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1. Introduction

ABSTRACT

Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper
atmosphere and jonosphere has advanced our understanding of ion neutral chemistry within Titan’s
upper atmosphere, primarily composed of molecular nitrogen, with ~2.5% methane. The external
energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex
hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy
sources are solar UV, solar X-rays, Saturn’s magnetospheric ions and electrons, solar wind and shocked
magnetosheath ions and electrons, galactic cosmic rays {GCR) and the ablation of incident meteoritic
dust from Enceladus’ E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric
ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected
by the Huygens probe for altitudes <100km. These seed particles may be in the form of polycyclic
aromatic hydrocarbons {(PAH) containing both carbon and hydrogen atoms C,H,. There could also be
hollow shells of carbon atoms, such as Cgg, called fullerenes which contain no hydrogen. The fullerenes
may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by
Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H3 and
water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere
and can become trapped within the fullerene molecules and ions. Pickup keV N3, N* and CH} can also be
implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following
thermalization O+ can interact with abundant CH, contributing to the CO and CO, observed in Titan's
atmosphere. If an exogenic keV O+ ion is implanted into the haze particles, it could become free oxygen
within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within
aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive
pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface,
including water frost depositing on grains from cryovolcanism, would further add to abundance
of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite
organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources,
thereby raising the astrobiological potential for microscopic equivalents of Darwin’s “warm ponds”

on Titan.
Published by Elsevier Ltd.

et al, 2004, 2005} and that the heavy ions (N” or 0"} had keV
energies. The upstream magnetic field of ~5 nT resulted in a heavy

The Voyager 1 Titan flyby on November 12, 1980 showed a very ion gyro-radii of ~53000 km, which is larger than the size of Titan.

complex encounter with Saturn’s magnetosphere with an induced
magnetotail {Ness et al, 1981} and a bite-out in the magneto-
spheric electron population for E>500eV (Bridge et al, 1981;
Hartle et al,, 1982} It was also shown that the upstream plasma
was composed of light and heavy ions {Hartle et al,, 1982; Sittler
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A review of Cassini plasma and field observations of Titan's
interaction is given by Coates {2009a). The atmosphere detected
by Voyager was primarily composed of N3, {Broadfoot et al,, 1981}
as predicted by Hunten {1977} and the small methane component
was detected earlier by Kuiper {1944). Voyager also detected a
complex suite of hydrocarbons and nitriles using the infrared
spectrometer [RIS {Hanel et al,, 1981, 1982). From these measure-
ments exospheric models with H, H,, N, CH,; and N, were
constructed (Hartle et al, 1982; Sittler et al, 2004, 2005) and
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complex neutral and ion chemistry was predicted to occur in its
upper atmosphere and ionosphere (Yung et al,, 1984; Yung, 1987;
Toublanc et al, 1995; Cravens et al., 1997). Sittler et al. {2004,
2005 also predicted that the dominant pickup ion slowing the
magnetospheric plasma flow is CHi. The initial Cassini Ta flyby
revealed a similar interaction to that of V1 but with the upstream
heavy ion component uniquely identified as water group ions all
of which contain oxygen. They also confirmed that the dominant
pickup ion was CHj with some N3 (Hartle et al., 2006ab) as
predicted (Sittler et al, 2004, 2005). The ion neutral mass
spectrometer (INMS) instrument on Cassini during T, encounter
also detected a very complex neutral composition in Titan's upper
atmosphere (Waite et al.,, 2005). During the T5 flyby INMS also
detected a complex set of hydrocarbons which implied there was
considerable ton chemistry occurring in this region (Cravens et al.,
2006). The rich ion hydrocarbon chemistry extended up to ion
mass ~100amu. For later flybys when the spacecraft altitude
dropped to 950 km Waite et al. {2007) reported the presence of
benzene molecules plus heavy positive and negative ions with
even higher masses. Coates et al. (2007) discovered heavy
negative ions with mass ~4000amu and higher. The number of
heavy negative ions increased with decreasing altitude down to
950 km, the minimum altitude sampled by the Cassini spacecraft.
Waite et al. (2007) and Coates et al. (2007) raised the possihility
that the heavy ions were polycyclic aromatic hydrocarbons
or PAHs.

The above discoveries pose the question why are we seeing
heavy negative ions or PAHs at all. In the studies of interstellar
clouds the presence of such molecules has a long history. Herbst
(1981) first posed the question that negative molecular ions could
exist in molecular clouds. In that paper the high electron affinities
(>2eV) for neutral free radicals and the large molecular size led
to negative ion formation. Radiative attachment rate coefficients
at cloud temperatures ~10-50K can be as high as the collision
rate k~107cm?®/s. Later, Petrie and Bohme (2007) pointed out
that there was no observational evidence for negative ions within
molecular clouds, though their presence would be expected at low
abundances. Subsequently McCarthy et al. (2006) combined radio
observations of the star IRC+10 and molecular cloud TMC-1 and
their recent laboratory measurements to detect the negative ion
CgH™. This was later confirmed based on chemical models (Miller
et al., 2007}, which was then followed by detection of CgH™ and
C4H™ in the molecular cloud TMC-1 {Briinken et al., 2007). CgH™
was detected within the circumstellar envelope IRC+10 216 by
Remijan et al. (2007). Sakai et al. {2007) detected CgH™ within a
low-mass star-forming region of L1527 and then later Sakai et al.
(2008) reported the detection of C4H™ near the low-mass Class 0
protostar IRAS 04368+2557. The anion (3N~ was discovered
within the interstellar medium (ISM) by Thaddeus et al. {2008).
Then Herbst and Osamura (2008) performed quantum mechanical
model calculations confirming on theoretical grounds the likely
presence of the detected ion C,H™. They calculated high radiative
attachment coefficients >5 x 107%cm®/s that were similar to
those measured by Miller et al. (2007). Relevant to the observa-
tions reported here, the observed negative ions C,H™ have high
carbon to hydrogen ratios (nz3 with n = 3 having the lowest rate
coefficient and n = 8 the highest rate coefficient {Herbst and
Osamura, 2008},

I the case of Titan the ethyny! radical (C,H) and benzene
radical CgHs (phenyl) can be important for the polymerization of
PAHs {Goulay and Leone, 2006} At Titan the Cassini INMS
instrument detected both acetylene {Waite et al, 2005) and
benzene (Waite et al., 2007, Vuitton et al, 2009a) and their
radicals C;H {i.e,, indirectly detected by Vuitton et al., 2008h) and
CsHs or phenyl by Vuitton et al. (2009a). Vuitton et al, (2007) also
reported the detection of numerous hydrocarbons such as

polyynes (C4H,, CgHa, CsHz), possible detection of methylpolyynes
{CH3C4H, CH3CgH) and benzene (CgHs). They also detected
nitrogen bearing molecules cyanopolyynes (HC3N, HCsN), NH,
methanimine (CH;NH), nitriles (C;H3CN, C;HsCN) and possibly
methylcyanopolyynes (CH3CsN, CH;CsN). Nitrogen bearing mole-
cules can contribute to PAH formation and could thus be
an important constituent of aerosols. The reader is referred to
a comprehensive review article on PAH polymerization by
Allamandola et al. (1989) the details of which are beyond the
scope of this paper. The combination of recent detections of
negative ions within molecular clouds and recent detections by
Cassini of heavy negative ions at Titan suggests that there might
be a connection between heavy negative ions and PAHs and/or
fullerene formations. This does not mean that neutrals and
positive ions do not also play an important role in the growth of
heavier molecules since reaction rates for ion-neutral collision,
involving either positive or negative ions, tend to be much faster
than those for neutral-neutral collisions (e.g., Waite et al., 2007).
However, as noted above, the radicals C;H and CgHs are probably
also present at Titan, in which case growth of fullerenes and PAHs
can also occur via neutral-neutral collisions (Goulay and Leone,
2006; Mebel et al., 2008; Bettens and Herbst, 1995). It is also true
that acetylene and benzene can both lead to the growth of
fullerenes and PAHs depending upon the chemical pathway taken
(see Bettens and Herbst, 1995). The introduction of keV oxygen
ions from Saturn's magnetosphere and their possible incorpora-
tion into fullerenes and possibly PAHs as discussed here, adds
another dimension with strong exobiological implications. The
present paper explores the implications of these two potentially
related discoveries, upper atmospheric formation of the heavy
negative ions and bombardment by keV oxygen ions for chemistry
of Titan's atmosphere and surface.

2. Observations
2.1. Observations of heavy ions by Cassini

We begin this section by reviewing the relevant plasma
observations of Titan's upper atmosphere and ionosphere made
by the Cassini plasma spectrometer {CAPS) and ion neutral mass
spectrometer (INMS} instruments. The first discovery of extremely
heavy negative ions within Titan's ionosphere was made by the
high time resolution observations of the CAPS electron spectro-
meter (ELS) during the Ta encounter and revealed a surprising
population of heavy negative jons. These ions were subsequently
observed on 15 other Titan encounters, and were analyzed by
Coates et al. (2007) and initially reported by Waite et al. (2007} In
all cases the negative ions observed near closest approach, were
narrowly confined to the spacecraft ram direction, and contained
distinct energy peaks {see Figs. 1 and 2 from Coates et al., 2007).
During the spacecraft's flight through Titan's relatively cold
ionosphere the spacecraft motion, ~6 km/s, provides an effective
mass spectrometer feature for cold ionospheric ions. The conver-
sion factor from ram energy to mass for singly charged ions at
6.0 kmy/s is Mymy = 5.32E,, {Coates et al., 2007).

The CAPS instrument also has an ion beam spectrometer {IBS)
primarily designed to measure high Mach plasma flows in the
solar wind. But this instrument also provides good measurements
of the positive ion component of Titan’s ionosphere which, during
these encounters, also appear as a high Mach flow in the
spacecraft reference frame. This instrument has detected heavy
positive ions (Waite et al, 2007). The mass of the positive ions
extends up to several hundred amu but the detected ions are
significantly less massive than the detected negative jons.
Abundances of both the pesitive and negative ions peak at the
lowest altitudes encountered {~950 km).
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For T4 the observed maximum energy of the negative ions was
~60eV, corresponding to an ion mass/charge m/q~320amu/q.
During other encounters, such as T16, the jon masses were as high
as 10,000 amu/q as seen in Fig. 1 adpated from Coates et al. (2007).
On various other encounters the ions were observed in rough
mass groups at 10-30, 30-50, 50-80, 80110, 110-200, (200-500,
500+)amu/q (Coates et al., 2007) because neither the ELS or IBS
measure mass, but rather mass/charge. It was argued that these
jons may in fact be multiply charged in this region of high electron
density; therefore the actual mass could be up to five times
higher. Such large highly charged ions provide seeds for forming
aerosols (Coates et al., 2007, Waite et al, 2007). This relationship
between mass and charge state is strongly tied to the assumed
size of the ions with the following relationships. Waite et al.
(2007) used @~-25kTje ~0.027V (T~125K) based on the
surface potential for a small dust grain with its corresponding
charge Q = 4ncoagpexp{~a/’p) (& is permittivity of free space, a is
grain's radius and /p is the Debye length). As discussed below, if
the heavy ions are fullerenes, then the mean ion radius is
estimated to be ra~12A giving Q~1 and a maximum mass
< 10,000 amu. If one uses for the heavy ions PAHs, then ra~B0 A is
possible so that Q~5 is estimated and very large ion masses
become possible. Therefore, whether the heavy negative ions are
fullerenes or PAHs becomes an important discriminator with
regard to their true size.

As discussed in Coates et al. (2009b), negative ions were not
anticipated this high in Titan's atmosphere and were not included
in pre-Cassini chemical schemes (e.g., Wilson and Atreya, 2004} so
that new chemical models are required. As noted earlier, ion-
neutral collisions have high collision cross-sections, which in the
case of the heavy ions approach the geometric cross-section
(Waite et al., 2007). This allows such ions to grow rapidly in mass
and size resulting in heavy ion formation. An important parameter
in this growth process is the charge state. In case of negative ions
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this depends on the electron affinity of the molecule which as
discussed below favors fullerenes.

The relationship between these ions and the heavy positive ion
population was discussed by Waite et al. (2007, 2008). They
suggested that nitrogen and methane in Titan's high atmosphere
would be acted on by sunlight and magnetospheric particles
forming heavier but relatively simple species by dissociation and
ionization processes. Eventually this could lead to the growth of
benzene and the other heavier ions detected by IBS up to
~350amu/q (note that the upper limit could be set by the IBS
detection threshold and even heavier positive ions could exist in
substantial amounts). The growth process would continue to form
heavier positive and negative ions. They suggested that these may
be the tholins originally postulated by Sagan and Khare (1979).
With continued growth these molecules could become large
enough to be called aerosols and drift down towards Titan's
surface. This chain of processes, initiated by magnetospheric
interactions at the top of the atmosphere eventually affects the
surface composition of Titan. This idea was supported by the
extensive observations of negative ions by Coates et al. (2007).

Recently, further analysis of negative ion signatures has
extended the number of encounters where negative ions were
observed to 22 during Cassini's prime mission (Coates et al,
2009b). This allows a systematic study showing that the higher
rnass negative ions are observed preferentially as follows: (1) at
low altitudes, with the highest mass {~10,000 amu/q} at Cassini’s
lowest altitude of 950 km, (2) at high Titan latitudes and (3} in the
region of the terminator. On the basis of these results, Coates et al.
(2009b) suggested that the formation of high mass negative ions
is more efficient, or that destruction is less efficient when solar
flux is highly attenuated. Coates et al. (2007) also suggested the
possible ion identifications: (1) 10-20amu/q CN~, NHz and O7;
(2) 30-50 amu/q NCN—, HNCN ™~ and C3H™; {3) 50-80 amu/q CsH3,
CgH™, CgH5; and (4) mass groups 80-110, 110-200, 200-500 and
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500-10,000 as polyynes, high order nitriles, PAHs and cyan
aromatics. Nitrogen substitution PAHs are another possibility, but
may not be stable in the UV environment of Titan’s upper
atmosphere. They may, however be stable in the haze layer of
Titan's stratosphere at altitudes below 400km (e.g., Ricca et al,,
2001). More recently, Vuitton et al. (2009b) using a photochemical
model have identified peaks in the CAPS-ELS mass spectrum at
22+4amufq as CN7/CH™, 44+8amu/q as CN7/CH™ and
82 +14amu/q as CsN™. Most noteworthy is C;H™ which is more
abundant than CN™ below 850km altitude in their model
calculations. The fact that the ionization ratio for G;H™/CH is
~2.4 % 1077 in their model shows that the free radical CoH is likely
present in Titan's upper atmosphere.

2.2. The formation of fullerenes and PAHs in Titan's upper
atmosphere

As discussed in the papers by Coates et al. (2007, 2009b), and
Waite et al. (2007, 2008) the heavy positive and negative ions
could be evidence for the formation of PAHs (Cy,H,) in Titan's
ionosphere. The heavier ions are observed at lower altitudes with
950 km being the lowest altitude sampled by the Cassini space-
craft. Vuitton et al. (2009a)} have presented evidence of benzene in
Titan's upper atmosphere with molar fractions ~107% at 950 km
altitude and levels higher than expected (see Lavvas et al,
2008ab). Acetylene C,H, has a molar abundance ~107° at
1100km (Vuitton et al, 2009b) and is more abundant than
benzene (also see Shemansky et al., 2005; Waite et al., 2007). For
atmospheric temperature like that at Titan, T~150K, one expects
acetylene and benzene to lead to the formation of fullerenes and
PAHs, respectively.

Laboratory measurements at much higher temperatures can
produce fullerenes using low pressure benzene-oxygen flames
(Gerhardt et al, 1987; Richter and Howard, 2000). PAHs can be
formed in the laboratory using low pressure acetylene-oxygen
flames (see Gerhardt et al., 1987). As discussed below at lower
temperatures T<300K the reverse is true. There is a lot of free
energy within Titan's upper atmosphere from bombarding high-
energy photons (UV/EUV and X-rays) and magnetospheric
charged particles. This high-energy input results in high thermal
electron temperatures T..~1000 K {Wahlund et al., 2005) and hot
suprathermal photoelectrons T.,~20,000 K {Hartle et al., 2006a,b;
Coates, 2009a). But, the ion-neutral and neutral-neutral collisions
that lead to the growth of the heavy ions occur for T~150K. The
high electron temperatures may affect ion charge state and
formation of radicals. The above measurements were also made in
oxygen flames, but Titan is essentially devoid of oxygen except for
low abundances of CO, CO; and H,0 within Titan's atmosphere.
Therefore, we feel these earlier laboratory measurements are not
applicable to Titan.

More relevant to the observations at Titan fullerene and PAH
formation occur under space environmental conditions within
interstellar and circumstellar environments that more closely
resemble Titan's upper atmosphere {e.g., Bohme, 1992). X-ray
crystallography measurements have shown fullerenes to be
hellow carbon cages (see Fig. 2) made of 60 carbon atoms Cgp
(720 amu) which have spherical shape or 70 carbon atoms Csp
(840 amu) with ellipsoidal shape {(Krdtschmer, et al,, 1990). The
measured inner diameters are ~7 A with effective mass density
pi~18gmjem® {i.e, mean radius r~5.4 A for p~2.25 gm/cm? for
outer shell made of carbon with thickness ~3.4 A). This should be
compared to aerosol radii ra~12.5nm estimated by Liang et al
{2007). Note, the r,~~260 nm estimated by Waite et al. (20077 was

an over estirnate (Waite, 2008, private communication’. Both Cun

and C.y are known to be very stable (Kroto et al,, 1985; Kroto et al.,
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Fig. 2. Shows cage structure for Ce, fullerenes as described in the review article by
Bohme (1992). (Three examples of proposed "winged” structures for double
adducts of the type Cso(XHB" where XH=NH2,{CH;):C0,and CH5CN.

1991) and are found to be the end product of forest fires (Richter
and Howard, 2000; Calcote et al.,, 1990; Frencklach, 2002). The
main difference between fullerenes and PAHs is that the former
has no hydrogen (Cep), while PAHs have hydrogen (CoH,).

There is a “zipper” mechanism often discussed with regard to
the formation of fullerenes. Hunter et al. (1994) gave one
explanation on how this “zipper” mechanism works. They based
their conclusions on laboratory measurements where they used a
laser vaporization of graphite source which produced ionized
carbon chains and rings. The cluster ions of carbon were injected
at different energies into a Helium buffer gas where they were
thermalized. They use a quadrupole mass spectrometer to select
cluster ion products of different mass. Their measurements
showed that fullerenes were produced from intermediate mono-
cyclic, bicyclic and tricyclic {i.e., polycyclic) carbon rings. Then
from low frequency vibration modes and strain relief of the larger
cyclic rings and the resulting spiraling of polyyne chains,
fullerenes form. These measurements also showed that the
activation energy ~2.4 eV for fullerene formation were unexpect-
edly low. In the papers by Thaddeus (1994, 1995) the argument is
made that PAHs are not likely to be the dominant path to heavy
molecules or aerosols and grains within diffuse molecular clouds,
but rather fullerenes which have their origins from long carbon
chains which then fold into polycyclic rings and then fullerenes.
Thaddeus {1994, 1995) then go on to say that fullerenes from C°
insertion reactions with H, O, N, S, etc, can then grow into larger
“amorphous carbon” organic polymers. There is experimental
evidence of clustering of fullerenes (Cgs ), with n< 147 observed in
the laboratory by Martin et al. {1996) with major peaks in their
mass spectrum at 1= 13 and 55. Whether such clustering within
Titan’s atmosphere can occur must await further laboratory
measurements more characteristic of Titan'’s atmosphere.
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If heavy negative ions observed by Cassini are fullerenes, then
they should prefer a negative charge. Laboratory measurements
by Yang et al. (1987), Wang et al. {1991) and Wang et al. (2005)
have shown Cg to have high electron affinity (2.6-2.9eV), and
since electron attachment for PAHs occur for electron affinities
>1eV (Moustefaoui et al, 1998), fullerene negative ions are
allowed. But, in some cases fullerenes can be stripped of electrons
to form +1 and +2 cations (Weiske et al., 1991). The measurements
by Moustefaoui et al. {1998) were made at relatively high electron
temperatures ~300K or more and that it is difficult to achieve
lower electron temperatures T~150K in the laboratory {Goulay
et al, 2004). Titan's upper atmosphere and ionosphere are
relatively cold with neutral and ion temperatures ~150 K {Waite
et al., 2005, 2007), but the electron temperatures can be quite hot
with thermal electron temperatures T.~1000K (Wahlund et al,
2005) and hot component photoelectron temperatures
Ten~20,000K (Hartle et al, 2006ab; Coates, 2009a; Cravens
et al., 2009). It is important to note that electron attachment to
fullerenes Cgg and Cyo has an exponential temperature depen-
dence that increases rapidly for T. > 500 K with relatively high rate
coefficient f.~3 x 10~%cm?®/s (Smith et al, 1993; Spanel and
Smith, 1994; Spanal and Smith, 1995; Jaffke et al, 1994) at
Tec~1000K {Wahlund et al, 2005), so electron attachment to
fullerenes seems allowed. More recently, Agren et al. (2009) did a
more systematic study of Titan's ionosphere and determined the
dayside peak densities to be 2500-3500 el/cm® and the nightside
peak densities to be 400-1000el/cm® The ionospheric peak
electron temperature is rather constant near 350-700K. The
lower electron temperatures given in this report will give lower
electron attachment rates for Cse~10"%cm?/s and for electron
densities Ne.~3000el/cm® on the dayside attachment time
scales are ~9 h, while for nightside with Nec~1000 eljcm® electron
attachment time scales ~27h. If one uses the temperature
for photoelectrons with T.n~20,000K and Nep~10 el/cm? (Hartle
et al., 2006b for TA) the fullerene attachment rate is estimated
t0 be flen~4.4 x 1077 cm?(s with attachment time scales Ten~1/
{NenBen) ~2.6 days which are longer than the thermal electron
attachment time scales.

In case of positive ions recombination time scales are «~1077/
195-.2 « 107 cm®/s for T..~700K are relatively fast t,.~1-2h
(Cravens et al., 2006). Photoionization rates for atoms and smaller
molecules, for which the ionization potentials are =10eV, are
typically ~10%s (see Sittler et al, 2008} or time scales ~3yr.
Borucki et al. (2006) considered photoemission rates for embryo
aerosols (3A) within Titan's lower atmosphere for heights less
than 400 km. Fullerene sizes are similar to the embryo aerosols
considered by Borucki et al. {2006} and have ionization potentials
~7.07 eV (Bettens and Herbst, 1995), so photoemission rates for
fullerenes and their clusters are expected to be higher than those
for atomic and molecular ions. Their calculations do show that
when in shadow photo-detachment of electrons from negative
ions (ie., fullerenes) will be much lower and thus more likely to
retain their negative charge. This is supported by the CAPS-ELS
observations reported by Coates et al. (2009b) where heavy
negative ions are more important near terminator focal times at
Titan. Estimation of the actual charge state of fullerenes requires
development of a complex model similar to that by Borucki et al.
{2008), including photo-detachment rates, ion-neutral and ion-
ion charge transfer rates and is thus beyond the scope of this
paper. But, the relatively high electron affinities and electron
attachment rates are consistent with negative charge states for
fullerenes. This will be the subject of future work.

lonization of the upper atmosphere comes in part from solar

Y, magnetospheric electrons and X-ray photons but also arises
from bombardment by hot keV magnetospheric heavy oxygen
ions (Hartle et al,, 2006a,b,c) and energetic protons and oxygen

ions (Mitchell et al., 2005 and Cravens et al., 2008). The energetic
protons and >10keV oxygen ions can penetrate below 950km
{Luna et al., 2003; Cravens et al., 2008; Hartle et al.,, 2006¢) where
the heavy positive and negative ions are observed by Cassini
(Coates et al, 2007; Waite et al, 2007). Galactic cosmic ray
protons (Capone et al, 1983; Molina-Cuberos et al, 1999)
penetrate much more deeply and dominate ionization in the
lower atmosphere. lonization layers at altitudes ~700 km can
form due to meteoritic dust impacts as shown by Molina-Cuberos
et al. (2001). lonization layers ~500 km were observed by the
Cassini radio science experiment by Kliore et al. {2008). The key to
the formation of fullerenes and PAHs within this environment is
then the combination of relatively high methane abundance and
the high-energy radiation input to the atmosphere.

2.3. Role of oxygen input from magnetosphere and micrometeorites

The role of oxygen becomes particularly significant for
astrobiology if fullerene formation occurs. Oxygen is an important
ingredient of amino acids and other chemical compounds
necessary for evolution of life, and exothermic oxidation of
nutrients is critical to biochemical processes. Major abundance
of free oxygen in Titan's highly reducing atmosphere is highly
unlikely (Raulin and Owen, 2003), but the bound molecular form
is found in trace species such as CO at the 60 ppm level in Titan’s
atmosphere as discovered by Lutz et al. (1983). This was later
followed by the discovery of CO, in Titan's atmosphere at the
1.5 ppb level by Samuelson et al. {1983), who showed that water
entry from above may be required in order to explain the presence
€O, having a relatively short lifetime ~5 » 10* yr. In both cases the
oxygen is locked up in the CO and CO; which are fairly stable
molecules (CO — C+0+11.17 eV; CO, —» CO+0+5.46 eV; CO; — C+0+0+
16.63 eV). It was argued that the CO was probably primordiai in
origin but the recent model resuits by Horst et al. {(2008) showed
that this was not required due to the entry of keV oxygen ions to
Titan's upper atmosphere (Hartle et al,, 2006a,b).

Oxygen can be introduced into Titan's upper atmosphere
by entry and ablation of micrometeorites containing water
molecules (Samuelson et al., 1983). Models of Titan's atmosphere
after the discoveries of CO and CO, required an inward flux
of oxygen as summarized in Table 1. In the case of Yung et al.
(1984) they required oxygen influx ~B.1 x10° O atoms/cm?/s,
while that by Toublanc et al. {1995} used a downward flux
~1.5 x 10% 0 atoms/cm®/s. The mechanism of meteoroid ablation
in Titan's upper atmosphere was initially suggested by Ip (1990}
for the case of water ice particles and stony particles, Then English
et al. (1996) proposed a micrometeorite ablation model for water

Table 1
Summary of exygen source for Titan's upper atmosphere.
Oxygen source In flux rate
(Ofcm?fs)
Lutz et al. {1983] €O discovery ~60ppm
Samuelson et al, CO, discovery ~1.5pph @ 110mbars B 6.1 =107
{1983} ring & Meteoricand meteoric dust as
source of 0
Yung et al. (1984) Based on (O &and (O chemistry 6.1 % 16°
Toublanc et al. Chemical model with CO &and €O, 1.5 » 108
{1985}
English et al. {1996  Micrometeorite dust ablation 3 x 107
Lara et al. {1996} CO &and O, mode! based on English 3 x 10°
et al. {1996)
Coustenis et al. Discovery of HO ~8ppb €@ 400 km 0.58-2.8 » 10%
(1998}
Hartie et al (200643 Ta keV magnetospheric G° 1.8 < 10°
Hartle et al. (2008b)  Ta keV magnetospheric ¢° 112 19°
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entry with peak deposition rate at ~700 km altitude. Their model
showed peak flux ~3 x 10° molfcm?/s. The discovery of water in
Titan's atmosphere by Coustenis et al. (1998) with mole fraction
~8 ppb at 400 km altitude ended any doubts about the presence of
water products in Titan's upper atmosphere. The Coustenis et al.
(1998) results inferred an influx rate of 0.8~2.8 x 10° mol/cm?/s.

Cassini results continue to build the case for oxygen and water
sources in the upper atmosphere. Hartle et al. (2006a,b) presented
the first observational evidence of magnetospheric keV oxygen
ions into Titan's upper atmosphere with an estimated influx rate
~1.1 % 10° O atoms/cm?/s at the exobase. The presence of negative
oxygen ions in Titan's upper atmosphere can be inferred by the
mass 16 peak in Fig. 1 from T16 adapted from Coates et al. (2007}
This might be expected due to the high electro negativity of
oxygen atoms. This is also suggested by Cravens et al. (2008),
although Vuitton et al. (2009b) based on T40 heavy negative ion
measurements argue against a significant presence of 07, When
Vuitton et al. (2009b) included the influx of oxygen ~10° Of/cm?/s,
which is 5% of “typical” of that reported by Cravens et al
(2008) for T5 and 10% of that reported by Hartle et al. (2006a.,b)
~10° O/cm?/s for TA, the O~ densities increased from a maximum
of 107 0~ jcm?® at 1100 km altitude to 4 x 10~2 O~ jem® at 1100 km.
If a more typical value of the influx is used and the uncertainties
in the cross-sections are accounted for one could argue that
elimination of O~ from the CAPS-ELS mass spectrum cannot yet be
made, It is also important to note that there are times when no
heavy ions are present in the upstream magnetospheric flow and
times when it dominates the upstream flow (Sittler et al,, 2009)
and therefore one must consider such complications when
interpreting negative ion mass spectra for specific Titan flybys
{i.e, T16 vs. T40).

The CDA observations of E-ring dust particles by Srama et al.
{2006} within Saturn’s outer magnetosphere allows one to
estimate an influx rate of water molecules into Titan's upper
atmosphere ~2.5 % 10°> water mol/cm?/s at the exobase. In the
case of magnetospheric oxygen ions and E-ring dust particles, the
source of the water and oxygen can be traced back to Enceladus
(Johnson et al.,, 2005; Sittler et al., 2006).

2.4. Trapping of free oxygen and hydroxyl ions in seed particles

Laboratory experiments show that (g 6-16keV ions (lab
frame kinetic energy) can trap lower mass target gas atoms inside
the fullerenes. Magnetospheric keV O" ions incident upon Titan's
upper atmosphere can be implanted and become trapped within
Titan's fullerenes. The laboratory measurements are quite ex-
tensive for fullerene trapping of target noble gases such as He, Ne,
Ar, Xe and Kr. Weiske et al. (1991} found that CgptHe —C,He
(46 <x<60) for He target gas at (5o incident emergy {product
fractional percentage) of 6keV (30%), 8keV (34%), 10keV (14%)
and 16keV (< 1%). The equivalent center of mass energies for
incident He ions would be 33, 44, 56 and 89 eV, respectively. For
incident O ions the equivalent center of mass energy would range
from 132 to 356eV. As keV O ions lose energy within Titan's
upper atmosphere {e.g,, Shah et al., 2009) and their energies drop
below 400 eV they can become trapped in fullerenes with higher
probability. This trapping will occur deeper in the atmosphere as
the O7 incident energy increases (i.e., fon penetration into
armosphere increases as the ion initital energy increases}. In case
of Argon center of mass energies used were ~450eV, while for Kr
center of mass energies were ~1230eV (Caldwell et al, 1991,
1992 The higher center of mass energies can cause fragmenta-
tion of the fullerene with ejection of carbon atoms. Higher center
of mass collisions up to 1 keV for G* have vet to be done. In some
cases maore than one He atom was implanted into a fullerene.

Caldwell et al. (1991, 1992) did similar experiments using He, Ne
and Ar and found end products CgoHe™, CgoHe3, CroHe", CyqHe",
CssNe™ and CssAr'. Xe and Kr were not captured due to their larger
size as compared to the space inside fullerenes. These results are
consistent with X-ray crystallography measurements of fullerene
dimensions and size within their hollow cage.

From these laboratory results two mechanisms are invoked.
Mechanism 1 is the “low pressure limit” for which the jon is
injected directly into the fullerene, while mechanism 2 is in the
“high pressure limit"” for a collision induced fracture of the carbon
cage occurring first and then being followed by atom capture
as an ion complex. The first mechanism could apply at Titan
for direct injection of oxygen ion into the fullerene. Although,
most of the oxygen ions will form CO and CO, once thermalized,
the direct implantation mechanism does not have this problem.
The capture cross-section (fullerene geometric cross-section
op~TrE~4 x 1077 cm?) is quite large. Results of Coates et al
(2007) for mean negative ion mass ~4000amu {i.e.,, embryo
aerosol) give 4000/720-6 cages, radius ra~7 A or larger and
geometric cross-section ga~mra~1.5 x 10~ cm?,

Trapping of oxygen ions inside the fullerenes provides a stable
means of oxygen conveyance within the upper atmosphere which
is ultimately delivered to the surface. Complex chemistry of pre-
biotic and even biotic interest could occur as oxygen-laden aerosol
particulates precipitate to any surface hot spots associated with
local cryovelcanism (Sotin et al,, 2005; Lopes et al., 2007; Nelson
et al., 2008) and where liquid water might be present near the
surface.

In the modeling by Michael and Johnson (2005) and Michael
et al. (2005), the energy input into Titan's upper atmosphere by
keV magnetospheric heavy ions, the heavy ions tended to
dominate the energy input to Titan's upper atmosphere. They
assumed the ions were directed down into Titan's atmosphere.
This was the case since for V1 the convective electric field pointed
radially away from Saturn so that pickup ions on the Saturn side of
Titan would be accelerated into Titan's upper atmosphere. For T5
the electric field is pointed southward so pickup ions are
accelerated into Titan’s northern hemisphere. In cases when Titan
is above the magnetospheric current sheet the pickup ions will be
accelerated into Titan's southern hemisphere. They found the
pickup ions tended to dominate the energy input to Titan’s upper
atmosphere relative to the magnetospheric input. Therefore,
implantation of N*, N3 and CHj pickup ions into the fullerenes
could also be occurring at levels comparable to oxygen input rates.

2.5. Transport to lower atmosphere and surface as aerosols

Estimates of the mass flux of the heavy ions observed in Titan’s
ionosphere downward to the surface can address whether these
ions might account for the aerosols observed by Tomasko et al.
(2005} using the Huygens DISR imaging system. In principle we
can also estimate the potential surface delivery rate of oxygen
bound in fullerenes due to aerosol transport. As stated earlier the
heavy negative ion density increased with depth in the atmo-
sphere with the highest masses and number densities at the
minimum altitude 950 km probed by Cassini {Coates et al., 2007}
Such increases likely continue to lower altitudes and perhaps
ultimately to maximum densities of aerosol cloud layers
100-200km or lower (de Kok et al, 2007) above the surface.
Lavvas et al. {2008ab} developed a photochemical model of
Titan's atmosphere which extended from the surface to the upper
atmosphere z~1400km altitude. In these papers the size
distribution of the haze particles was derived with height using
a 1D diffusive transport code with source and sink terms for the
size distribution of particles. The calculations determined the size
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distribution of the aerosols at different heights with peak number
densities ~100 part/cm® and size ra~10"2 um at 950 km. Lavvas
et al. (2008b) give particle mass ~5000amu, very close to that
observed by Coates et al. (2007} at 950 km. Near the surface these
latter authors estimate particles sizes ~0.5um with number
densities ~7 part/cm>.

Borucki and Whitten (2008) and built on earlier models by
Borucki et al. (1987, 2006), modeled haze particle distributions for
heights less than 150km. They assumed three mass fluxes
4 % 10" kg/m®/s for case B, 4 x 10~ kg/m?/s for case C, and
10~ kg/m?/s for case D, also assume mass flux conservation, and
do not use diffusion terms which are essentially unknown. Using
Stokes Equation from Roe et al. (2002), they estimated fall velocity
~5 x 107%m/s for case B and ~4 x 10~ m/s for case D. The particle
sizes were r~0.45 pm for case B, 0.95 um for case C and r~1.3 um
for case D. The particle abundances were ~6 x 10° part/m>~6
part/cm®, which are very close to that estimated by Lavvas et al.
{2008b). In this paper we estimate a simplified fall velocity
applicable to the higher altitudes probed by Cassini which
includes simple frictional drag from molecular collisions on the
heavy ions. The expression is as follows:

Mseedg(z) (1)

Virife =
NN; lw!\‘g Wi, Oseed
with
2
Gﬁeedj = ’brseed,j' (2)

where M,..q is the mass of the heavy ion observed by Coates et al.
(2007) and we refer to as seed particles for the aerosols {or
embryo aerosols), g(z) is the local acceleration of gravity which is
a function of height z, Ny, is the number density of N, molecules,
My, = 28amu is the mass of Ny, wy, is the thermal speed of the
N, molecules and 0geeq is the geometric cross-section of the seed
particles plus that of the N, molecules. We use this expression to
estimate the heavy ion fall speed at 950 ki which one finds to be
~10my/s for fullerenes and ~0.4 m/s for PAHs (i.e., both with same
M/Q, see previous discussions about ion charge state and cross-
sectional size).
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Fig. 3. Plot of aerosc fali velocity {m/s} versus altitude based on our simplified
expression in Egs. (1) and (2} from above 950 km down to the surface. Two curves
are shown for particles mass 4000 and 40,000 amu (top curve). If particles are
spherical they will fall faster as they grow, but i more planar then their fall
velacity is independent of particle mass for a given height. We also show the
estimates by Borucki and Whitten (2008a.b) for altitudes « 150 km. Our estimate
is fess than Borucki and Whitten (2008ab) as would be expected, since the particle
size ~lum is »G.5A (4000 xmu) and 144 (40000amy} for seed particles
ohserved above 950 km altitude. Gur expression for spherical T sized particles
would vield fali velocities several orders of magnitudes greater than that shown
here for 40,000 amu particles.

We show in Fig. 3 the fall speed of the haze particles as a
function of height for different assumed haze particles mass (4000
and 40,000 amu). In reality, as the haze particles fall they will
grow in size and tend to fall faster as they become more massive
except for the increase in frictional drag due to the increased
cross-sections and atmospheric N, density with depth. Looking at
Egs. (1) and (2), heavier spherical ions will fall faster linearly with
particle radius r (i.e., Mp~(47/3)pr° and op~7r?). Fluffy or planar
particles will fall at a speed independent of particle mass at a
given height. Assuming fullerenes as the primary aerosol
component, and taking the ion number densities with mean
mass ~4000amu of the heavy negative ions we estimate at
950km altitude a downward mass flux $~2.7 x 107 kg/m?/s.
This flux is smaller than the lower limit ®~4 x 10~ kg/m?/s used
by Borucki and Whitten {2008a,b) and constrained by Tomasko
et al.'s (2005) aerosol observations but considering uncertainties
identical. If the mass density flux increases below 950km as
expected, then the heavy ions observed above 950km may be
sufficient to account for all the aerosols observed by Tomaske
et al. (2005) near the surface. If one uses the mass flux rate
~4 % 10~ kg/m?*/s and a surface mass density ~420 kg/m> it will
take ~300Myrs to accumulate an aerosol depth of one meter
(420 keg/m?) uniformly distributed around the globe. If one uses
the higher mass fluxes of Borucki and Whitten (2008a,b) the
accumulation times could be as short as ~10 Myrs.

2.6. Loss of ionospheric ions to Titan's surface

We now consider the effect of heavy negative ion drift and
formation of an ambipolar electric field. We have ignored the role
of heavy positive ions Nyeawy, since they are less abundant than
the dominant ionospheric ions Njon; Then assuming the seed
particles are negative and imposing the charge neutrality
condition

ZNseed.steedj + Ne = ZNIONJ + ZNHeavyJQ&-leavy.j (3)
i J

Ne = ) Nion; @
i

for which the heavy negative ions 3" iNeed jQseed j < N,, impose zero

current condition

€Y Noeed Qseed,Varittieed; — € _NionoiVasiftionai = 0 (53
i

(the electrons are assumed to be collisionally coupled to the
neutral atmosphere} and frictional drag one can derive the
following expression for the ambipolar electric field

\ M, 82 Nseea Qseed (Mseed /Mn,) — Nion(Gseed /05)]

E@) Y , 6
€[Nseed Q.feed + NEON(“S@MZUS)]

The following parameters are used ...q/os~40 {typical elastic
scattering cross-section is ¢s= 5 x 10" " em? for ion-neutral colli-
sions), Niow = 5000 fons/cm® (HCNH' ion}, Neeg = 200 anionsfcm?,
MeceaiMion~143  {Mgeeq = 4000amu), seed particle charge state
Queea = 1, EZ) = 0180 VM, Gieg = €E(Z)Mapea~0.43 cnfs? < glz) =
72 cmyfst at 950km, aon = eEz)Mion~62 confs®~g(z) at 950 km, and
then with Vaseeea~10m/s and Viamiono~04 myjs. Using these we
estimate a loss of positive ionospheric ions to the lower atimosphere
by negative ions dragging them along ~2 x 10° ions/cm?/s (ie, at
lower altitudes they probably recombine and become part of the
lower atmosphere). If, electrons were free to move vertically, they
would tend to short circuit this electric field. The net effect would be
to reduce the downward drag on the ionospheric ions by the heavier
negative ions. This foss is not very large, and about 4% of the
ionospheric wind loss from the topside ionosphere (Hartle et al,
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2008; Sittler et al, 2009). The atmospheric loss from the fall of
negative ions in units of mass 28 is much larger: ~5 x 10° ions/cm?/s
and when one combines the two losses the total ion loss ~5.2 x 10°
ionsjcm?/s. This translates to a loss rate of 2.4 x 107'° gm/em?/s and
can be compared to a loss rate ~3 x 107°gm/cm?/s at 1000km
altitude estimated independently by Wahlund et al. (2009).

2.7. Other observations and final comments

2.7.1. Fullerenes versus PAHs

We first address the issue of fullerenes versus PAHs with the
former composed only of carbon C,, while PAHs are composed of
both carbon and hydrogen C,H,. Hydrocarbons like C;H; are
considered unsaturated in hydrogen, while C;Hg is considered
saturated. It is sometimes implied that since Titan's atmosphere is
rich in hydrocarbons with relatively large amounts of hydrogen, that
hydrogen poor species such as fullerenes would not form. But, in
fact the reverse may be true and many experts in the study of ISM
such as Thaddeus (1994, 1995) favored fullerenes over PAHs in an
environment similar to that for Titan (ie. low temperatures
T< 150 K). Observation of negative ions in the interstellar medium
were primarily composed of polyyne radicals Co,H™ (McCarthy
et al., 2006; Briinken et al.,, 2007; Sakai et al., 2007; Remijan et al,
2007) or unsaturated carbon nitrogen species such as N~
{Thaddeus et al, 2008). Vuitton et al. (2007) and later Vuitton
et al. (2009b) showed significant abundances of polyynes (CoHa,
C4Hy, CeHa, CgHy) in Titan's atmosphere at 1100km using a
photochemical model constrained by INMS ion measurements. [n
Vuitton et al. (2007) they also note that the abundance for the
higher carbon chain polyynes within Titan's atmosphere did not
decrease as fast as that in other photochemical models (Yung et al,
1984; Toublanc et al, 1995; Wilson and Atreya, 2004), the ISM
(MacLeod et al., 1984; Remijan et al., 2006; Cernicharo et al., 2001)
and/or laboratory measurements (Coll et al,, 1999) as the number of
carbon atoms increased in the carbon chain. It is also well known, as
discussed in Thaddeus {1994, 1995) and Vuitton et al. (2007}, that
unsaturated polyynes can polymerize into long carbon linear chains
from which fullerenes can form (Hunter, 1994; Thaddeus, 1994,
1995). As discussed in Vuitton et al. (2007) with photodissociation
making the polyyne radical CopHpthv—CyH+H which can then
react with another polyyne CoH+ConHz — CopnemHa+H to make a
longer carbon chain, so very long carbon chains with very small
amounts of H can form in Titan's atmosphere. The above reactions
have been confirmed both experimentally and theoretically {Smith
and Rowe, 2000; Smith et al, 2006; Berteloite et al, 2008}
Laboratory measurements have also shown fullerenes can form
large clusters {Cgq)r with index n as high as n~146 (Martin et al.,
1996).

This does not mean to say that PAHs cannot also form in Titan's
atmosphere since the aromatic benzene CgHg and its radical
phenyl CsHs are present in Titan's atmosphere (Vuitton et al.,
2009a) and similar polymerization reaction paths may occur to
make PAHs {Waite et al., 2007; Vuitton et al,, 2007). As we have
stated previously both processes could very well be occurring at
the same time and heavier aercosols could be mixtures or
conglomerations of fullerenes and PAHs {see comments by
Thaddeus, 1994, 1995 on large aerosol formation).

2.8. Comment on UVIS observations of aerosols

With regard to the UVIS observations by Liang et al. (2007
there could be a charge neutrality problem. Using Cassini UVIS
stellar occultation data, Liang et al. (2007 observed the haze layer
down to 400km altitude. Assuming a scattering radius ra~12.5
nm for aerosols, they estimated a “thelin” particle density ~10*

part/cm® at 950km and ~10° partjcm® at 400 km aititude. Such
particle sizes could be'in agreement with the Coates et al. (2007)
heavy negative ion results if the particles are flat PAHs with radii
rseea<6GnM. Since Liang et al’s (2007) results are not very
sensitive to particle size, UVIS could also be seeing ~6nm size
or even smaller particles. The large number of “tholin” particles
observed by UVIS at 950 km ~10* part/cm® is much greater than
that observed by Coates et al. (2007) for negative ions and Waite
et al. (2007) for heavy positive ions.

If a significant fraction of the haze particles observed by UVIS
are charged, then we have a conflict and charge neutrality would
become a serious problem when the Langmuir Probe data is also
considered for which N..<5000eljcm?® (Wahlund, private com-
munication, 2009). If Coates et al. (2007) are really seeing
fullerenes then they may be too small {ra<12A) for UVIS to
detect and Liang et al. {2007} are seeing particles too big to be
observed by CAPS-ELS. But this would not resolve the charge
neutrality problem unless all the haze particles observed by UVIS
are not charged. For lower mass negative ions, as modeled by
Vuitton et al. (2009b) and also found in ISM the ratio C,H™/
Cs,H <1, this ratio tends to increase with increase in the number
of carbon atoms per carbon chain. Liang et al.’s (2007) results do
show that the haze particles have a similar scale height to
acetylene, which one might expect if the acetylene is the source of
the “tholin” particles. Acetylene can polymerize and make
fullerenes while benzene is probably needed to make PAHs. This
would favor more fullerenes relative to PAHs.

2.9. Entrapped oxygen in aerosols

Using the influx rate of 0" keV of 1.1 % 10%0/cm?/s from Hartle
et al. (2006b), a seed cross-section Geca~4.5 x 107 cm? and
Neeeg~200 ions/cm® an implantation rate ~107° O implanted
seed/cm?/s. The atmospheric volume needed to make one of
the aerosols observed by Tomasko et al {(2005) is
AVignosprere™1.9 % 10° cm?, so there are ~19 O atoms/s implanted
within each aerosol grain, If the seed particle fall rate is ~3m/s
and one uses a column density ~100km for 0" penetration, we
estimate ~6.3 x 10° Ofaerosol. One can then estimate ~2 x 107
fullerenes per aerosol, so that there are ~0.05% of the fullerenes
with oxygen atoms. If one uses the medium mass flux limit by
Borucki and Whitten {2008a,b) &~4 x 107> kg/m?/s for the lower
atmosphere one gets ~6.8% of the aerosols being in the form of
fullerenes, But, these are lower limits since the heavy negative ion
densities and masses are expected to increase below 950 km.

The estimated mass flux of free oxygen to the surface is then
0.1% of that incident onto the upper atmosphere from the
magnetosphere, the bulk of the oxygen going to formation of CO
and CO-.

Based on the above values for aerosol mass flux to the surface,
the aerosol mass fraction from fullerenes, and fractional upper
atmospheric oxygenation of the fuilerenes, we estimate an oxygen
mass flux to the surface of 3 x10~*kg/m? per 300Myr. This
amounts to 7 x 1077 mass fraction of the one-meter aerosol layer
accumulated in 300 Myr. In the same accurnulation time, abiotic
atmospheric oxygen production condensed to the surface on
Earth, mostly from UV photolysis of atmospheric water vapor is
130kg/m? (Chyba and Hand, 2001). For comparison, the mass
fraction of photosynthetic oxygen in terrestrial sea water is 107>
(Schlesinger, 1997 ).

2.10. Heavy ions and haze generation with oxygen model
Fiz. 4 summarizes the “heavy ions and haze generation with

oxygen model” as presented in this paper. The top layer signifies
Saturn's magnetosphere with the exobase forming its lower
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Heavy lons and Haze Generation with Oxygen Model
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Fig. 4. Summary slide shows our “heavy ion and haze generation with oxygen
model”. See text for derails.

boundary. The ion composition of water group ions, methane
group ions with energy 1-10keV and more energetic H", O° ions
{10-100 keV). Below the exobase lies the topside ionosphere, with
lower ionosphere between 800 and 1400km, where the keV
oxygen ions can become trapped with fullerenes growing along
with the PAH population. Cravens et al. (2008) show that the keV
0" ions deposit a significant fraction of their energy below 950 km
altitude.

We also show cosmic rays penetrating to the lower atmosphere
and meteoritic dust down to lower ionosphere. Below 950 km we
assume further grain growth in size which then continues down
to ~400 km. Below 200 km further growth presumably occurs at
depths of maximum energy deposition from ionization by
primary and secondary cosmic ray shower particles. In addition
to grain growth, the cosmic rays can provide radiogenic energy to
the aerosols which can then free the oxygen within the aerosols
and possibly drive pre-biotic chemistry within the grains. Even
after precipitation to the surface, the precipitating aerosol grains
would continue to be processed chemically by irradiation from
cosmic ray showers, also producing oxygen in surface or buried
water ice to many meters in depth. Although height integrated
cosmic ray ion production rates above 50km maybe 100 times
greater than that below 50 km (see Capone et al., 1983; Molina-
Cuberos et al, 1999}, the time scales for descending aerosols
~100~-1000 yr are much shorter than the surface irradiation times
scales ~30-300Mys (i.e., time it takes to accumulate ~1m of
aerosols to surface). The descending aerosols may have a larger
surface area for exposure than that on the surface. Therefore,
cosmic rays will be effective in driving the aerosol chemistry at all
phases of their time history from formation at the highest
altitudes ~950km down to the surface.

Borucki et al. {2006) presented evidence for ion clusters such
as CH:CHy, CyH3, C4HE and HyCoN” to form below 400 km due to
the ionization of nitrogen and methane by cosmic rays. They show
that PAHs, which can be electrophilic (see Bakes et al., 2002), can
form negative ions and significantly reduce electron densities,
between 150 and 350 km, below that one would otherwise expect.
In addition to PAHs fullerenes are also highly electrophilic as
discussed previously and will similarly form negative ions. They
also show that three-body electron-ion recombination collision
will further reduce electron densities below expectations for
heights <60km (Huygens HASI conductivity probe measure-
ments require low electron densities as discussed in Borucki and
Whitten, 2008a,b). Borucki et al. (2006} also suggest that one
must consider very small aerosols called embryos which can
easily be ionized and can only retain charge states Q~1. These
particles are similar in size to that observed above 950km as
heavy negative ions by Coates et al. (2007). Aerpsol charging can
contribute to atmospheric conductivities which can then be
measured by the Huygens HASI instrument (see Fulchignoni

et al,, 2005). The haze particles then fall through the troposphere
to the surface. At the surface, due to accumulation of aerosol
particles we show a mixture of “tholins”, oxygen, nitrogen and
amino acids with the latter a speculation.

Below the surface a liquid ocean has recently been detected
(Lorenz et al., 2008; Stiles et al., 2009) where interior models
{Tobie et al,, 2005 require ammonia as an anti-freeze since model
temperatures are too low to allow pure liquid water to occur
below the surface. It has been suggested that methanogenic life
with this liquid ocean could be the source of Titan's methane
which has a lifetime less than 100 Myrs (Fortes, 2000; McKay and
Srnith, 2005). This liquid water and heat, via the cryovolcanism
that may have been cbserved {see Lopes et al., 2007; Neish et al.,
2006), can then allow exabiological processes occur, especially if
free oxygen is present. The observation of lakes by Cassini radar
(Stofan et al, 2007), presents another tantalizing possibility for
exobiological processes occurring at Titan. Recently, the Cassini
VIMS experiment by Brown et al, (2008} has shown that these
lakes contain ethane and are thus probably a mixture of organic
molecules (see Raulin, 2008). If the aerosols discussed here do
contain oxygen and land on these organic lakes a unique
environment with significant astrobiological potential is created.

How important could the magnetospheric oxygen be to the
astrobiological chemistry of the Titan surface and liquid subsur-
face environments? Over 300 Myr we estimate an accumulated
fractional mass column density of 5-6 x 10~7 of oxygen in a one-
meter aerosol layer. This ratio would presumably remain
representative of the exogenic material over time as this layer is
mixed deeper into the regolith by geologic and impact processes.
For comparison, the mass ratio of dissolved oxygen to water is
107% in terrestrial sea water. This is also near the upper limits of
radiolytic surface production from jovian magnetospheric inter-
action with the surface of Europa for downward conveyance to its
putative subsurface ocean (Cooper et al., 2001). By comparison,
the exogenic oxygen at Titan is not significant at the macroscopic
level for the bulk chemistry of the surface as compared to Earth
and possibly Europa.

On the microscopic level the astrobiological significance might
be much higher if purely organic aerosol grains acquired ice shells
at the surface, e.g. through water frost deposition from Enceladus-
like cryovolcanic activity. The free oxygen abundance would have
sources both from magnetospheric oxygen injection into the
fullerenes and from direct radiolytic production in the water ice in
all atmospheric and surface phases. As noted above, nitrogen and
methane ions could also be implanted within the grains plus their
addition to the aerosols as they fall through Titan's atmosphere.
Each Titan surface grain could be a microcosm of relatively
abundant organics, water ice, and free oxygen trapped in
fullerenes and the water ice. Heat from impacts and volcanic
activity could then initiate the pre-biotic chemistry of life in
microscopic versions of Darwin’s warm ponds on Titan.
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