear and J(-) linear.
DG
Primal Numerical Problem: Find uy, € V,‘? such that
B(up,w) = F(W) VweVE
Auxiliary Dual Problem: Find ¢ € VB such that
B(w,®) = J(w) Vwe VB
resentaton J(u) — J(up) = J(u — up) (linearity of J)
= B(u —up, 9) (dual problem)
= B(u—up, ® — mpd) (Galerkin orthogonality)
= B(u,® — mp®) — B(up, ® — mp®) (linearity of B)
= F(® — mp®) — B(up,  — mp®) (primal problem)

Final error representation formula:

J(U) — J(Uh) = F(¢‘ — ﬁh¢‘) — B(uh, b — 7rh¢>)




Estimating ¢ — 7,®:
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Various techniques in use for estimating ¢ — 7, ®:

o Higher order solves [Becker and Rannacher, 1998],[B. and Larson,
1999], [Sili and Houston, 2002], [Houston and Hartman, 2002]

o Patch postprocessing techniques [Cockburn, Luskin, Shu, and S uli,
2003]

Error Rep-
resentation

o Extrapolation from coarse grids



Coping with Nonlinearity
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DG
Mean-value linearized forms:
B(u,v) = B(up,v)+Blu—upv) Yve VB
Ju) = J(up) +J(u—up),
Example: B(u, v) = (L(u), v) with L(u) differentiable
us Us gL
L(ug) — L(ua) = dL = —du
(Ug) - L) = [dl= | "
TdL . -
Error Rep- = /0 E(U(Q)) deo - (UB - UA) = L,U . (UB - UA)

resentation
with T(0) = ua + (ug — ua) 6.
Bu,w) = B(upw)+ (Lu-(u—up),w)
= B(up,w)+B(u—upw) VveVd



Error Representation: Nonlinear Case

Time Semilinear form B(-, -) and nonlinear J(-).

Primal numerical problem: Find uy, € V,E,‘ such that

B(up,w) = F(w) Ywe VB

Linearized auxiliary dual problem: Find & € VB such that

B(w,®) = J(w) VYwe VB

Eror Rep J(u) — J(up) = J(u—uy) (mean value J)
= B(u —up, d) (dual problem)
= B(u — up, ® — Tpd) (Galerkin orthogonality)
= B(u,® — 7p®) — B(up,  — mp,®)  (mean value B)
= F(® — mp®) — B(up, ® — mp®), (primal problem)

Final error representation formula:

J(u) — J(up) = F(® — mpd) — B(up, & — m,0)




Refinement Indicators

Space-
Time
pé Space-time error representation formula
Bpa(Vh, W) — Fpg(® — mp®) = Z > Bog,an(Vh, ® — mh®) — Fpg,gn(® — mh®)
n=0 Q"
Stopping Criteria:
N—
[J(u) — J(up)| = Z > Bog,an(Vh, ® — mp®) — Fpg,on(® — mr®)
=0 Q"
Error Rep- Refinement/Coarsening Indicator:
resentation
N—1
[J(u) = J(up)| < DD " |Bog,an(Vh, @ — mh®) — Fig,gn(® — m49)]
n=0 Qn

refinement indicator,nqn

Fixed fraction mesh adaptation:

o Refine a fixed fraction of element indicators, nqn, that are too large and coarsen
a fixed fraction of element indications that are too small.



N(I\Q\%t\ Example: A Scalar Time-Dependent PDE

Space-

Time

DG Circular transport, A = (y, —x), of bump data
U[Jr)\'VU:O, X€[7171]2 /1
u(x,0) =w(1/10; x — xp) , xo =(7/10,0,0) an

a

S
Scalar
transport

Primal transport direction

0100

Primal numerical problem Convergence, ||u — UpllL,(x[0,1])
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N(I\Q\%t\ Example: A Scalar Time-Dependent PDE

sﬁf,’,fj’ A functional is chosen that averages the solution data in the space-time ball of radius
DG 1/10 located at x; = (1/2,1/2,1.05) in space-time

J(U):/01'15/0\1/(1/10;x—xc)udxdt

0
Ju) —Jup) = D D Fogan(® — mh®) — Bog,on (Vh, & — mP)
n=N—1"K
0
[J(u) = J(up)| < >~ |Fog,an(® — mh®) — Bpg,an (Vh, ® — mp®)|
n=N—1"K
Scalar o primal problem
transport (7.//
n (10)

- Ju_h)

0.0001

13u)

Dual transport direction 5e-05
dual problem

1 05 0
time

Dual defect, ® — 7® Error estimate buildup
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$a An Application of Error Estimation and Adaptive Error Control

NA
Space-
Time
DG . L
Example: Euler flow past multi-element airfoil geometry. M = .1, 5° AOA.
equivalent uniform
lift coefficient lift coefficient refinement refinement
(error representation) | (error control) level # elements # elements
5.156 + .147 5.156 + .346 0 5000 5000
5.275 + .018 5.275 + .076 1 11000 20000
5.287 + .006 5.287 + .024 2 18000 80000
5.291 4+ .002 5.291 4+ .007 3 27000 320000
‘ Increasing levels of adaptivity
L5 P e
E /,,/ L
Example g o1
Dual £
Problems 9 Error representation formula
a5 L

#elements.

7

Error reduction during mesh adaptivity =~ Adapted mesh (18000 elements)
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Primal-Dual Problems in Fluid Mechanics

Time

Space- Subsonic Euler flow, M = .10, 5° AOA, Lift force functional.
DG | | Sk

“ S

Primal Mach number  Dual x-momentum Adapted Mesh

Transonic Euler flow, M = .85, 2° AOA, Lift force functional.

Example
Dual \
Problems

Primal density Dual density Adapted Mesh
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Software Implementation and extension to the Navier-Stokes
Eqgns

Space-Time FEM:

o DG extension to the compressible Navier-Stokes equations using the
symmetric interior penalty method of Douglas and Dupont, 1976) as
described in Hartmann and Houston (2006)

o Implements the discontinuous Galerkin discretization in entropy
variables.

@ Unconditionally stable for all time step sizes

o Solves both the primal numerical problem and the jacobian linearized
dual problem arising in space-time error estimation.

o High-order accuracy demonstrated in both €9 and
\EVETS

Stokes
Formulation



nasa  Dual Problems for Time Dependent Problems
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Periodic
Cylinder
Flow

Computing dual (backwards in time) problems looks expensive in terms of
both storage and computation

o Storage of the primal time slices for use in the locally linearized dual
problem.

o Approximation of the infinite-dimensional dual problem for the
backwards in time dual problem.

Tremendous simplification arising for periodic flow problems with period P
when phase-independent functionals are utilized, e.g. mean drag

o Functional independent of the startup transient

@ Only a small number of periods of the primal problem need be stored or
recreated.



Nasa  Periodic Cylinder Flow

T Cylinder flow at Mach = 0.10, logarithm of |vorticity| contours

Time
DG

Re=300 Re=1000

Task: Represent and estimate the error in the mean drag force coefficient
o Solve the primal problem using linear space-time elements

o Construct a smooth phase invariant functional measuring the mean
drag force coefficient

o Solve the dual (backwards in time) problem using quadratic space-time

Periodic elements
Cylinder
Flow o Calculated the estimated functional error and compare with a reference

calculation using cubic elements
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Mean Drag for Cylinder Flow

Space- P=period
Time
g Jirag (U) = fOT frwau(Force - tarag) W(t) dx dlt -
Example: Cylinder flow at Re=300
/,/ J / N -
- y
- i N %
oo Dual problem, ¢(x—mom) Dual defect, ¢p(*—=mom) _ 7, 4(x—mom)
eriodic
Cylinder

Flow
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N%s(\ Mean Drag Dual Problems at Re=300 and Re=1000

Space-

Time
DG

Periodic
Cylinder
Flow

Dual problem at Re=300

Dual problem at Re=1000
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Nasa Mean Drag for Cylinder Flow at Re=1000

Space-
Time
DG
Error representation buildup during the backward in time dual integration
‘
10°
Z s e 0‘
0 0.04 |
10° —_— 181" «.M'\NJJJJV
= o ~ oo
s \ E
= w0t = o —— Exror representation formula |
10" Averaging Window
07 200 400 600 800 1000 o QAZUU 400 600 800 1000
Periodic
Cylinder

Flow
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N%QA Mean Drag for Cylinder Flow at Re=1000

Space-
Time
DG

Adapted mesh from element indicators averaged over a period P

Coarse mesh (12K elements) 2 level refined mesh (20K elements)

Periodic
Cylinder
Flow



nasa  Non-Periodic Cylinder

Sgace—
e Cylinder flow at Re=3900 and Re=10000 using quartic (p = 4) space-time
elements.
o Choosing measurement problems that are not genuinely stationary
produces rapidly growing dual problems and dependency on the initial

data.

Dual solution corresponds to the average drag force over 3 approximate
“periods”.

Periodic
Cylinder
Flow

Re=3900 Re=10000
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Nasa  Growth of Dual Problems

Space-
Time
DG
le+08 T . T T T T T
\e-mn; -
8
\OUDU; -
100 . | . 1 . 1 . 1 .
o 2000 4000 6000 8000 10000
Reynolds Number
Growth of drag functional dual solution ® with increasing Reynolds number
Periodic
Cylinder

Flow
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A Closing Note on the Use of Dual Problems in Uncertainty

N
s
”A% Quantification

Space-

e Developing a capability to numerically compute primal/dual problems for
compressible Navier-Stokes is a major undertaking.

Can this capability be reused in uncertainty quantification?

Estep and Neckels (2006) observed that dual problems can be used to build
a piecewise linear response surface for use in Monte Carlo (MC) and Quasi
Monte Carlo (QMC) sampling of uncertain outputs when the output of
interest is a functional.

******* HOPS surface
5 response surface

Jw)

Periodic
Cylinder
Flow (]




N%s(\ Evaluation of Uncertain Output Functionals
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Periodic
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Flow

Given a nonlinear PDE system with solution u € R™ depending on
n-dimensional random vector, w € P C R”

Lu(x;w) =1

and output functional
J(u;w) :R"xR"— R

calculate statistics of the functional such as expectation

1
E[J]:/PJ(u;w) pdf(w) dw:/o J(u: () d g

and variance
VIJ] = E[/’] - ELJP
using Monte Carlo (MC) or Quasi Monte Carlo (QMC) sampling.



N%s(\ Fast MC and QMC Evaluation of Uncertain Output Functionals
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Higher Order Parameter Sampling (HOPS), Estep and Neckels (2006)

@ Convert the statistics integration problem to uniform MC sampling on a unit
hypercube.

@ Partition the unit hypercube into smaller hypercube subdomains with size
determined from accuracy of the linearized sampling formula.

@ In each hypercube subdomain C; center, calculate the primal solution u; and

adjoint SOIUtiOn (z),'
ou [ Rad} 1 ) tiad'} » PihwWi) = y Wi

and the reduced sensitivity gradients (cf. A. Jameson, 1988)

ad oL
of = 5, Xowi) = ¢Tafw(x7w/)
@ Apply MC or QMC integration in each C; using the linearized sampling formula
for fixed values of J(u;,w;) and g
Periodic

Cylinder J(u,w) = J(uj,w;) + g,-T(w — wj)

Flow



Adaptive HOPS Surface

Sﬁif::' Estep and Neckels then consider adaptive refinement to improve approximation
DG properties of the HOPS surface.
Original HOPS surface
""" HOPS surface
response surface
J(0)
®
Adaptively refined HOPS surface
rrrrrr adeptive HOPS surface
response surface
Jw)
Periodic
Cylinder

Flow




Concluding Remarks

o Estimating and controlling numerical error in time-dependent
calculations is fraught with difficulties

o growth in backward-in-time dual problems,
o loss of sharpness in error bounds.

@ The calculation of dual problems is computationally demanding

o storage of primal time slices,
o higher order solves of dual problem

o Error representation/estimation results presented today barely scratch
the surface
o error control for general transient problems,
o dual problems in the presence of flow bifurcations.

Concluding
Remarks



An Application of Error Estimation and Adaptive Error Control

Space-
Time
pé Example: Euler flow past multi-element airfoil geometry. M = .1, 5° AOA.
equivalent uniform
lift coefficient lift coefficient refinement refinement
(error representation) | (error control) level # elements # elements
5.156 + .147 5.156 + .346 0 5000 5000
5.275+ .018 5.275 + .076 1 11000 20000
5.287 + .006 5.287 + .024 2 18000 80000
5.291 + .002 5.291 + .007 3 27000 320000
57
Increasing levels of adaptivity
- 53 - 17 ——————- 5.2923
H i
49 ——— Error representation formula
%000 w0 e s 24000
Error reduction during mesh adaptivity =~ Adapted mesh (18000 elements)
Concluding

Remarks
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NAS}A Example: Ringleb Flow

Space-
Time
DG
Iso-Density contours
2
10
Li
10" e R
V “ & DG (X(FE) FP3)
o  Quadratic
- g
o ¥ o Cutic
z k.
= :
10
B
s,
10
10"
10° 10" 10° 10t
h
Concluding

Remarks Discontinuous Galerkin


file:///u/wk/barth/talks/SIAM_AN_2010/Figures/ringleb/schematic.pnm
file:///u/wk/barth/talks/SIAM_AN_2010/Figures/ringleb/ringleb_primal_color.pnm
file:///u/wk/barth/talks/SIAM_AN_2010/Figures/ringleb/error_dg.pnm

Example: A Scalar Time-Dependent PDE

Sgace—
e Circular transport, A = (y, —x), of bump data
U+A-Vu=0, x e [-1,1]?
u(x,0) =wv(1/10; x — xp) Xo =(7/10,0,0)
.fi’m,!
Primal numerical problem Convergence, ||u — Upll1,(x[0,1])
Concluding @

Remarks
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