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Abstract. We present preliminary results in the development of a miniaturized gas
correlation radiometer that implements a hollow-core optical fiber (hollow waveguide)
gas correlation cell. The substantial reduction in mass and volume of the gas correlation
cell makes this technology appropriate for an orbital mission Ð capable of pinpointing
sources of trace gases in the Martian atmosphere. Here we demonstrate a formaldehyde
(H2CO) sensor and report a detection limit equivalent to ~30 ppb in the Martian
atmosphere. The relative simplicity of the technique allows it to be expanded to measure
a range of atmospheric trace gases of interest on Mars such as methane (CH 4), water
vapour (H2O), deuterated water vapour (HDO), and methanol (CH3OH). Performance of
a formaldehyde instrument in a Mars orbit has been simulated assuming a 3 meter long,
1000 micron inner diameter hollow-core fiber gas correlation cell, a 92.8 degree sun-
synchronous orbit from 400 km with a horizontal sampling scale of 10 km x 10 km.
Initial results indicate that for one second of averaging, a detection limit of 1 ppb is
possible.
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1. Introduction

The Martian atmosphere presents many exciting opportunities to investigate meteorology,

atmospheric origin, chemical stability, and atmospheric dynamics. One of the most interesting

questions about Mars is the source of trace amounts of methane (CH4) in the atmosphere – and

whether these originate from geological sources such as gas seeps, active volcanism and

serpentization reactions (associated with ancient olivine-bearing crustal rocks), or from the

presence of extant life [1-3].

The source of methane can be revealed through measurements of trace disequilibrium

gases that are likely to be found together with methane. For example, trace gases such as ethane

(C2H6), nitrous oxide (N2O), and hydrogen sulfide (H2S) found with methane would indicate a

biogenic source. On Earth, methane and ethane are produced in similar abundance in cold deep-

sea sediments [4]. With the exception of anthropogenic sources, nitrous oxide is predominantly a

product of microbial action in wet tropical forests. Hydrogen sulfide is produced by bacterial

activity in oxygen-depleted environments (e.g. swamps). Sulfur dioxide (SO2) found with

methane would point to a geologic origin. Sulfur dioxide has been found in shergottite samples as

well as terrestrial magmas [5].

The occurrence of formaldehyde (CH2O) with methane is of particular interest as an

indicator of active regions on the Martian surface. If viewed as a byproduct of methane oxidation,

the presence of formaldehyde would indicate that much more methane was being produced each

year than previously thought – pointing towards a current and continuous source of methane

production [6-8].

Formaldehyde formation at altitudes above 80 km is dominated by the photodissociation

of methane followed by reaction with carbon dioxide (CO2) to form formaldehyde [8].

CH4 
hv > 

3CH2 CO2 > CH 20	 (1)
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CH4 -g4 CH, -2-> CH2O

OH HOZ 02

CH 2OH -v > CH2O	 (2)

At altitudes below 80 km, methane is oxidized by OH to form CH3 , which then reacts with either

O to form formaldehyde directly or via reactions with OH or HO 2 [8].

Wong et al. [8] found the modeled production of hydrocarbons through methane

photochemistry to be very low even for high methane abundances in the atmosphere. In the

upper atmosphere, they attribute this to the competing photolysis between methane and carbon

dioxide Ð which have overlapping cross sections. In the lower atmosphere, oxidation of methane

by OH competes with the removal of OH by CO and O.

There is some variation in the modeled lifetimes of methane and formaldehyde in the

Martian atmosphere. In 2002, Summers et al. [7] reported a methane lifetime of —300 years and a

formaldehyde lifetime of —2 weeks. In 2004, Wong et al. [8] gave photochemical lifetimes for

CH4 and CH2O of 670 years and 7.5 hours respectively. In 2009, Mumma et al. [9] compared

observed measurements of methane in spring 2006 with the amount of methane released in a

plume observed in March 2003 and found the 2006 mixing ratios to contradict with the estimated

lifetime for methane. They concluded that a process other than photochemical destruction must be

responsible for the majority of the methane removal and found the destruction lifetime of

methane to range from —0.6 to —4 Earth years depending on whether the large release was a one-

time, or annually occurring event.

Measurements of the formaldehyde abundance in the Martian atmosphere have been

reported by two sources. In 1993, Korbalev et al. [10] observed formaldehyde during the Phobos

mission through solar occultation observations in the equatorial spring. They tentatively reported

an average mixing ratio of —0.5 ppm. In 1997, Krasnopolsky et al. [11] measured significantly

less formaldehyde (—3 ppb) through a combination of 4 meter telescope at the Kitt Peak National
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Observatory (KPNO) and Fourier transform spectrometer with Goddard Space Flight Center

(GSFC) postdisperser. For the purposes of instrument design, we use the more conservative

mixing ratio and assume that a detection limit of ~1 ppb is necessary.

Gas correlation radiometry is a mature sensing technology on Earth, and with successful

miniaturization, it holds great promise for trace gas measurements in the Martian atmosphere. An

instrument developed for a Mars orbit will likely have greater restrictions on mass and volume

than an Earth orbiter. The component that most impacts the size of a gas correlation radiometer is

the gas correlation cell Ð the pathlength of which affects the sensitivity of the instrument.

MOPITT (Measurements of Pollution in the Troposphere) is a satellite gas correlation radiometer

for measuring carbon monoxide (CO) and methane in the Earth’s atmosphere [12-14]. They use

two techniques to improve sensitivity while limiting the overall length of the gas correlation cell

Ð a pressure modulation technique which changes the gas cell pressure using a piston, and a

length modulation technique which changes the gas pathlength with a rotating disk of calcium

fluoride in the vacuum cell. These approaches significantly impact the complexity level, and mass

and power requirements of the instrument. Tolton[15] presented a strawman concept for an

Earth-orbiting gas correlation radiometer for measuring CO2. His design implemented a

multipass gas correlation cell to reduce the instrument footprint. Here we present preliminary

work on a miniaturized gas correlation radiometer for measuring formaldehyde that is less

complex than the MOPITT approach, with significantly smaller mass and volume than the Tolton

design.

2. Instrument design

2.1 Gas correlation radiometer

A schematic of the current instrument configuration is shown in figure 1. To simulate the

effect of light passing through the atmosphere, light from a silicon carbide (SiC) lamp (2-10 m)

passes through a 2 meter absorption cell (Axiom Analytical, part number LFT-220A with

[4]



sapphire windows) in the test set-up (shown outside the dashed line). The absorption cell was

filled with a range of gas mixing ratios (0-42 ppm formaldehyde in nitrogen) to demonstrate

instrument sensitivity. The gas correlation radiometer instrument is shown within the dashed

region of figure 1. Incoming light that has undergone absorption by trace gas is focused,

modulated with an optical chopper, and re -collimated. Light then passes through a narrow

bandpass filter at a wavelength that selects absorption features of the trace gas while minimizing

interference from other spectral features. In the current set-up, the bandpass filter (Spectrogon) is

centered at 3.62 m with a 40 nm bandwidth. After passing through the narrow bandpass filter,

light is split into two channels with a pellicle beamsplitter (Thorlabs, CM1-BP4).

Off-axis parabolic (OAP) mirrors launch light from these channels into the hollow

waveguides through modified vacuum fittings (discussed in Section 2.2) that also serve as

waveguide terminators. In the first channel, a sample of formaldehyde (1 atm of 31.8 ppm H2CO

in a balance of N2) is enclosed in a 1 mm inner diameter, 3 meter long hollow waveguide and is

used as a spectral filter – effectively blocking atmospheric absorption by this gas so that this

Figure 1. Instrument schematic. Hollow waveguides replace conventional gas-correlation
radiometer absorption cells - resulting in significant mass and volume savings.
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channel is sensitive to changes in solar flux but not to changes in the trace gas. The second

channel has an identical, but evacuated hollow waveguide that is sensitive to changes in

atmospheric absorption by the trace gas (this channel is more sensitive to changes in absorption

than changes in flux).

The ratio of channel 2 to channel 1 is sensitive to changes in absorption but not to

changes in solar flux. Use of duplicate hollow waveguides (filled and evacuated) reduces etalon

effects in the ratio. Light exiting from the waveguides is measured with thermo-electrically

cooled HgCdTe detectors (Judson, J19TE). Signals are processed through analog lock-in

amplifiers (Stanford Research Systems, SR830) referenced to the frequency of the chopped

signals. Data is handled through Signal Express (Labview) software.

2.2 Hollow waveguide

The hollow silica waveguides used for gas correlation absorption cells are manufactured

by Polymicro Technologies. These waveguides are comprised of silica tubing, with a protective

acrylate coating. Within the silica tubing is a silver film layer, and finally a silver iodide layer at

the interior of the waveguide. This waveguide propagates light in the IR between approximately

2.9 m and 10.6 m. At 3.6 m wavelength the manufacturer reports a spectral attenuation of

less than one dB/m. Manufacturer tests of the straight and bend loses of this waveguide are

reported not to exceed 1.0 dB/m and 1.5 dB/m. The mass of the waveguide is 4.64 g/m.

To maximize the amount of light that could be used by the instrument, we chose the

largest available waveguide diameter (1000 m I.D., model HWEA10001600). The aperture for

the entire system is limited by the aperture with the smallest etendue. We assume that the

waveguide will be the limiting aperture in this system. The etendue is the product of the area of

an aperture times the solid angle that the aperture can accept. The area of aperture is given as

A=	 , _,	
(3)
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where f is the focal length and N is the f-number, and D is the diameter of the entrance pupil. We

estimated the waveguide’s acceptance angle to be ~8 o by launching SiC lamp light through a 0.1

m segment of the waveguide and measuring the exit divergence angle. For a waveguide with a

core diameter of 1000 µm, and an acceptance angle of ~8°, the etendue would be

—^^'^`;
	

(4)
14' .

in units of cm² . Placing a large telescope at the entrance to the instrument cannot increase the

amount of light gathered to make measurements. The only effect of the telescope is to control the

size of the instrument’s footprint on the ground.

Waveguide terminations are not currently available from the manufacturer for this

diameter. However, we were able to modify 1/16” Swagelok union cross tube fittings (SS-100-4)

with a central bore and a sapphire window (Judson Technologies) to provide a stable fitting for

the waveguide that does not interfere with light launching, and doubles as a vacuum connection

for gas addition.

2.3 Simulations

The performance of a Mars orbiting version of the hollow-core fiber instrument was

simulated assuming a 3 meter long, 1000 micron inner diameter hollow-core fiber gas correlation

cell, a 92.8 degree sun-synchronous orbit from 400 km with a horizontal sampling scale of 10 km

x 10 km. The simulation generates a synthetic spectrum for reflected light containing spectral

features from the HITRAN[16] database. It should be noted that the HITRAN database is

intended for evaluating absorption in the Earth’s atmosphere and consequently, some bands found

in the Martian atmosphere have been neglected or are incomplete in this database. However, it is

still useful for some initial performance simulations Ð as long as final spectral selections are not

based on this alone.
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The reflected solar flux signal received in the two channels of each sub-instrument

(evacuated and gas-filled correlation cells) is then calculated for light that has passed through the

Martian atmosphere, reflected off the surface, and passed back up to the spacecraft. For each

simulation, the total column of the species of interest is perturbed by 1% and the signals are

recalculated. We comp are the change in the ratio (filled cell to evacuated cell) caused by the

perturbation to the detector noise of this ratio. The free parameters of the instrument design (filter

bandpass, filter edge slopes, instrument FOV, etc.) are varied in an effort to maximize the

response to the species measured. Initial results indicate that for one second of averaging (3 km

displacement along the satellite ground track), a detection limit of slightly better than 1 ppb is

possible for formaldehyde.

For these experiments, purchase of a prefilter with optimal parameters (based on these

simulations) was cost prohibitive. Instead, we purchased a number of off-the-shelf bandpass

filters in the 3.6 m region and modeled their performance with these simulations. Figure 2

Figure 2. The bandpass of the prefilter (dashed line)
used in these experiments is shown overlaid on
formaldehyde absorption features. The simulated
bandpass of this prefilter is shown as a solid line.

illustrates the absorption features selected by the most optimal of these filters. An FTIR scan of

the prefilter selected for these experiments (dashed line) is shown with the simulated prefilter
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bandpass (solid line) overlaid on formaldehyde absorption features in P branch of the a 1 band

centered at 3.594 m (2782 cm -1 ). The selected bandpass has formaldehyde absorption features as

well as interfering features (methane, water vapor, etc.). Selection of a more optimal bandpass

filter will minimize contributions from these interfering absorption features. However to achieve

the required selectivity in the final instrument design, sample and reference waveguides will

likely contain mixtures of known interfering gases – resulting in an instrument that is not

sensitive to these interfering gases. For example, if the waveguide in channel 1 is filled with

formaldehyde and methane, and the waveguide in channel 2 is filled with methane, the ratio of

channel 2 to channel 1 would be sensitive to changes in formaldehyde but not to changes in

methane.

3. Results

3.1 Formaldehyde measurements

In these measurements, the channel 1 waveguide was filled with 31.8 ppm formaldehyde in a

balance of nitrogen for a total waveguide pressure of 1 atm (760 torr). Maintaining the waveguide

pressure at atmospheric pressure reduced the likelihood of long -term contamination of air into the

waveguide. To track the sensitivity of the instrument to changes in the formaldehyde

concentration, the 2 meter absorption cell (located at the front end of the instrument) was filled

with concentrations ranging from 0 to 41.8 ppm formaldehyde in nitrogen while monitoring

changes in the ratio of channel 2 to channel 1. Signals from both channels were recorded for an

integration time of 1 second. Representative data from these experiments is shown in figure 3.

The linear regression of this data is shown as a solid line, and the square of the correlation

coefficient is 0.995. Vertical error bars indicate the standard deviation for each data point.
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Figure 3. Instrument sensitivity to changes in the formaldehyde concentration in a 2 meter
infrared gas cell. The integration time for each data point is one second. Solid circles represent
an average of three data points measured at each concentration, with vertical error bars
indicating the standard deviation of the three measurements. In this series, the ratio changes by
0.00520 per ppm change in formaldehyde concentration. This is approximately equivalent to a
30 ppb sensitivity to formaldehyde in the Martian atmosphere.

A ratio change of 0.217 can be seen over this concentration range, resulting in a slope of 0.00520

which represents the change in ratio per ppm change in formaldehyde. Assuming a signal to noise

ratio of 2:1, we estimate that in the lab the instrument is sensitive to formaldehyde changes of 3

ppm or greater. We related the sensitivity of the instrument to changes in formaldehyde

concentration in the 2 meter cell to expected changes in the Martian atmosphere through the

Bouguer-Lambert Law where absorbance is given as

-ln j = SpgX
o

where S is the linestrength from HITRAN, is the density, g is the linewidth, is the mole

fraction, and ^ is the pathlength.

(5)
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In the 2 meter cell, the temperature was constant at 293 K and we assumed an average

temperature in the Martian atmosphere of 210 K. The cell pressure was 1 atm and the average

atmospheric pressure on Mars was estimated to be 6.91 x 10 -3 atm . We assumed S to be

approximately constant in both environments; linestrength values of formaldehyde at 210K and

293K in HITRAN were found to be equivalent to four decimal places over the bandpass

wavelength range. In both environments, formaldehyde lines are assumed to have a Voight

lineshape, with a greater lorenzian contribution in the lab due to the higher pressure and

temperature in the 2 meter cell relative to that in the Martian atmosphere. The density in both

environments is found through the ideal gas law. We assume that with an orbital instrument,

sunlight would pass through 11.1 km atmosphere twice (once from the sun to the Martian surface,

and then once from the surface to the satellite) for a total pathlength of 22.2 km. With these

assumptions, the absorbance difference was calculated for a 3 ppm change in the formaldehyde

mole fraction in the absorption cell. This was found to be approximately equivalent to a 30 ppb

change in formaldehyde in the Martian atmosphere.

In figure 4, a representative segment of the instrument noise is shown for both 1 ms and 1

s averages with an enlargement of the 1 s average shown inset. The one second average time is

significant because it represents a 3 km displacement along the satellite ground track. The

standard deviation of the ratio in the noise data with 1 second integration is 0.00425. If we

assume a 3:1 signal to noise ratio is required for the detection limit, this would indicate that only

changes in the ratio greater than 0.0128 are detectable. The ratio in figure 3 changes by 0.00520

per ppm increase in formaldehyde concentration. This approximates the current instrument

detection limit to be slightly less than 3 ppm in the lab. To estimate the performance of the

instrument in a Mars orbit, we assume an average atmospheric pressure on Mars of —7 millibars,

two passes through the atmosphere at —22.2 km, and a temperature of 210 K. With these scaling
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Figure 4. A representative segment of instrument noise is compared at 1 ms and
1 s integration times. An enlargement of the 1 second noise is shown inset. The
noise limited detection limit is slightly less than 3 ppm for the lab instrument.

factors, it is estimated that the instrument in this preliminary configuration would have a

detection limit of approximately 30 ppb in the Martian atmosphere.

4. Limitations and Opportunities

The goal of this effort was to demonstrate that miniaturization of a gas correlation

radiometer was possible by implementing a hollow waveguide as a gas correlation cell. While

this proof-of principle was successful, for this instrument to be viable for measurements of

formaldehyde on Mars, there would have to be improvements in both the detection limit and trace

gas selectivity.

For localizing sources of formaldehyde in the Martian atmosphere, a detection limit of

approximately 1 ppb is required. In the current configuration, the instrument is estimated to have

a detection limit of approximately 30 ppb in the Martian atmosphere. We anticipate that an
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optimized optical design as well as future improvements in thermal control and structural stability

of the instrument will improve this value.

The wavelength region selected by the bandpass filter is key to selecting formaldehyde

absorption features while limiting interfering absorption features such as methane and water

vapor as well as interferences due to Fraunhofer lines and planetary thermal emission. The

simulations discussed in section 2.3 were used to select the most advantageous spectral region.

However, a prefilter with these parameters was cost prohibitive for this early level of

development. A future more optimal filter will offer significant improvement to the instrument

selectivity. In addition to prefilter selection, selectivity will also be improved by filling both

waveguides with mixtures of interfering gases as discussed in section 2.3 to remove sensitivity to

these gases.

The relative simplicity of this technique provides an opportunity for the instrument to be

expanded to measure a range of atmospheric trace gases of interest on Mars such as methane,

water vapour, deuterated water vapour, nitrous oxide, hydrogen sulfide, methanol, sulfur dioxide,

and ethane. Methane and water vapour instruments are the focus of parallel efforts.

5. Conclusions

We have presented progress on the development of a low-cost miniaturized gas

correlation radiometer that implements a hollow waveguide as a gas correlation cell. The

substantial reduction in mass and volume of the gas correlation cell makes this technology

appropriate for an orbital or aircraft probe mission Ð capable of pinpointing sources of trace gases

in the Martian atmosphere. We have demonstrated this technique as a fomaldehyde sensor and

report a detection limit of slightly better than 3 ppm in the lab, and an estimated detection limit of

~30 ppb in a Martian orbit. Simulated performance of an optimized Mars orbiting formaldehyde

instrument indicates that a detection limit of 1 ppb is possible, however future improvements in

both sensitivity and selectivity of the current prototype are necessary to reach this target.
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Significant differences between the composition of the Mars and Earth atmospheres indicate a

need for more careful spectroscopic analysis to account for potential interfering absorption

features as well as Fraunhofer lines and planetary thermal emission.
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