

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulation

Periodic Cylinder Flow

Concluding Remarks

Error and Uncertainty Quantification in the Numerical Simulation of Complex Fluid Flows

Tim Barth

NASA Ames Research Center Moffett Field, California 94035 USA (Timothy.J.Barth@nasa.gov)

イロト イ理ト イヨト イヨト

1

Dac

Time Dependent Flow Problems

Space-Time DG

Introduction

Cylinde Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulation

Periodic Cylinder Flow

Concluding Remarks The growth in computer hardware performance and capacity has enabled large scale computations of complex physical models.

These calculations raise several questions:

- How accurate is the simulation?
- Can predictions be trusted?
- Can differences between computation and experiment be rigorously reconciled?

Helicopter Aerodynamics³ Launch Vehicle Analysis² Abort Systems Analysis¹ ¹POC: S. Rogers, ²POC: G. Klopfer, ³POC: N. Chaderjian (NASA) $\Rightarrow e = e = e = e = e$

Overview

Space-Time DG

Tim Barth

Introduction

Cylinde Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatior

Periodic Cylinder Flow

Concluding Remarks

- The main topic of discussion is error representation and error control of functional outputs via dual problems (Erickson *et. al.*,1995), (Becker and Rannacher, 1997).
- Particular attention is given to the time-dependent calculation of the compressible Navier-Stokes flow. Specifically, we examine the backwards-in-time dual problem and issues associated with
 - the deterioration (blowup) of dual problems with increasing Reynolds number,
 - the loss of sharpness in error bounds over long time integrations.
- In the remainder of the presentation, we briefly examine a novel uncertaintly quantification technique proposed by Estep and Neckels (2006) for the quantification of uncertain functional outputs given aleatoric (statistical) random variable inputs.
- Surprisingly, the dual problems in the Estep and Neckels technique are identical to those arising in *a posteriori* error estimation (!!) but now the dual problem is used to construct a piecewise linear approximation of the random variable response surface.

Motivating Computational Challenge #1: Cylinder Flow

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Cylinder flow at Mach = 0.10, logarithm of |vorticity| contours

- Viscous walls only imposed on cylinder surface
- Reynolds number based on cylinder diameter

Question: How is the ability to estimate and control numerical error effected by increasing Reynolds number?

・ロト ・ 日 ト ・ 日 ト

Sac

Nonlinear Conservation Law Systems

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulation

Periodic Cylinder Flow

Concluding Remarks Conservation law system in $\mathbf{R}^{d \times 1}$

$$\mathbf{u}_{t}$$
 + div $\mathbf{f} = \mathbf{0}$, $\mathbf{u}, \mathbf{f}_{i} \in \mathbf{R}^{m}$ $i = 1, \dots, d$

Convex entropy extension

 $U_{t} + \operatorname{div} F \leq 0, \quad U, F_i \in \mathbf{R}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Space-Time Discontinuous Galerkin Formulation

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Piecewise polynomial approximation space:

$$\mathcal{V}^{h} = \left\{ \mathbf{v}_{h} \mid \mathbf{v}_{h}|_{K \times I^{n}} \in \left(\mathcal{P}_{k}(K \times I^{n}) \right)^{m} \right\}$$

Find $\mathbf{v}_h \in \mathcal{V}^h$ such that for all $\mathbf{w}_h \in \mathcal{V}^h$

$$B(\mathbf{v}_h,\mathbf{w}_h)_{\mathrm{DG}} = \sum_{n=0}^{N-1} B^n(\mathbf{v}_h,\mathbf{w}_h)_{\mathrm{DG}} = 0 \ ,$$

$$B^{n}(\mathbf{v}, \mathbf{w})_{\mathrm{DG}} = \int_{I^{n}_{K \in \mathcal{T}}} \int_{K} -(\mathbf{u}(\mathbf{v}) \cdot \mathbf{w}_{,t} + \mathbf{f}^{i}(\mathbf{v}) \cdot \mathbf{w}_{,x_{i}}) \, dx \, dt$$

+
$$\int_{I^{n}} \sum_{K \in \mathcal{T}} \int_{\partial K} \mathbf{w}(x_{-}) \cdot \mathbf{h}(\mathbf{v}(x_{-}), \mathbf{v}(x_{+}); \mathbf{n}) \, ds \, dt$$

+
$$\int_{\Omega} \left(\mathbf{w}(t_{-}^{n+1}) \cdot \mathbf{u}(\mathbf{v}(t_{-}^{n+1})) - \mathbf{w}(t_{+}^{n}) \cdot \mathbf{u}(\mathbf{v}(t_{-}^{n})) \right) \, dx$$

- Proposed by Reed and Hill (1973), LeSaint and Raviart (1974) and further developed for conservation laws by Cockburn and Shu (1990)
- u the conservation variables, v the symmetrization variables
- h a numerical flux function, $h(v_-,v_+;n)=-h(v_+,v_-;-n),$ $h(v,v;n)=f(v)\cdot n$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

NASA

The Discontinuous in Time Approximation Space

Space-Time DG

Гіт Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks

- Natural setting for the discontinuous Galerkin (DG) method for hyperbolic problems
- Utilized in the space continuous Galerkin least-squares method (Hughes and Shakib, 1988)
- Often used in the discretization of parabolic problems (Douglas and Dupont, 1976)
- Requires solving the implicit slab equations.

-

Dac

Space-Time DG Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks

Theorem E: Global space-time entropy inequality (Cauchy IVP):

$$\int_{\Omega} U(\mathbf{u}^*(t^0_-)) \, dx \leq \int_{\Omega} U(\mathbf{u}(\mathbf{v}_h(x, t^N_-))) \, dx \leq \int_{\Omega} U(\mathbf{u}(\mathbf{v}_h(x, t^0_-))) \, dx$$
$$\mathbf{u}^*(t^0_-) = \frac{1}{\max(\Omega)} \int_{\Omega} \mathbf{u}(\mathbf{v}_h(x, t^0_-)) \, dx$$

whenever the numerical flux satisfies the system extension of Osher's famous "E-flux" condition

$$\left| \begin{bmatrix} \mathbf{v} \end{bmatrix}_{x_{-}}^{x^{+}} \cdot \left(\mathbf{h}(\mathbf{v}_{-},\mathbf{v}_{+};\mathbf{n}) - \mathbf{f}(\mathbf{v}(\theta)) \cdot \mathbf{n} \right) \leq 0 \ , \ \forall \theta \in [0,1] \ , \mathbf{v}(\theta) = \mathbf{v}_{-} + \theta[\mathbf{v}]_{-}^{+} \right|$$

 Several flux functions satisfy this technical condition when recast in entropy variables, e.g. Lax-Friedrichs, HLLE, Roe with modifications, etc.

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Suppose **u**, **v** remains bounded in the sense

$$0 < c_0 \leq rac{\mathbf{z} \cdot \mathbf{u}_{,\mathbf{v}}(\mathbf{v}_h(x,t)) \, \mathbf{z}}{\|\mathbf{z}\|^2} \leq C_0 \ , \quad \forall \mathbf{z}
eq 0$$

and Theorem E is satisfied for the Cauchy IVP, then following L_2 stability result is readily obtained

L₂ Stability:

$$\|\mathbf{u}(\mathbf{v}_{h}(\cdot,t_{-}^{N})-\mathbf{u}^{*}(t_{-}^{0})\|_{L_{2}(\Omega)} \leq (c_{0}^{-1}C_{0})^{1/2} \|\mathbf{u}(\mathbf{v}_{h}(\cdot,t_{-}^{0}))-\mathbf{u}^{*}(t_{-}^{0})\|_{L_{2}(\Omega)}$$

Space-Time Error Control

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Given a system of PDEs with exact solution $u \in \mathbf{R}^m$ in a domain Ω , the overall objective is to construct a locally adapted discretization with numerical solution u_h that achieves

Norm control [Babuska and Miller, 1984]

 $\|\mathbf{u} - \mathbf{u}_h\| < \text{tolerance}$

• Functional output control [Erickson et. al. (1995), Becker and Rannacher, 1997]

 $|J(\mathbf{u}) - J(\mathbf{u}_h)| < \text{tolerance} \ , \ \ J(\mathbf{u}) : \mathbf{R}^m \mapsto \mathbf{R}$

Example functional outputs:

- Time-averaged lift force, drag force, pitching moments
- Average flux rates through specified surfaces
- Weighted-average functionals of the form

$$J_{\Psi}(\mathbf{u}) = \int_{T_0}^{T_1} \int_{\Omega} \Psi(x, t) \cdot N(\mathbf{u}) dx dt$$

for some user-specified weighting $\Psi(x, t)$ and nonlinear function N(u)

Error Representation: Linear Case

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Assume $\mathcal{B}(\cdot, \cdot)$ bilinear and $J(\cdot)$ linear.

<u>Primal Numerical Problem</u>: Find $\mathbf{u}_h \in \mathcal{V}_h^{\mathrm{B}}$ such that

$$B(\mathbf{u}_h, \mathbf{w}) = F(\mathbf{w}) \quad \forall \ \mathbf{w} \in \mathcal{V}_h^{\mathrm{B}}.$$

Auxiliary Dual Problem: Find $\Phi \in \mathcal{V}^B$ such that

$$B(\mathbf{w}, \Phi) = J(\mathbf{w}) \quad \forall \ \mathbf{w} \in \mathcal{V}^{\mathrm{B}}.$$

$$J(\mathbf{u}) - J(\mathbf{u}_h) = J(\mathbf{u} - \mathbf{u}_h)$$
 (linearity of J)

$$= B(\mathbf{u} - \mathbf{u}_h, \Phi)$$
 (dual problem)

$$= B(\mathbf{u} - \mathbf{u}_h, \Phi - \pi_h \Phi)$$
 (Galerkin orthogonality)

$$= B(\mathbf{u}, \Phi - \pi_h \Phi) - B(\mathbf{u}_h, \Phi - \pi_h \Phi)$$
 (linearity of B)

$$= F(\Phi - \pi_h \Phi) - B(\mathbf{u}_h, \Phi - \pi_h \Phi)$$
 (primal problem)

Final error representation formula:

 $J(\mathbf{u}) - J(\mathbf{u}_h) = F(\Phi - \pi_h \Phi) - B(\mathbf{u}_h, \Phi - \pi_h \Phi)$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Estimating $\Phi - \pi_h \Phi$:

Space-Time DG

Tim Barth

Introductior

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulation

Periodic Cylinder Flow

Concluding Remarks Various techniques in use for estimating $\Phi - \pi_h \Phi$:

- Higher order solves [Becker and Rannacher, 1998],[B. and Larson, 1999], [Süli and Houston, 2002], [Houston and Hartman, 2002]
- Patch postprocessing techniques [Cockburn, Luskin, Shu, and S uli, 2003]

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Extrapolation from coarse grids

Coping with Nonlinearity

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Mean-value linearized forms:

$$\begin{split} \mathcal{B}(\mathbf{u},\mathbf{v}) &= \mathcal{B}(\mathbf{u}_h,\mathbf{v}) + \overline{\mathcal{B}}(\mathbf{u}-\mathbf{u}_h,\mathbf{v}) \quad \forall \ \mathbf{v} \in \mathcal{V}^{\mathrm{B}} \\ J(\mathbf{u}) &= J(\mathbf{u}_h) + \overline{J}(\mathbf{u}-\mathbf{u}_h), \end{split}$$

Example: $\mathcal{B}(u, v) = (L(u), v)$ with L(u) differentiable

$$L(u_B) - L(u_A) = \int_{u_A}^{u_B} \frac{dL}{du} = \int_{u_A}^{u_B} \frac{dL}{du} du$$
$$= \int_0^1 \frac{dL}{du} (\tilde{u}(\theta)) d\theta \cdot (u_B - u_A) = \overline{L}_{,u} \cdot (u_B - u_A)$$

with $\tilde{u}(\theta) \equiv u_A + (u_B - u_A) \theta$.

$$\begin{aligned} \mathcal{B}(\mathbf{u},\mathbf{w}) &= \mathcal{B}(\mathbf{u}_h,\mathbf{w}) + (\overline{L}_{,\mathbf{u}} \cdot (\mathbf{u} - \mathbf{u}_h),\mathbf{w}) \\ &= \mathcal{B}(\mathbf{u}_h,\mathbf{w}) + \overline{\mathcal{B}}(\mathbf{u} - \mathbf{u}_h,\mathbf{w}) \quad \forall \mathbf{v} \in \mathcal{V}^{\mathrm{B}} \end{aligned}$$

Error Representation: Nonlinear Case

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Semilinear form $\mathcal{B}(\cdot, \cdot)$ and nonlinear $J(\cdot)$.

Primal numerical problem: Find $\mathbf{u}_h \in \mathcal{V}_h^{\mathrm{B}}$ such that

$$\mathcal{B}(\mathbf{u}_h, \mathbf{w}) = F(\mathbf{w}) \quad \forall \ \mathbf{w} \in \mathcal{V}^{\mathrm{B}}.$$

Linearized auxiliary dual problem: Find $\Phi\in\mathcal{V}^B$ such that

$$\overline{\mathcal{B}}(\mathbf{w}, \Phi) = \overline{J}(\mathbf{w}) \quad \forall \ \mathbf{w} \in \mathcal{V}^{\mathrm{B}}.$$

$$J(\mathbf{u}) - J(\mathbf{u}_{h}) = \overline{J}(\mathbf{u} - \mathbf{u}_{h})$$
(mean value J)

$$= \overline{\mathcal{B}}(\mathbf{u} - \mathbf{u}_{h}, \Phi)$$
(dual problem)

$$= \overline{\mathcal{B}}(\mathbf{u} - \mathbf{u}_{h}, \Phi - \pi_{h}\Phi)$$
(Galerkin orthogonality)

$$= \mathcal{B}(\mathbf{u}, \Phi - \pi_{h}\Phi) - \mathcal{B}(\mathbf{u}_{h}, \Phi - \pi_{h}\Phi)$$
(mean value \mathcal{B})

$$= F(\Phi - \pi_{h}\Phi) - \mathcal{B}(\mathbf{u}_{h}, \Phi - \pi_{h}\Phi),$$
(primal problem)

Final error representation formula:

$$J(\mathbf{u}) - J(\mathbf{u}_h) = F(\Phi - \pi_h \Phi) - \mathcal{B}(\mathbf{u}_h, \Phi - \pi_h \Phi)$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

Refinement Indicators

Space-Time DG Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Space-time error representation formula

$$B_{\mathrm{DG}}(\mathbf{v}_h, w) - F_{\mathrm{DG}}(\Phi - \pi_h \Phi) = \sum_{n=0}^{N-1} \sum_{Q^n} B_{\mathrm{DG},Q^n}(\mathbf{v}_h, \Phi - \pi_h \Phi) - F_{\mathrm{DG},Q^n}(\Phi - \pi_h \Phi)$$

Stopping Criteria:

$$|J(\mathbf{u}) - J(\mathbf{u}_h)| = \left| \sum_{n=0}^{N-1} \sum_{Q^n} B_{\mathrm{DG},Q^n}(\mathbf{v}_h, \Phi - \pi_h \Phi) - F_{\mathrm{DG},Q^n}(\Phi - \pi_h \Phi) \right|$$

Refinement/Coarsening Indicator:

$$|J(\mathbf{u}) - J(\mathbf{u}_h)| \leq \sum_{n=0}^{N-1} \sum_{Q^n} \underbrace{|B_{\mathrm{DG},Q^n}(\mathbf{v}_h, \Phi - \pi_h \Phi) - F_{\mathrm{DG},Q^n}(\Phi - \pi_h \Phi)|}_{\mathrm{refinement indicator},\eta_{Q^n}}$$

Fixed fraction mesh adaptation:

 Refine a fixed fraction of element indicators, η_{Qⁿ}, that are too large and coarsen a fixed fraction of element indications that are too small.

イロト イポト イヨト イヨト ニヨー

500

NASA

Example: A Scalar Time-Dependent PDE

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Circular transport, $\lambda = (y, -x)$, of bump data

4

Primal numerical problem Convergence, $\|u - u_h\|_{L_2(\Omega \times [0, T])}$

10-4 0.001

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

0.100

P2 space-time elements P3 space-time elements

0.010

ĥ

NASA

Example: A Scalar Time-Dependent PDE

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks A functional is chosen that averages the solution data in the space-time ball of radius 1/10 located at $x_c = (1/2, 1/2, 1.05)$ in space-time

$$J(\mathbf{u}) = \int_0^{1.15} \int_{\Omega} \Psi(1/10; x - x_c) \, \mathbf{u} \, dx dt$$

$$J(\mathbf{u}) - J(\mathbf{u}_h) = \sum_{n=N-1}^{0} \sum_{K} F_{\mathrm{DG},Q^n}(\Phi - \pi_h \Phi) - B_{\mathrm{DG},Q^n}(\mathbf{v}_h, \Phi - \pi_h \Phi)$$
$$|J(\mathbf{u}) - J(\mathbf{u}_h)| \le \sum_{n=N-1}^{0} \sum_{K} |F_{\mathrm{DG},Q^n}(\Phi - \pi_h \Phi) - B_{\mathrm{DG},Q^n}(\mathbf{v}_h, \Phi - \pi_h \Phi)$$

Dual defect, $\Phi - \pi \Phi$

Error estimate buildup

r
 bump function

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulation

Periodic Cylinder Flow

Concluding Remarks

Example: Euler flow past multi-element airfoil geometry. $M = .1, 5^{\circ}$ AOA.

				equivalent uniform
lift coefficient	lift coefficient	refinement		refinement
(error representation)	(error control)	level	# elements	# elements
$5.156 \pm .147$	$5.156 \pm .346$	0	5000	5000
$5.275 \pm .018$	$5.275 \pm .076$	1	11000	20000
$5.287 \pm .006$	$5.287 \pm .024$	2	18000	80000
$5.291\pm.002$	$5.291\pm.007$	3	27000	320000

Error reduction during mesh adaptivity

Adapted mesh (18000 elements)

・ロト ・ 日 ト ・ 日 ト

Sac

NASA

Primal-Dual Problems in Fluid Mechanics

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks

Subsonic Euler flow, $M = .10, 5^{\circ}$ AOA, Lift force functional.

Primal Mach number

Dual x-momentum

Adapted Mesh

Adapted Mesh

∢ f∰ ⊳ • ∢

Sac

Transonic Euler flow, M = .85, 2° AOA, Lift force functional.

Primal density

Dual density

Software Implementation and extension to the Navier-Stokes Eqns

Space-Time DG

Tim Barth

ntroduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulation

Periodic Cylinder Flow

Concluding Remarks

Space-Time FEM:

- DG extension to the compressible Navier-Stokes equations using the symmetric interior penalty method of Douglas and Dupont, 1976) as described in Hartmann and Houston (2006)
- Implements the discontinuous Galerkin discretization in entropy variables.
- Unconditionally stable for all time step sizes
- Solves both the primal numerical problem and the jacobian linearized dual problem arising in space-time error estimation.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• High-order accuracy demonstrated in both space and space-time

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulation

Periodic Cylinder Flow

Concluding Remarks Computing dual (backwards in time) problems looks expensive in terms of both storage and computation

- Storage of the primal time slices for use in the locally linearized dual problem.
- Approximation of the infinite-dimensional dual problem for the backwards in time dual problem.

Tremendous simplification arising for periodic flow problems with period P when phase-independent functionals are utilized, e.g. mean drag

- Functional independent of the startup transient
- Only a small number of periods of the primal problem need be stored or recreated.

Periodic Cylinder Flow

Space-Time DG

NASA

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Cylinder flow at Mach = 0.10, logarithm of |vorticity| contours

Task: Represent and estimate the error in the mean drag force coefficient

- Solve the primal problem using linear space-time elements
- Construct a smooth phase invariant functional measuring the mean drag force coefficient
- Solve the dual (backwards in time) problem using quadratic space-time elements
- Calculated the estimated functional error and compare with a reference calculation using cubic elements

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つくぐ

Mean Drag for Cylinder Flow

Space-Time DG

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks

$$J_{\rm drag}(u) = \int_0^T \int_{\Gamma_{\rm wall}} ({
m Force} \cdot \hat{t}_{
m drag}) \, \Psi(t) \, dx \, dt$$

Example: Cylinder flow at Re=300

Dual problem, $\phi^{(x-mom)}$

Dual defect, $\phi^{(x-mom)} - \pi_h \phi^{(x-mom)}$.

Mean Drag Dual Problems at Re=300 and Re=1000

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks

Dual problem at Re=300

Dual problem at Re=1000

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

Mean Drag for Cylinder Flow at Re=1000

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks

Error representation buildup during the backward in time dual integration

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

Mean Drag for Cylinder Flow at Re=1000

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks

Adapted mesh from element indicators averaged over a period P

Coarse mesh (12K elements)

2 level refined mesh (20K elements)

Non-Periodic Cylinder

Space-Time DG

TIM Barth

Introductior

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Cylinder flow at Re=3900 and Re=10000 using quartic (p = 4) space-time elements.

 Choosing measurement problems that are not genuinely stationary produces rapidly growing dual problems and dependency on the initial data.

Dual solution corresponds to the average drag force over 3 approximate "periods".

Re=10000

1 3 1 4 3 1

Sac

Re=3900

Growth of Dual Problems

Space-Time DG

NASA

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks

Growth of drag functional dual solution Φ with increasing Reynolds number

イロト イ理ト イヨト イヨト

в

990

A Closing Note on the Use of Dual Problems in Uncertainty Quantification

Space-Time DG

i iiii Dai iii

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Developing a capability to numerically compute primal/dual problems for compressible Navier-Stokes is a major undertaking.

Can this capability be reused in uncertainty quantification?

Estep and Neckels (2006) observed that dual problems can be used to build a piecewise linear response surface for use in Monte Carlo (MC) and Quasi Monte Carlo (QMC) sampling of uncertain outputs when the output of interest is a functional.

・ロト ・ 戸 ト ・ 三 ト ・ 三 ト

-

Dac

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transpor

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Given a nonlinear PDE system with solution $\mathbf{u} \in \mathbf{R}^m$ depending on *n*-dimensional random vector, $\omega \in \mathcal{P} \subset \mathbf{R}^n$

 $L\mathbf{u}(x;\omega) = \mathbf{f}$

and output functional

$$J(\mathbf{u};\omega):\mathbf{R}^m\times\mathbf{R}^n\to\mathbf{R}$$

calculate statistics of the functional such as expectation

$$E[J] = \int_{\mathcal{P}} J(\mathbf{u}; \omega) \, \rho df(\omega) \, d\omega = \int_0^1 J(\mathbf{u}; \omega(\mu)) \, d\mu$$

and variance

$$V[J] = E[J^2] - E[J]^2$$

using Monte Carlo (MC) or Quasi Monte Carlo (QMC) sampling.

Space-Time DG

Tim Barth

Introductior

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks

Higher Order Parameter Sampling (HOPS), Estep and Neckels (2006)

- Onvert the statistics integration problem to uniform MC sampling on a unit hypercube.
- Partition the unit hypercube into smaller hypercube subdomains with size determined from accuracy of the linearized sampling formula.
- 3 In each hypercube subdomain C_i center, calculate the primal solution u_i and adjoint solution ϕ_i

$$\left(\frac{\partial L}{\partial \mathbf{u}}(\mathbf{x},\omega_i)\right)^T \phi_i = \left(\frac{\partial J}{\partial \mathbf{u}}(\mathbf{x},\omega_i)\right)^T \to \overline{\mathcal{B}}(\mathbf{w},\phi_i;\omega_i) = \overline{J}(\mathbf{w};\omega_i)$$

and the reduced sensitivity gradients (cf. A. Jameson, 1988)

$$\mathbf{g}_i^{\mathsf{T}} = \frac{\partial J}{\partial \omega}(\mathbf{x}, \omega_i) - \phi^{\mathsf{T}} \frac{\partial L}{\partial \omega}(\mathbf{x}, \omega_i)$$

④ Apply MC or QMC integration in each C_i using the linearized sampling formula for *fixed* values of J(**u**_i, ω_i) and **g**_i^T

$$J(\mathbf{u},\omega)\approx J(\mathbf{u}_i,\omega_i)+\mathbf{g}_i^T(\omega-\omega_i)$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Adaptive HOPS Surface

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Estep and Neckels then consider adaptive refinement to improve approximation properties of the HOPS surface.

Original HOPS surface

Adaptively refined HOPS surface

・ロト ・ 戸 ト ・ 三 ト ・ 三 ト

в

990

Concluding Remarks

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulation

Periodic Cylinder Flow

Concluding Remarks

- Estimating and controlling numerical error in time-dependent calculations is fraught with difficulties
 - growth in backward-in-time dual problems,
 - loss of sharpness in error bounds.
- The calculation of dual problems is computationally demanding
 - storage of primal time slices,
 - higher order solves of dual problem
- Error representation/estimation results presented today barely scratch the surface

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

- error control for general transient problems,
- dual problems in the presence of flow bifurcations.

Space-Time DG

Tim Barth

Introductior

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks

Example: Euler flow past multi-element airfoil geometry. $M = .1, 5^{\circ}$ AOA.

				equivalent uniform
lift coefficient	lift coefficient	refinement		refinement
(error representation)	(error control)	level	# elements	# elements
$5.156 \pm .147$	$5.156 \pm .346$	0	5000	5000
$5.275\pm.018$	$5.275\pm.076$	1	11000	20000
$5.287\pm.006$	$5.287 \pm .024$	2	18000	80000
$5.291\pm.002$	$5.291\pm.007$	3	27000	320000

Error reduction during mesh adaptivity

Adapted mesh (18000 elements)

・ロト ・ 日 ト ・ 日 ト

500

Example: Ringleb Flow

Space-Time DG

NASA

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks

Schematic of Ringleb flow

Iso-Density contours

Discontinuous Galerkin

くして 山田 (山田) (山) (山)

NASA

Example: A Scalar Time-Dependent PDE

Space-Time DG

Tim Barth

Introduction

Cylinder Flow

Nonlinear Conservation Laws

Space-time DG

Error Representation

Scalar transport

Example Dual Problems

Navier-Stokes Formulatio

Periodic Cylinder Flow

Concluding Remarks Circular transport, $\lambda = (y, -x)$, of bump data

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □