https://ntrs.nasa.gov/search.jsp?R=20110005620 2019-08-30T14:40:14+00:00Z

Enclosure (1) to: 08MO-1075

Phased Array Ultrasound

Initial Development of PAUT Inspection of Self-Reacting Friction Stir Welds

Ryan Rairigh, Ph.D. Michoud Assembly Facility New Orleans, LA

Background

Conventional Friction Stir Weld (FSW)

•Uses fixed or retractable pin tool

One shoulder and an anvil

•Requires more tooling force

Self Reacting Friction Stir Weld (SR-FSW)

Uses self reacting pin tool

Two shoulders. No anvil.
Uses less tooling force and lower rpms.

Previous Work

• 2003-2004

- NDE development for inspection of SR-FSW in 0.320-inch-thick 2219-T87/2195-T8M4.
- Develop volumetric techniques for residual oxide defects (ROD) and other void type flaws via phased array ultrasonic testing (PAUT) to assure the acceptable quality of SR-FSW.
- Multiple techniques were evaluated: visual (VT), penetrant (PT), X-ray radiography (RT) and phased-array ultrasound (PAUT).

Weld Defect	Possible Cause
Defect free (clean)	
Residual Oxide Defect (ROD)	Improper weld joint cleaning/Unconsumed interface
Voids / Wormholes	Insufficient forging of weld nugget
Tears – surface and subsurface	Excessive forging force
Undercutting	Excessive heel plunge

Table 1. Defects studied

Residual Oxide Defect (ROD)

- PAUT is the only NDE method which has been shown to detect detrimental levels of ROD.
- Detrimental ROD results in significant decrease in weld strength.
- Several process control countermeasures exist
 - Pre-weld prep including cleaning of weld area and dwell time.
 - Offset of centerline of weld.
 - Type of pin tool?

Previous Work

- Conclusions
 - RT was inadequate for inspection of ROD
 - PAUT
 - ROD from high to mild severity, but non-relevant indications (NRI) were also noted
 - Surface breaking flaws were detected by visual and PT but PT produced multiple NRI. RT and PAUT found severe surface breaking flaws.
- Recommendations
 - Continue PAUT development to encompass ALL internal and volumetric flaw types.
 - Establish NDE thresholds for worst case flaws, and develop interpretation criteria based on these thresholds to include ROD, void and internal flaws.

Orion PAUT Development

- Initial Development
 - Based on previous work to develop PAUT as the primary NDE method for SR-FSW
 - Ground Test Article (GTA)
 - First complete engineering article of the Orion Crew Module (CM)
 - GTA provides the opportunity to test and qualify the baseline PAUT process.
 - Qualification of GTA inspection will serve as input for qualification of flight hardware inspection.

Development Defects

- Two Classes
 - Out of Schedule Defects (e.g. depend on weld temperature, mixing, etc.)
 - Galling
 - Lack of Adequate Forging (LAF)
 - ROD
 - Wormholes
 - Contamination Defects
 - Heavy Inclusions
 - Organic Material

Phased Array Ultrasound Analysis

PAUT Process

- Inspection Methods
 - Phased Array UT
 - Focus
 - Reference Standard: 0.020" Side Drilled Hole (SDH)
 - 10L64 (10 MHz, 64 element) probes with water wedge
 - 0° skew angle (perpendicular to direction of pin travel)
 - Dual probe, one each on advancing and retreating sides of weld, automated track encoder
 - 45° shear wave, electronic scan
 - OmniScan
 - 0.020" SDH Reference Standard
 - 5L 64, 10L 64 and 17L 100 probes with contact wedge
 - 0° skew angle
 - 45° shear wave, electronic scan
 - Hand scan on advancing and retreating sides with miniencoder

Galling

Tears and/or blisters on the surface (root or crown) of the SR-FSW

Wormholes and LAF

- Typically occur along advancing side of the weld midline
- Cold welds

ROD/Cross Slide

- Pin tool offset to the advancing side
- Creates larger volume of unconsumed interface
- Panels with increasing degree of offset
 - 10 % \rightarrow 50 %
- Can resemble LAF in extreme conditions

RION

X-ray

ROD 50% Offset

RION

14

Contamination

- Heavy Inclusions Wire brush bristles, pin tool fragments
- Organics Oil, hydraulic fluid

Weld Development DOE

- Correlate weld strength and NDE results
- Weld Schedule for 0.200" thick AI 2195/2195
- External Tank (ET) PAUT protocols were followed
 - Reference Standard: 0.020" Side Drilled Hole (SDH)
 - 10L64 (10 MHz, 64 element) probes with water wedge
 - 0° skew angle (perpendicular to direction of pin travel)
 - Dual probe, one each on advancing and retreating sides of weld, automated track encoder
 - 45° shear wave, electronic scan

Mean UTS Values for DOE I & II

Minimum acceptable UTS (red line above) per Engineering Process Specification

Mean UTS Values for DOE I & IF

•Green squares were rejected by x-ray radiography

Mean UTS Values for DOE I & II

- Orange squares were rejected by PAUT
- Captured all of X-ray rejected defects (circled in green)
- False positives had localized defects and/or insufficient surface preparation

Representative Metallurgy

• Acceptable

• Galling

• LAF

Conclusions

• Weld DOE

All welds rejected by PAUT were outside the nominal weld schedule

- Low UTS
- Fracture Location in Weld
- X-ray was not successful at rejecting all major defects
- PAUT has shown initial success at finding all classes of defects in SR-FSW

