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Summary [3] W. M. Farrell. M. L. Kaiser, 1. T. Steinberg, and S. D. 

Anticipating the plasma and electrical environments in 
permanently shadowed regions (PSRs) of the moon is 
critical in understanding local processes of space weath
ering, surface charging, surface chemistry, volatile pro
duction and trapping, exo-ion sputtering, and charged 
dust transport. In the present study, we have employed 
the open-source XOOPlC code [I] to investigate the ef
fects of solar wind conditions and pJasma-surface inter
actions on the electrical environment in PSRs through 
fully two-dimensional pattic1e-in-cell simulations. 

By direct analogy with current understanding of the 
global lunar wake (e.g., references [2-5]) deep, near
tenninator, shadowed craters are expected to produce 
plasma "mini-wakes" just leeward of the crater wall [6]. 
The present results (e.g., Figure I) are in agreement with 
previous claims that hot electrons rush into the crater 
void ahead of the heavier ions, fanning a negative cloud 
of charge. Charge separation along the initial plasma
vacuum interface gives rise to an ambipolat' electric field 
that subsequently accelerates ions into the void. 

However, the situation is complicated by the pres
ence of the dynamic lunar surface, which develops an 
electric potential in response to local plasma currents 
(e.g., Figure Ia). In some regimes, wake structure is 
clearly affected by the presence of the charged crater 
floor as it seeks to achieve current balance (i.e. zerO net 
current to the surface). 
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Figure I: Fully 2D simulated plasma wake structure in a polar topographic depression. The lunar surface is denoted 
by a thick black line, and fhe initial plasma-vacuum interface is depicted as a dashed black line. Solar wind plasma 
flows from the left above a height of 500 ill, with bulk plasma conditions hcratcrj:A.Jk FV 50, "-' S, and 
-Vthd-Vrlw N sqrt(m,)rn;) "v 0.02, where h(,TuteT ~= 500 m is the crater depth and 'L'sH' 400 km/s is the solar wind 
convection speed. Thermal electrons initially rush into the wake ahead of the more massive ions (panel b), forming 
an ambipolar elect,ic field just leeward of fhe crater wall (panel c) fhat serves to accelerate ions into the void. Large 
negative electric potentials occur where only the most energetic electrons can escape the bulk solar wind plasma, and 
surfaces exposed only to electrons charge highly negative (panel a), 


