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Abstract

NASA’s space data-communications infrastructure—the Space Network and the Ground Network —provide scheduled (as
well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates sev-
eral orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own service-
delivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the
world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth.
Scheduling data-communications events for spacecraft that use the NASA communications infrastructure—the relay satellites
and the ground stations—can be accomplished today with software having an operational heritage dating from the 1980s or
earlier. An implementation of the scheduling methods and algorithms disclosed herein will produce globally optimized sched-
ules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of
all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algo-
rithms, a class ofprobabilistic strategies for searching large solution spaces, is the essential technology involved in this disclo-
sure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation
algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of
scheduling the civilian and/or military data-communications infrastructure within the expected range offuture users and space-
or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and speci-
fiedformally. The generalized methods and algorithms are applicable to a very broad class of combinatorial-optimization prob-
lems that encompasses, among many others, the problem of generating optimal space-data communications schedules.

General Terms: Scheduling, Algorithm, Computing, Space

Additional Key Words and Phrases: System specification, space-data communications, radio frequency interference mitiga-
tion, combinatorial optimization, genetic algorithm, evolutionary programming, probabilistic search, data regression
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1. Introduction

1.1. Background on NASA
Data-Communications Scheduling

Scheduling data-communications events for spacecraft that
use the NASA communications infrastructure [25]—the re-
lay satellites [18] and the ground stations [7]—can be ac-
complished today with software having an operational her-
itage dating from the 1980s or earlier [10, 30] with empha-
sis on incremental and reactive scheduling [21]. Present op-
erational scheduling capabilities do not generate true opti-
mized schedules for reasons that will be explained below, but
can (when the option is invoked) generate schedules that are
free of radio frequency interference (RFI) effects by block-
ing out portions of the problem-solution space from consid-
eration whenever those portions appear with any predicted
RFI effects. Similarly, the current operational scheduling sys-
tem prunes away portions of the solution space upon encoun-
tering violations of the various other constraints that must be
satisfied. This approach, which perforce ignores large por-
tions of the solution space, necessarily means that schedule
optimization cannot be an actual achievable objective of the
current scheduling system.

Present space data-communications schedulers have
the capability of algorithmically generating sched-
ules using techniques for representing and exploring
the problem-solution space as either a graph or a tree of re-
lated sub-solutions. A number of standard algorithms
for searching a solution space represented as a graph or
tree are available. These, in general, operate by eliminat-
ing branches of the tree where constraint violations (e.g., un-
acceptable levels of RFI) are found (although any “slash
and burn” approach or any “branch and bound” tech-
nique has the undesirable consequence that it incorpo-
rates no mechanism by which to avoid discarding sections of
the tree that represent solutions that are better than any oth-
ers that can be found in the course of running the sched-
uler). NASA’s present operational scheduling system, using
such standard search methods, is capable of producing work-
able schedules, albeit with certain significant concessions to
the compute-intensive nature of the search (including cer-
tain problem simplifications that themselves, even ignoring
the performance of the search techniques, preclude the pos-
sibility of true schedule optimization).

1.2. Toward an Optimizing Scheduler

Current space data-communications scheduling sys-
tems, which lack a true schedule-optimization capability,
leave open the possibility that new methods for search-
ing the solution space might result in improved infrastruc-

ture performance and overall schedule-quality improvement,
bringing increased overall customer satisfaction.

Disclosed and specified herein are methods and algo-
rithms for an optimizing, constraint-satisfying, automated
scheduling system that potentially could be implemented
in NASA’s space-data-communications infrastructure. Con-
ceived and developed in the early 1990s, this is the first
known such system (i.e., methods and algorithms) that—

1. is capable of true schedule optimization considering
prescribed constraints such as mitigation of RF inter-
ference,

2. is specified rigorously, and

3. is implementable with adequate performance.

The system (the methods and algorithms taken together) ad-
dresses (a) the issue of performance and efficiency of
the communications infrastructure and (b) the impor-
tant space-mission operations-planning problem of op-
timizing data-communications schedules. The desired
optimization not only would include minimizing radio fre-
quency interference effects that can reduce achievable data
rates for space missions, but also would include accommo-
dating other prescribed constraints such as hours of operation
of mission control centers and anticipated or planned re-
source outages.

1.3. Incorporating RF Interference-Mitigation
Constraints

Practically all of the major emitters that produce RFI ef-
fects are known as to both location (or dynamic position
in space) and signal characteristics (frequency, power, signal
structure, polarization, etc.). There are many such sources of
RFI: ground-based radars, radio and television transmitters,
other spacecraft, and even cellular telephone service-provider
towers and their customers, among other emitters. (Individ-
ual cell phone users are each insignificant, but in the aggre-
gate, they represent an RF noise “floor” that can be charac-
terized, predicted, and mitigated in various ways.)

Beyond interference mitigation techniques (e.g., spread-
spectrum signal structures that are built into both the NASA
data-communications infrastructure and a user spacecraft’s
onboard hardware and software), various RFI-avoidance
mechanisms can be invoked during the process of schedul-
ing communications-service delivery to users. Some of
these mechanisms do not lend themselves to automa-
tion, while others are based on rules of thumb and problem
simplifications that, in general, do not promise the best pos-
sible schedules (in terms of optimizing user satisfaction
and service delivery by the data-communications infras-
tructure), even if automated. The former category (i.e.,
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manual mechanisms) does not represent practical ap-
proaches for NASA, but an automated mechanism in the
latter category (the application of rules of thumb and prob-
lem simplifications) has been used in NASA’s scheduling
system at least since the operational date of the Space Net-
work. The herein-disclosed algorithm represents a third
category of techniques for RFI avoidance in schedule gen-
eration: it poses no difficulty for automation, is not based
on rules of thumb (but, instead, closed-form calcula-
tions of interference effects), and supports schedule opti-
mization.

An optimizing scheduler that satisfies constraints on RF
interference requires prior RF analysis of the factors in-
volved in the delivery of data-communications services,
including the RF environment in which the communica-
tions occur as well as the user’s requirements and the spe-
cific characteristics of the user spacecraft. In the early
1990s, NASA’s Communications Link Analysis and Sim-
ulation System (CLASS) [8] fielded an interference anal-
ysis system [14]—the CLASS IAS. The CLASS software
is able to produce all of the auxiliary data needed as in-
put for the operation of an interference-mitigation scheduling
system (see Section 3.1 for a representative list of these in-
puts).

1.4. Concerning Processes, Methods, and
Algorithms

Although it represents one of the most essential concepts
in computer science, the term “algorithm”, perhaps surpris-
ingly, has no generally accepted technical definition 1 . Fur-
ther, definitions of “process” and “method” typically are non
technical and imprecise. Trying to identify, with accuracy,
distinctions between these three terms therefore would be ad-
venturous. However, for the purposes of this paper, we see (at
least minor) conceptual differences, and these differences are
reflected in the way the terms are used herein.

A process is “a series of actions or steps taken in order to
achieve a particular end”2.

A method, considered as a “process by which a task is
completed; a way of doing something” 3 , entails a list of steps
to be performed to accomplish an objective or intended re-
sult. An algorithm, of course, also includes a list of steps to
be performed. For the purposes of this paper, it is assumed
that every algorithm, but not every method, can be performed
mechanically, at least in principle. Consequently, every algo-

Wikipedia article entitled “Algorithm” at http://www.wikipedia.org/
(accessed 18 October 2009).
Oxford American Dictionaries accessed 28 October 2009.
Wictionary entry at http://en.wiktionary.org/  (accessed 28 October
2009).

rithm, but not every method, must be specifiable with preci-
sion sufficient to make it accurately implementable as a com-
puter program.

In this paper, we endeavor to adhere to the following
scheme: a sequence of steps or actions is said to be a(n)—

1. “Algorithm” when the steps are expected to be imple-
mented in and performed by a computer application and
the result of the completion of the sequence of steps is
representable as a data structure

2. “Method” when the goal of the sequence of steps is
broad or high-level and a human must perform at least
one of the steps

3. “Process” when each of the steps is definite and pre-
cisely specifiable, when a human must perform at least
one of the steps, and when the result of performing each
of the steps in the sequence is not necessarily repre-
sentable as a data structure

1.5. The Essential Technology Used in the
Present Disclosure

The algorithms and methods disclosed herein apply princi-
ples from the computer-science field of evolutionary search
and combinatorial optimization [2, 4, 9, 29] to solve the
problem of finding an optimal overall schedule [24, 31] that
(a) will satisfy user requirements for communications sup-
port from NASA’s communications infrastructure and (b)
will be consistent with NASA’s Space Network User’s Guide
(SNUG) [18] as well as the operations guidelines for the
Ground Network [7]. The quality of the schedules generated
by a computer application program that implements this al-
gorithm will be a monotonic function of the program’s ex-
ecution time. During the search for better and better solu-
tions, the best solutions found so far are retained and given a
chance to influence the generation of new, possibly better so-
lutions. When execution is terminated arbitrarily, the output
will be the best solution found so far during the run, and the
longer the run, the better the solution is expected to be. More
will be said regarding the notion of optimization (see Sec-
tion 2.4.7 (page 13)).

In the remainder of this paper, any mention of “the dis-
closed algorithm” will, depending on context, be understood
to mean “the disclosed methods and algorithms”.

1.6. Innovations Disclosed

The present disclosure incorporates well-known technolo-
gies, namely, genetic algorithms (evolutionary search) and
data regression. The primary contributions disclosed herein
are as follows:
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1. methods, algorithms, and processes for employ-
ing evolutionary-search technologies in an optimizing
scheduling system for the NASA space-data communi-
cations infrastructure;

2. a method and algorithm for optimizing the internal pa-
rameters of a genetic algorithm (specifically the algo-
rithms identified in item 1); and

a method and algorithm for deriving a function that,
given an arbitrary problem scenario in the problem do-
main identified in item 1, will, in a cost-effective man-
ner, return an estimate of the optimal values of the in-
ternal parameters of a genetic algorithm for solving the
given problem scenario.

The author is not aware of any other disclosures equivalent
to items 1, 2, or 3.

Further, the methods and algorithms disclosed in Ap-
pendix B (Section 11 (page 45)) generalize those in items
1, 2, and 3 above and are applicable to a very broad class
of problems. Many of the problems in this general class (re-
ferred to as problems of Type G) pertain to NASA and the
space program (e.g., the space data-communications schedul-
ing problem treated in the main body of this paper, as well as
space-mission design optimization and spacecraft-design op-
timization), but numerous other fields (particularly those re-
lated to design optimization, and, more broadly, virtually any
field where solutions cannot be specified directly but can be
evaluated as to “goodness”) are encompassed under the gen-
eralized problem of Type G as defined in Appendix B. Fi-
nally, the specifications of the methods and algorithms are
sufficiently rigorous and detailed to facilitate not only the
process of relating them to this broad class of real-world
problems, but also the process of implementing them in a
computer-application program.

1.7. Audience for the Present Disclosure

As indicated above, the main body of this paper concerns
a particular application (NASA space-data communications
scheduling), while Appendix B broadens the topic to en-
compass a very broad range of application domains. The
audience for the former would include groups responsible
for designing and implementing space-data communications
scheduling systems (or identifying appropriate technologies
that could be used in such systems), while for the latter the
audience would include practitioners generally and, espe-
cially, groups designing and implementing any system for
reaching optimal solutions for the generalized problem do-
mains of Type G as defined in Appendix B. Any interest in
this paper on the part of researchers and academics would
likely be limited to the possible application, described herein,

of well-known techniques from the field of evolutionary pro-
gramming, and from the field of data-regression generally.

1.8. Organization of Paper

Section 2 describes the scheduling-problem domain in terms
of the question of tractability and identifies a viable approach
to searching for optimal solutions. Such an approach (to the
author’s knowledge) has not been implemented or considered
for use in NASA’s space-data communications infrastructure,
which is the context (or, rather, the primary context) of the
present disclosure. Section 3 presents the assumptions under-
lying the specification of the disclosed algorithms. Section 4
defines general domain terms and specific notations used in
specifying the algorithm. The algorithm itself is precisely
specified in Section 5. Section 6 presents an additional algo-
rithm (also based on the principles of evolutionary search) for
optimizing the search itself—producing the optimal choice
of the values of the schedule-generation algorithm’s internal
parameters. In a further abstraction of the overall space data-
communications scheduling problem, Section 7 outlines ap-
proaches for determining a function by which to estimate the
optimal choice of the values of the schedule-generation al-
gorithm’s internal parameters, given a scheduling scenario.
The prototype implementation of the schedule-generation al-
gorithm and the internal parameter optimization algorithm
are briefly mentioned in Section 8. Concluding remarks are
given in Section 9. Section 10 (Appendix A) considers a pos-
sible model to describe the performance of the schedule-
generation algorithm, and describes a key insight afforded
by analysis of the model. Finally, Section 11 (Appendix B)
describes and specifies, in abstract terms, a broad class of
problems—one member of which is the scheduling problem
of the kind targeted by the methods and algorithms that are
presented in the main body of this disclosure—and discloses
and specifies generalized methods and algorithms for solv-
ing problems in this general class.

2. Space-Data
Communications-Scheduling
Problem Definition

2.1. Space-Data Communications Scheduling

2.1.1. Scheduling-System Objective.

In the overall data-communications scheduling problem, the
primary objective is to find a solution (i.e., a schedule) that
maximizes delivery of services to users according to their re-
quirements. 4
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The evaluation of candidate solutions will involve numer-
ous factors that will be described in subsequent sections. In
addition to various technical factors, the evaluation may also
reflect NASA policy-level considerations such as the relative
priority officially assigned to each spacecraft or mission.

2.1.2. Primary Factors Affecting Achievability of
Objective.

Numerous factors bear on the achievability of the primary ob-
jective. For example, all of the service-delivery assets in the
data-communications infrastructure are subject to outages,
both planned and unplanned. Planned outages result from
equipment maintenance and upgrade activities. Unplanned
outages are relatively rare and would include service in-
terruptions due to severe weather or natural calamities like
earthquakes. By definition, the process of searching for a so-
lution of the overall scheduling problem does not incorporate
unplanned outages.

2.1.3. Technical Factors Affecting Achievability of
Objective.

Technical factors, as well, bear on the achievability of the
primary objective. These factors include any phenomenon or
circumstance that potentially could measurably degrade data-
communications performance:

1. radio frequency interference

2. signal multipath interference

3. signal-to-noise ratio reduction by noise due to space-
craft charging 5 , antenna blockage, atmospheric effects,
rocket plume effects, etc.

The effects of all of these factors are dynamic, but they
can be predicted through link analysis and simulation tech-
niques [8, 14], given a user’s planned spacecraft orbit and at-
titude profile to enable the determination of the effects listed
above as items 2 and 3. Item 1 is determined by the num-
ber and characteristics (including the orbital parameters and
attitude profile) of all other spacecraft (not only US space-
craft but also the spacecraft flown by other nations). The pre-
dictability of the listed effects suggests that the process of
searching the solution space could be made more efficient

The possibility of requirements for cross communications (between user
spacecraft, or between infrastructure assets) has not been overlooked
and is not unimportant in the foreseeable future. Such requirements are
beyond the scope of the present disclosure, but could be included in fu-
ture adaptations of the methods and algorithms specified herein.
John Kennewell and Andrew McDonald, “Satellite Communications
and Space Weather”, Australian Government, Bureau of Meteorol-
ogy, Ionospheric Prediction Service Radio and Space Services, Space
Weather Agency web site, http://www.ips.gov.au/Educational/1/3/2  (ac-
cessed 20 August 2008).

if all candidate schedules at least avoided communications
events rendered useless by the above factors. This strategy,
described in general terms in [24, 32] in relation to space-
craft mutual interference, is an integral part of the algorithm
disclosed herein and is applicable in general to all other pre-
dictable phenomena and circumstances that potentially could
measurably reduce data-communications performance. Fol-
lowing this strategy, the herein-disclosed algorithm mitigates
these effects automatically and produces optimal solutions
of the overall scheduling problem. In the foregoing, the word
“spacecraft” should be broadly interpreted to include user as-
sets of other kinds (e.g., habitats or surface rovers).

2.2. Size of the Solution Space

2.2.1. Determining Factors.

It is instructive to estimate, or at least establish a lower bound
on, the size of the solution space for the data-communications
scheduling problem for some simple combinations of users,
user requirements, and service-delivery assets. Analysis of
simple scheduling scenarios leads naturally to a better appre-
ciation of how large might be the solution space for realis-
tic scheduling scenarios. For any given scheduling scenario,
the solution space comprises all possible schedules, each sat-
isfying at least one requirement of at least one user.

Each schedule consists of a set of communications events.
Each event represents partial satisfaction of a user require-
ment and is defined in terms of a number of parameters (most
of which will not be discussed further herein):

• start and end times for each forward link (when a NASA
support antenna is radiating signals to the user asset)

• start and end times for each return link (when the user
asset is radiating signals to the NASA support antenna)

• the frequency selection for each forward link

• the frequency selection for each return link

• the polarization of each forward link

• the polarization of each return link

• the data rate (or symbol rate) of each forward link

• the data rate (or symbol rate) of each return link

• pseudo-random-noise (PN) spread indicator for each
forward link

• pseudo-random-noise (PN) spread indicator for each re-
turn link

• NASA support-antenna selection for each forward link

• NASA support-antenna selection for each return link
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2.2.2. A Simple Example.

The start and end times for a scheduled event have a one-
second granularity and are represented as seconds of offset
from some prescribed epoch (usually specified as a reference
date such as 1 January 1970 that is “over the horizon” of past
time in the current context). For a normal two-week schedul-
ing period, there are 14 x 24 x 60 x 60 = 1, 209, 600 possible
values for a start or end time. The event-duration minimum
is nominally ten seconds and the duration maximum is nomi-
nally 80 minutes. For a given start time, there would be 80 x
60 — 10 = 4790 allowed intervals each representing a com-
munications event at the given start time without violating the
80-minute maximum limit or the 10-second minimum limit.
If a schedule had only a single communications event with
a single link for a given user during the two-week schedul-
ing period, with no other constraints, there would be approx-
imately 4790 x (1209600 — 4790/2) or 5.78 x 109 allowed
instantiations of the event without violating the 80-minute
maximum limit or the 10-second minimum limit. In a two-
week scheduling period, with nominal duration of 90 minutes
per orbit, there would be (14 x 24 x 60)/90 = 224 orbits. If
in a two-week scheduling period, the given user required one
single-link event in each orbit (see Figure 1), there would be
224 events in the schedule. In each orbit, there would be ap-
proximately 60 x (4790 x 10+4790 x 80/2) = 14,370, 000
possible events without violating the 80-minute maximum
limit or the 10-second minimum limit. The number of pos-
sible schedules—that is, the number of possible combina-
tions of the possible events (with exactly one event in each
of the 224 orbits) (ignoring other constraints)—would be ap-
proximately (1.437 x 107)224. Thus, for this trivial schedul-
ing scenario, the scheduling problem would have more than
101603 possible solutions. Even if the maximum allowed du-
ration of each event were reduced to 10 minutes, the cardinal-
ity of the solution space would still exceed 10 1450 . For per-
spective, consider this number in relation to the number of
neutron-size spheres that could be packed into a sphere the
size of the known universe—a number on the order of 10135.

2.2.3. A More Realistic Example.

The next factor bearing on the estimate of the size of the so-
lution space for the TDRSS scheduling problem is the con-
cept of the prototype event. A prototype event (to be defined
more exactly in Subsection 4.3 (Definition 54 on page 20)) is,
in general terms, a combination of data-communications link
activations for actual forward and return data flows by which
a user will accomplish various purposes, including forward
links for delivering commands, data, and software loads to
the spacecraft. Other purposes will pertain to returning data
via return links to the mission control center or to scientists.

orbit	 orbit
start	 end

0 10 20 30 40 50 60 70 80 90 minutes

I80-minute comm events

Ishorter comm events

Figure 1. Communications events placed rel-
ative to the 90-minute-orbit time line, as al-
lowed in the simple example scheduling sce-
nario. Three possible maximum-duration com-
munications events are shown, each with a dif-
ferent start time offset from the start of the
orbit. Three other possible communications
events are shown with different allowed du-
rations and start-time offsets. In the simple
example scenario, the user requires only one
communications event in the orbit.

Each of the links is defined in terms of parameters that spec-
ify data rate, frequency, polarization, support antenna, etc.
The specification of the values of these parameters, along
with the start and stop times in seconds of relative offset, and
the allowed tolerance in these offsets, makes up the defini-
tion of a prototype event.

If, in a given scheduling-problem scenario, a prototype
event has a required duration of 45 minutes and consists of
five links, each with five allowed choices of NASA service-
delivery antennas, and each with nominal duration of 10 min-
utes, start-time tolerance of three minutes, and duration tol-
erance of three minutes, then in comparison with the above
example (a single spacecraft requiring one event per orbit),
the size of the solution space (or its lower bound) would be-
come a much larger number. This number is roughly calcu-
lated by first calculating the number of possible instances
of each prototype event that could be instantiated for any
given prototype-event start time, and then calculating the
number of possible instantiations of the prototype event in
a given orbit. Allowing any start time that does not exceed
45— (10+3) = 32 minutes of offset from the prototype-event
start time, the number of possible instantiations of one of the
links (ignoring the choices for service delivery antenna) is
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60 x 32 x 60 x ((10 + 3) — (10 — 3)) = 691200. Allowing
any start time offset between 32 minutes and 45 — (10 — 3) =
38 minutes from the prototype-event start time, the num-
ber of possible instantiations of one of the links (ignoring
the choices for service-delivery antenna) is approximately
60 x (38 — 32) x 60 x ((10 + 3) — (10 — 3))/2 = 64800.
The minimum allowed duration of a link represents a con-
straint to ensure that a link is not allowed to start with an
offset of more than (in the present example) 38 minutes.
Thus, for a given instantiation of the prototype event, the to-
tal number of allowed instantiations of one of the links (ig-
noring the choices for service-delivery antenna) would be
691200 + 64800 = 756000.

To simplify calculations and yet establish a lower bound
on the number of possible instantiations of the given proto-
type event, assume there is only one allowed start time for
a prototype event in each orbit (although, typically, the al-
lowed start time for a 45-minute prototype event would be
any time in the first 45 minutes of the 90-minute orbit, so
that there would be 2700 different allowed start times in
each orbit). Then the number of possible instantiations of
the prototype event per orbit—each instantiation being an al-
lowed combination of five prototype-event links—would be
7560005 = 2.469 x 1029 . Therefore, the number of possi-
ble combinations of prototype events in the 224 orbits in the
scheduling period would exceed (1029 ) 224 = 106496.

Thus, with consideration of all possible solutions allow-
ing all possible combinations of prototype events for multi-
ple users, with all possible combinations of allowed choices
of data rate, frequency, polarization, support antennas, etc., it
quickly becomes apparent that the solution space for a real-
istic scheduling scenario would be much larger yet.

2.2.4. Possible Approach to Reducing the Size of the
Solution Space.

A reduction of the size of the solution space could be real-
ized by increasing the granularity of the allowed start times
and durations for events. For example, one might allow only
even-numbered seconds of offset from the prescribed epoch.
At best, this would reduce the size of the solution space in the
above simple example by a factor of ( 2-5 ) 224 = 2- 1120, or
10-337 , from 106496 to a number that yet still exceeds 106159.

Such an approach, if it results in a significant reduction in the
size of the solution space, will not effect a tractable prob-
lem without at the same time effectively eliminating the pos-
sibility of finding optimal solutions. Making optimal solu-
tions less likely (or impossible) to be found does not repre-
sent an attractive characteristic of an approach for reducing
the size of the solution space: enabling worse solutions to be
found faster presents a dubious gain.

Prototype event

start	 end
0	 15	 30	 45 minutes

Figure 2. An example prototype event for
the more realistic example communications
scheduling scenario. The user’s specification
for a prototype event requires five links estab-
lished and completed between the start time
and end time of the prototype event. Each link
has allowed tolerances on start time and du-
ration, and has one of five allowed service-
delivery antennas assigned to it (e.g., the
TDRS-5 SA2 antenna). The user requires that
an instance of the prototype event is to be
scheduled relative to some prescribed mis-
sion event (e.g., the start of an orbit), with
some prescribed tolerance on the start time.

2.3. Alternative Approaches

2.3.1. Brute Force and Constructive Techniques.

From the very large size of the solution space—even for
very simple scheduling scenarios as trivial as the above
examples—it becomes clear that the feasibility of finding op-
timal schedules will depend on the feasibility of a method
that does not rely on brute-force search (i.e., a search strat-
egy that requires the examination/evaluation of every possi-
ble solution (i.e., every possible schedule)). Inescapably, only
an exceedingly large number could represent the size of the
solution space for real-world scheduling scenarios for the ac-
tual users of NASA’s space data-communications services,
and the idea of examining all of the possible solutions is un-
tenable without resorting to some truly exotic method, such
as the yet-to-become-practical idea of quantum computing.
The general problem of creating optimal schedules to satisfy
users’ data-communications requirements cannot be solved
using a single, general prescriptive formula, nor with brute-
force search through the solution space, even with power-
ful computers (possibly excepting future quantum comput-
ers) and the most sophisticated graph or tree-traversal algo-

4	 TDRS-8 MA
4TDRS-5 SA2
4 TDRS-8 SA1
4TDRS-5 SA1
4TDRS-5 MA
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rithms (such as the A* algorithm [3, 21] (not to be confused
with the set of all antenna IDs (Definition 37 (page 18)))).
From the foregoing examples, it will have been seen that the
general optimal-solution search problem cannot be attacked
with such approaches.

However, workable solutions can be generated with the
techniques that are in use in the current operational schedul-
ing system, and these solutions are free of violations of con-
straints (e.g., RF interference, if this option is activated in the
scheduler). However, there is no expectation that the current
approach will produce solutions that are near optimum. Fur-
ther, since an optimum solution (in the absolute sense) would
necessarily remain unknown, it cannot be determined how
nearly optimum these found solutions might be (and even
if an upper bound on the difference could be calculated, it
would be without benefit, since the approach of the present
operational system offers no way to use the information to
produce better schedules).

2.3.2. Necessity of Special Search Techniques.

From the foregoing, it becomes a convincing proposi-
tion that neither a brute-force strategy nor the approach
of the current or any previous NASA scheduling sys-
tem can offer the possibility of discovering an optimal
solution for realistic scheduling scenarios: other tech-
niques are required. While brute-force search performed us-
ing quantum-computing techniques might be explored
in the future, a more immediately available approach is
worth considering for the interim. Research and applica-
tion experience since the 1980s has resulted in establish-
ing the viability of probabilistic search strategies for certain
types of optimization problems that have very large solu-
tion spaces. In particular, genetic algorithms [2, 4, 9, 29]
(or, more generally, evolutionary algorithms) have been
successfully applied to scheduling and planning prob-
lems [1, 5, 12, 16, 27, 28, 31]. While other probabilis-
tic search strategies (under the heading of data-regression
techniques) are invoked at a high level herein (see Sec-
tions 7.2 and 11.5.2), their detailed treatment is beyond the
scope of this disclosure.

2.4. Evolutionary Search

2.4.1. Genetic Algorithms.

Genetic algorithms belong to a well-studied class of algo-
rithms abstractly inspired by biological selection and gen-
eration, individual inheritance and mutation, species adapta-
tion, species survival, and fitness [11]. Both in the algorith-
mic realm and in biology, selected individuals in each gener-
ation mate and produce offspring. The offspring have some
but not all of the traits of their parents, and in fact have new

traits as a result of genetic crossover and mutation. Individ-
uals die and make way for individuals in the new genera-
tion, who will survive better or not, depending on their fitness
for survival in their given environment—which environment
will favor the more-fit individuals with more power to pro-
duce offspring for the next generation. Over successive gen-
erations, the principle of “survival of the fittest” implies the
expectation that the survival of individuals will improve over-
all, i.e., the average fitness of members of the population will
improve progressively.

2.4.2. Representations of Solutions of the Scheduling
Problem.

The present disclosure invokes the principles of genetic algo-
rithms to attack the problem of scheduling space-data com-
munications, with the incorporation of the further, secondary
objective of minimizing the effects of RF interference in the
optimization. (This further, secondary objective represents a
primary example of the general constraint-satisfying capa-
bilities of the disclosed algorithms and methods.) Under the
conceptual description given above, a solution, by definition,
is a schedule, and each member of each generation is a sched-
ule to be evaluated for its fitness to survive into, and produce
offspring for, the next generation. Each schedule itself would
be represented as a data structure in computer memory, and
essentially is a list of communications events each of which
at least partially satisfies a user requirement for communi-
cations services. The data structure that represents the whole
current generation lists individual members of the generation.
The data structure for an individual is subjected to evaluation
by a fitness function that determines the individual’s surviv-
ability or fitness, i.e., the degree to which the individual mea-
sures up to prescribed criteria.

2.4.3. Processes for Selection and Creation of Working
Population Members.

The fitness function is the essence of the problem to be
solved by the genetic algorithm and remains unaltered for
the duration of the entire search for a solution. Each member
(i.e., each schedule) of a given generation would have a fit-
ness score determined by the prescribed fitness function. In
each generational cycle, to prepare a new generation, a pre-
scribed process (sub-algorithm) operates to perform a selec-
tion of individuals (schedules) to survive into the new gen-
eration and/or to be used to generate offspring. Another pre-
scribed process (sub-algorithm) then (a) creates the offspring
of the selected individuals by mathematically transforming
and combining their traits (i.e., the values in the data struc-
ture representing an individual), and (b) adds new members
using an algorithm for randomly generating new schedules,

11
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to effect the probabilistic exploration of the entire solution
space. The probabilistic nature of the exploration arises from
the use—during the execution of both the selection process
and the new-member-creation process—of random-number
generators in the computing platform on which the genetic
algorithm executes. More will be said in Section 2.4.9 con-
cerning random numbers in relation to the algorithms dis-
closed herein.

2.4.4. Principle of Operation of Genetic Algorithms.

Operation of the genetic algorithm begins with the creation
of an initial population of some size. The manner in which
the members of the initial population are generated can af-
fect the search progress, although the nature of the algorithm
tends to diminish the effect over the course of the search. A
new generation results from applying a variety of mathemat-
ical transformations not only to individuals (i.e., their data
structures), but also to pairs of individuals in the current gen-
eration, which each will already have been evaluated by the
fitness function during the process of selecting the members
of the previous generation to compose the current generation.
The more-fit individuals, being relatively favored (and, con-
sequently, more likely themselves to persist for multiple gen-
erations), will have relatively more offspring than will result
from less-fit individuals. However, randomly selected indi-
viduals will also produce offspring at some rate, and new in-
dividuals created by a random process are also introduced
into the population at some rate. The new generation will
then undergo the same process of evaluation and transforma-
tion to result again in a new generation. After some number
of repetitions of the foregoing generational process, the cur-
rent generation will, with some likelihood, include individu-
als that are more fit than the best members of any previous
generation. Eventually, after many generations, the expecta-
tion is that an additional iteration of the evolutionary search
process will have a vanishingly small likelihood of produc-
ing further significant improvement of the best individuals
of the new generation over those of the previous generations
(see Footnote 6 (page 42)).

2.4.5. Progress of Evolutionary Search.

After an expected initial rapid improvement in the fitness of
the best individuals, each successive generation will see, on
average, less and less improvement. There occasionally can
be sharp improvements from one generation to the next. Such
improvements can occur by virtue of the probabilistic nature
of the genetic algorithm-based search strategy: occasionally,
during the search, a newly created individual (schedule) will,
by chance, be much better (as evaluated by the fitness func-
tion) than any other individual found earlier in the search. In

this way, the algorithm can find and explore another region
with a local minimum/maximum—which, with some prob-
ability, could be the global minimum/maximum. However,
the search effort/time required to produce significant new im-
provement in the best individuals eventually will become un-
tenable. Ultimately, the search must be terminated and the
best individual (or rather one of possibly multiple individ-
uals having the same best value of the fitness score) would
then be used as the search result—with no guarantee, how-
ever, that this solution is in fact the absolute best, and, fur-
thermore, with no good way to show that it is not.

Exploration of the solution space using a genetic algo-
rithm may entail certain difficulties that have been described
in the literature, e.g., “premature convergence” and “genetic
drift”. A determination of the degree to which such diffi-
culties might be present in the disclosed methods and algo-
rithms has not been undertaken and is beyond the scope of
this paper. However, the disclosed methods and algorithms
include the S O Algorithm (Section 6 (page 34)) that directly
addresses these issues, effectively “tuning” the genetic algo-
rithm that finds an optimal solution for a given space-data-
communications-scheduling problem scenario. Further, Sub-
section 11.4 (page 49) presents methods and algorithms that
effectively address similar issues relative to solving the gen-
eralized problem.

2.4.6. Effect of Internal Parameters of the Genetic
Algorithm.

A genetic algorithm, in the general case, has internal param-
eters that affect the efficiency and effectiveness of the search,
including—

• the size of the initial population

• the size of subsequent generations

• the proportion of each generation that is selected ran-
domly for survival into the next generation

• the number of offspring produced by selected individu-
als

• the number of randomly created individuals added to
each new generation

• the mutation rate, (i.e., the number of new members cre-
ated in each new generation via the mutation mecha-
nism)

• the crossover rate, (i.e., the number of new members
created in each new generation via the crossover mech-
anism)

• the number of “gene” crossover points (where “gene”,
informally, refers to values in the data structure that
specifies an individual member of the population

12
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It is natural to ask how best to set the values of the internal
parameters when the objective is to run an implementation of
the algorithm and achieve the greatest possible degree of ef-
fectiveness and efficiency in generating an optimal solution
to the scheduling problem. Some understanding of the effect
of different combinations of the possible values of the param-
eters can be gained through systematic experimentation—
testing different combinations to reveal how they affect the
efficiency and effectiveness of the search process. Such a pro-
cess, if performed manually, would be time consuming and
tedious. It also might present conceptual and theoretical dif-
ficulties relative to drawing reliable conclusions.

By asking what might be the best combination of the val-
ues of the internal parameters, one then sees another, some-
what more abstract optimization problem. The author’s im-
plementation of the unpublished predecessor of the herein
disclosed algorithm included the use of a genetic-algorithm
approach to solve this problem as well, to derive an optimal
combination of those values. Details of this optimization ap-
proach are found in Section 6 for the schedule-generation al-
gorithm to be presented in Section 5 and (relative to the gen-
eralization of the algorithms and methods that will be pre-
sented in the main body of this disclosure) in Appendix B
(Subsection 11.4 (page 49)).

2.4.7. Fitness Functions, Minima, Maxima, and Optima.

The fitness function applied to an individual (i.e., a sched-
ule) in a given generation will produce a numerical value.
In principle, the fitness score could be determined for ev-
ery schedule in the entire solution space. If this were done, a
kind of hypersurface (representing the fitness score (the de-
pendent variable) as a function of the schedule (the indepen-
dent variable)) could be constructed and analyzed mathemat-
ically, and could be visualized as having contours, peaks, and
valleys. The visualization of the function would also exhibit
discontinuities resulting from, for instance, the discreteness
of the allowed values for many of the parameters in the def-
inition of a communications event. The sheer magnitude of
the size of the solution space makes such a surface infeasible
to construct, but the very class of probabilistic exploration al-
gorithms we are concerned with in this disclosure could (if
desired) even be used to approach the question of character-
izing how “nice” the hypersurface is. In any case, the dis-
closed algorithm is well suited to exploration of the whole
solution space, “nice” or not.

The essence of the optimization question pertains to find-
ing the global maximum (or the global minimum, depending
on how the fitness function is defined) of the search space.
No known practical method exists to reach an “absolute” an-
swer to this question for the general case. At this time, no
other available method has been shown to surpass the re-

sults that can be attained through a method based upon evo-
lutionary (probabilistic) search: no known non-probabilistic
method for addressing the general scheduling problem has
been shown to be capable of surpassing the results that can
be attained using available probabilistic search methods.

The term optimizing, as applied to the algorithms de-
scribed herein, reflects this aspect of directed, iterative prob-
abilistic search, where the search space is probed by a ran-
dom process to find more and more minima/maxima (local
as well as global), and by another process that gives each
of the best candidate solutions from the current generation a
chance to have “children” that are still more fit as solutions
to the scheduling problem.

In general, the nature of the problem, with its extremely
large solution space, leaves open the possibility that, at the
termination of any arbitrarily long run of the application pro-
gram on a computer, a “better” solution might have been
found by letting the application produce just one more gener-
ation. When the run is terminated, the best solution found is
considered to be optimized in terms of the probabilistic cov-
erage of the entire search space. This is the primary sense in
which the term “optimal” is used in this disclosure, but there
is, in a practical vein, an additional consideration, namely, the
cost of the process of searching through the solution space
for the best possible solution. Absent any limit on the speed
or storage capacity of computing resources, there would be
no trade-off between solution quality and search time. Actual
limits on computational speed and storage will necessarily
mean that, for any computer application that solves the kind
of optimization problems addressed herein, solution optimal-
ity will be directly related to the duration of the run of the ap-
plication, which can never be unbounded. Thus, the designa-
tion of “optimal” implies that enough computing power has
been applied to reach a point where the law of diminishing re-
turns (or at least a similar principle; see Footnote 6 (page 42))
would mean that a relatively large additional search effort
would not have any significant expectation of improvement
in the best solution found to that point. Conversely, if such a
point has not been reached, then nothing can be asserted as
to the optimality of any solution found.

An unavoidable issue arises from the above discussion—
the question whether it could be determined in advance what
computing resources would be sufficient to reach the point
described in the preceding paragraph (i.e., the point where
it would be legitimate to declare that no reasonable addi-
tional search time would provide any reasonable expecta-
tion of significant improvement in the solution found). No
known method can answer this question, except the em-
pirical method, i.e., experimentation, although the kind of
algorithm-performance modeling described in Appendix A
may afford additional insights.
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2.4.8. Metrics for Evaluation of the Scheduling System.

Possible metrics to evaluate a scheduling system include
(a) determining the percentage utilization of service-delivery
assets (e.g., TDRSS antennas) and (b) assessing the de-
gree of satisfaction of customer requirements. The current
NASA scheduling system, based on constructive techniques
or graph-search techniques, does not incorporate a strategy
for constructing solutions that will directly optimize these
metrics. The herein disclosed algorithm, incorporating some
of the various possible metrics, lends itself to incorporation
of a wide range of possible combinations of metrics to meet
future goals for overall infrastructure performance. However,
a full discussion of the possible metrics for evaluating the
scheduling system is beyond the scope of this disclosure.

Directly comparing the current operational system with
one following the present disclosure might be accomplished
by evaluating schedule quality using the herein disclosed fit-
ness function (see Definition 103 (page 28)) or a combination
of its constituent submetrics (e.g., the function satisfied* (see
Definition 101 (page 28)), which measures the degree of sat-
isfaction of data-return requirements of all users.)

2.4.9. Random Numbers and Their Role.

Random numbers play a crucial role in the probabilistic
search strategy and algorithms embodied in the present dis-
closure, including the schedule-generation algorithm (Al-
gorithm 1 (page 32)) and the S O algorithm (Algorithm 2
(page 32)), as well as algorithms in Appendix B (Section 11
(page 45)).

It is noted that “random” numbers are generated by spe-
cial software or hardware on the platform that constitutes
the computing resources on which an implementation of the
herein disclosed algorithms will run. On typical platforms,
the random-number generator implements a special algo-
rithm that can be configured with a “seed” as the starting
point for calculations to produce a random number. Repeata-
bility of results can be assured by selecting the same seed
for repeated runs—which is a feature that supports applica-
tion software testing and debugging. The generated random
numbers are not truly random, which is a well recognized as-
pect of all known algorithms for generating random numbers.
Interestingly, characterizing the difference between the out-
put of random-number generators and the output of true ran-
dom processes is not a settled matter, necessarily involving
arcane argumentation.

The fact that the generally available random-number gen-
erators do not produce “true” random numbers does not in-
validate their use in ordinary applications (such as the one
described in this disclosure), where their use is generally ac-
cepted. We accept the proposition that the use of a true (or at

least the best possible) random-number generator would not
improve the results or performance of a system that imple-
mented the algorithms disclosed herein.

3. Communications-Scheduling
Assumptions

3.1. Necessary Input Data

The disclosed method and algorithm assume the availability
of inputs from a computational resource that provides the fol-
lowing information:

• predicted user-communications view periods relative to
each NASA support antenna

• user-spacecraft orbit start and end times, with orbit
numbers

• start and end times for intervals during which the user’s
Project Operations Control Center (POCC) (or, synony-
mously, Mission Operations Control Center (MOCC))
is in operation

• start and end times for other relevant mission events
(user-spacecraft sunrise, user-spacecraft-over-land,
etc.) whenever there are active user requirements that
specify any relationship to such events

• potential-interference intervals (predicted intervals dur-
ing which RF signal interference would prevent NASA
from satisfying a particular user requirement or request
for communications services)

• intervals of predicted user-antenna blockage and multi-
path interference with respect to each support antenna,
based on planned user-spacecraft attitude profiles

• outage intervals (predicted/planned intervals dur-
ing which service-delivery resources will be unavail-
able)

Such a computational resource, the Communications Link
Analysis and Simulation System (CLASS) [8, 14, 19], has
been in operation at the NASA Goddard Space Flight Center
since the early 1980s. The CLASS system was used in gener-
ating input data for runs of the prototype implementation of
the predecessor of the disclosed algorithm, which implemen-
tation is described in Section 8.1.

3.2. Scope Limitations

3.2.1. Two-Week Scheduling on a Weekly Cycle.

NASA’s present operational scheduling system per-
forms the scheduling function on a weekly basis for a
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two-week scheduling period. The second week of the pre-
viously generated two-week schedule becomes the first
week of the new two-week schedule and is adjusted by the
scheduling system to reflect updated or revised informa-
tion concerning user requirements, planned outages, and
other factors. The second week is scheduled afresh. Al-
though it was not a design goal of the algorithm disclosed
herein, it could be revised to provide this rescheduling func-
tionality. However, it may be appropriate to reconsider the
need for a two-week scheduling cycle when a new opti-
mal schedule could efficiently be generated weekly (or
on demand) by means of the method and algorithm dis-
closed herein.

3.2.2. Dynamic Rescheduling.

Although NASA’s present operational scheduling system can
perform rescheduling under dynamic operational conditions
(where, for example, a spacecraft has a declared emergency,
or a service-delivery resource has an unplanned outage),
rescheduling is not considered herein and does not corre-
spond to a design goal of the disclosed algorithms. Further
discussion of dynamic rescheduling is beyond the scope of
the present disclosure, but it has not been seen to present
technical difficulties in a possible revised version of the dis-
closed methods and algorithms.

3.2.3. Near-Earth Communications Environment.

NASA has been pursuing goals for crewed (as well as new
un-crewed) missions that may be developed to explore the
Moon and Mars over the next several decades. Such mis-
sions crucially depend on adequate communications involv-
ing RF links between the Earth and numerous remote as-
sets including the mission vehicles and habitats. The future
evolved infrastructure to provide the needed communications
capabilities is in the early stages of definition, but is likely
to have considerable similarities to the current space data-
communications infrastructure serving near-Earth missions.
For example, it is likely to have capabilities for “demand ac-
cess” as well as a large reliance on scheduled communica-
tions events, where infrastructure support antennas and as-
sociated equipment would be scheduled to be configured to
support user assets. While it was not a specific design goal
to include the non near-Earth infrastructure in the disclosed
methods and algorithms, the essential concepts already em-
bodied in the present near-Earth infrastructure would con-
tinue to be applicable. The one major issue that would need
to be addressed for the non near-Earth infrastructure pertains
to RF signal latency due to the large distances involved, es-
pecially between the Earth and Mars.

4. Definitions

4.1. Basic Space-Data-Communications
Definitions

CLASS— Communications Link Analysis and Simulation
System. CLASS is a software system developed, main-
tained, and operated at NASA Goddard Space Flight
Center for the purpose of supporting all aspects of space
communications including spacecraft and communica-
tions infrastructure design and operations. (See Subsec-
tion 1.3 (page 5) and Section 3.1 (page 14).)

Communications View Period— A time interval dur-
ing which a given NASA service delivery antenna
is capable of being pointed toward a given user as-
set (spacecraft, rover, etc.), with a clear RF path that
will permit data transfer using radio signals that have
prescribed characteristics (frequency, power, polar-
ization, etc.). (See formal definition of M (and the
explanation), Definition 47 in Subsection 4.3, page 19.)

Epoch— A date and time specified precisely and used as
a reference time to specify later points in time as off-
sets from the epoch. For example, a NASA mission may
specify time as seconds of offset from the epoch date
and time of 00:00 Hours on 1 January 1970.

Forward— The direction of data flow from a NASA sup-
port antenna to a user asset (spacecraft, rover, etc.).
(Note that this definition may admit some ambiguity
under various operational circumstances using particu-
lar protocols (e.g. “acknowledgment” protocols as used
in standard communications networks). The term is es-
sentially meaningless in the context of two-way voice
communications over a space communications link.)

Link— An established RF connection between a transmit-
ter and receiver configured with compatible signal fre-
quencies, polarization, framing, coding, and data for-
mats, with sufficient received signal power to enable
data transfer. The description of such a connection.

MA— Multiple Access; identifies the electrically “steer-
able”, phased-array antenna on a TDRS spacecraft. See
definition of SA. MAF/MAR: MA Forward/Return.

MOCC— Mission Operations Control Center. A facility
housing personnel, equipment, software systems, and
other resources, with necessary communications inter-
faces with external entities, for the control and opera-
tion of a space mission. Synonymous with Project Op-
erations Control Center (POCC).

Outage Interval— A planned or anticipated interval during
which a service-delivery resource will not be in service.
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This includes intervals designated for equipment main-
tenance, upgrade, or calibration. (See formal definition
of O, Definition 40 in Subsection 4.3, page 18.)

POCC— Project Operations Control Center. Synonymous
with Mission Operations Control Center (MOCC).

Potential Interference Interval— A predicted interval dur-
ing which unacceptable RF interference would affect
signals received by either a user antenna or a service-
delivery antenna. (See formal definition of I, Defini-
tion 50 in Subsection 4.3, page 19.)

Priority— A NASA-assigned numerical value that estab-
lishes the order of precedence of a given user relative
to others, for the purpose of determining which of any
two users will have precedence whenever they are in dy-
namic contention for NASA communications services.
(See formal definition of Φ, Definition 51 in Subsec-
tion 4.3, page 20.) The priority value is increased when
a user has a declared contingency (e.g., the unexpected
failure of a gyroscope on a spacecraft), although such
a circumstance is not relevant for a scheduler, since by
definition a declared contingency is not planned.

Return— The direction of data flow from a user as-
set (spacecraft, rover, etc.) to a NASA support antenna.
(See remark under “Forward” regarding ambigu-
ity of the term in certain circumstances.)

SA— Single Access; refers to the two steerable dish an-
tennas on a TDRS spacecraft. See definition of
MA. KSAF/KSAR: K-band SA Forward/Return.
SSAF/SSAR: S-band SA Forward/Return.

Schedule— A collection of communications support events
placed on a time line for a given time period (typically
two weeks) and identified by a set of parameter values
that enable the NASA communications infrastructure to
be properly configured to provide communications ser-
vices to users. (See formal definition of O in Subsec-
tion 4.3, page 23.)

User— A spacecraft or (depending on context) its as-
sociated mission project that is authorized and
properly configured to make use of NASA space
data-communications services. A user can also be a
rover on the surface of the Moon, or a special de-
vice on the Earth’s surface designed to enable calibra-
tion of TDRSS ranging capabilities. An example of a
user is the Hubble Space Telescope.

User Requirement (or User Request)— A specification of
data-communications services needed by a user. Such
a specification can be either specific or generic. Spe-
cific requirements give start time and end time either
as absolute times (e.g., as a date and time in the Ju-
lian calendar or as seconds of offset from a prescribed

epoch) or as seconds of offset from a prescribed mission
event (e.g., spacecraft sunrise in orbit number 694). A
generic requirement represents a repeating support ser-
vice, with start and end times always defined in terms
of a repeating mission event such as spacecraft sunrise.
For both specific and generic requirements, the specifi-
cation refers to some user-defined prototype communi-
cations event (see formal definition of C, Definition 54
in Subsection 4.3, page 20), which defines the commu-
nications links required for each instance of the event,
along with other relevant parameters.

4.2. General Notation

The formal specifications of the herein disclosed algorithms
depends on precise mathematical notation (in particular, set-
builder notation) involving a number of general terms and
symbols defined as follows.

Definition 1: • (pronounced “bullet”) is a placeholder sym-
bol representing any allowed value in the indicated place in a
formula or expression, without regard to which allowed value
might be chosen.

Definition 2 (Universe): Q is the universe of discourse, i.e.,
the set of all objects that can be a member of a set defined in
the present disclosure.

Definition 3 (Empty Set): Ø denotes the empty set, i.e., the
set that has no member.

Definition 4 (Set of All Integers): Z is the set of all integers.

Definition 5 (Set of All Nonnegative Integers): N is the set
of all nonnegative integers.

Definition 6 (Set of All Positive Integers): N+ is the set of
all positive integers.

Definition 7 (Cardinality): VQ C Q, I Q II denotes the cardi-
nality of Q (i.e., the number of members of Q). n = IIQ II

n E N and Q has exactly n members.

Note that IIØ I = 0.

Definition 8 (Set of All Finite Sets):
QF C P(Q) E) Q E QF #^Eln E N E) IIQII = n.

QF is the set of all finite sets.

Definition 9 (Cartesian Product): VA, B C Q, the Cartesian

product A x B =
{ 

(a, b) : a E A, b E B
}

, i.e., A x B is

the set of all ordered pairs (a E A, b E B ) . VQ C Q, Q2 =
Q x Q. [Q C Q , 2 <n E N] #. Qn = Q x Qn- 1 .

Definition 10 (Function): VA, B C Q, f is said to be a func-
tion from A to B, denoted by f : A -+ B, if and only if
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f C_ A x B E) (a, b) , (a, c) E f #- b = c. A function is con-
sidered to be a mapping from a domain to a codomain. If
f is a function, dom(f) denotes {a : (a, •) E f }, the do-
main of f, and codomain(f) denotes {b: (•, b) E f }, the
codomain of f.

Definition 11 (Set of All Functions From Y to X):

dX, Y C_ Q, XY = { f : [ f : Y -+ X] }, the set of all

functions from Y to X.

Note that in some contexts (when either X or Y is not a set),
the meaning of XY differs (e.g., see Definition 57 (page 21)).

Definition 12: df E XY , dg E ZX , g o f E ZY .
The symbol o (read as “circle” or “composed with”) denotes
“function composition”, representing the process of using the
output of one function as the input to another. In performing
the process for a given value a in Y (the domain of f), the
function f is used to obtain the value f (a) (a value in X (the
codomain of f)), and this output from f is used as the in-
put to the function g (whose domain is X) to obtain the value
g (f (a)), which is a member of Z, the codomain of g. Thus,
g o f is a function mapping Y to Z.

Definition 13 (Power Set): dQ C_ Q, V (Q) denotes the
power set of Q, i.e., y E V ( Q) ⇔ y C_ Q.

The power set of Q is the set of all subsets of Q.

Definition 14 (Set Difference): dQ C_ Q, dA C_ Q, Q\A =
{x E Q: ^x E A}, the set of members of Q that do not be-
long to A.

Q\A denotes set difference.

Definition 15: rndint: Z x Z -+ Z E) i, j E Z, i < j #-
rndint( i, j) is a random integer in the closed interval [i, j] .

rndint is a “pseudo-function” in the sense that, in any two in-
vocations for the same arguments, it does not necessarily re-
turn the same result, assured by the use of a randomizing
mechanism in the processing system on which the applica-
tion is running.

A further note concerning functions is in order: except
when a “pseudo-function” like rndint is involved, the mem-
bers of the mapping (the ordered pairs) are fixed.

Definition 16 (Set of All Closed Intervals):
Z̄ =

{
i : Ela,b E Z E) a < b and i =[a,b] } .

Z¯ is the set of all closed intervals having integer endpoints
belonging to Z.

Definition 17 (Left-Most and Right-Most Points of an Inter-
val): d,q = [a, b] E Z̄,,q_ = a and ,q+ = b.

Definition 18 (Ordering Relation for Intervals):
d,q, β E ¯Z ,,q< β ⇔ ,q+ < β_ .

This is the ordering relation for intervals.

Definition 19 (Ordering Relation for Sets of Intervals):
dA, B E V(Z̄), A < B ⇔ [ ,q E A, β E B#- ,q< β

^
.

This is the ordering relation for sets of intervals.

Definition 20 (Sequence): s is said to be a sequence if and
only if

s E QN E)

1. Ela E Q E) (0, a) E s and

2. (j E N+ , •) E s #-Ela E Q E) (j − 1 , a) E s .

Note that the first element of a sequence has index value
0, and that no index value between the first and the last is
skipped.

Definition 21: For each sequence s, if (i, a) E s, then a is
denoted by si , s [i ] , or s (i ) .

Definition 22: For each finite sequence s,

1. the number of elements of s is denoted by len(s) and

2. s is represented as (s0 , s1 , ... , sn_1 ), where
n = len( s ).

Definition 23 (Tuple): dn E N+ , q is said to be an n-tuple
if and only if q is a list of objects indexed by their position
in the list, where the first element of the list has index value
1, the second element has index value 2, etc., and the last has
index value n. An ordered pair is a two-tuple.

An alternative, and equivalent, representation for an n-tuple
(q1 , q2 ,. .. , qn) would be the sequence (s0 , s 1 , ... , sn_1) ,

where di E {1 , 2, ... , n} , si_1 = qi .

Definition 24: dQ C_ Q, dn E N+ , n > 1, Qn de-
notes the set of all n-tuples (q1 , q2 , ... , qn ), where
di E {1 , 2, ... , n} , qi E Q.

Definition 25 (Subsequence): The sequence t is said to be
a subsequence of sequence s if and only if Elr C_ s, El a se-
quence q E rN E)

1. 
[(

i, (m, a)
)
, (i + 1, (n, b)) E q] #-

(a) m < n and

(b) ^ [El (k, c) E r E) m < k < n] and

2. t = { (i, v) : El (m, v) E r E) (i, (m, v )) E q} .

Definition 26 (Set of Sequences of Members of a Set With-
out Repeats): Ξ* : V (Q) -+ V(QN) E)

dQ E V (Q), s E Ξ* (Q) ⇔ s is a sequence E)

1. (•, a ) E s #- a E Q and

2. (i, a ) , (j, a) E s #- i = j.
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For each set Q, the function °' defines the set of all possi-
ble sequences of (not necessarily all) members of Q, with-
out repeats, i.e., if s E °' (Q), then no member of Q appears
twice in s.

Definition 27 (Set of Sequences of Members of a Subset of
a Set Allowing Repeats): °'' : V (Q) -+ V(QN ) E)

VQ E V (Q), s E °'' (Q) #. s is a sequence E)
R•, a) E s #. a E Q] .

Definition 28 (Set of Sequences of All Members of a Finite
Set Without Repeats):

°:QF -+ V(QN ) E) VQ E QF , s E °(Q) ⇔
s is a sequence E)

1. len(s) = Q and

2. a E Q ⇔ El (•, a ) E s .

For each finite set Q, the function °(Q) defines the set of the
sequences of all of the members of Q.

Definition 29: rndmember: QF -+ Q E)
VQ E QF , Elξ E °(Q) E)
rndmember(Q) = ξ 

^
rndint(0, Q − 1)] ] .

Given a finite set Q, rndmember(Q ) returns a random mem-
ber of Q.

Definition 30: RND: N+ x QF -+ QF E)
[Q E QF , Q > n E N+] #.

RND(n, Q) = rndmember( {A C_ Q: A = n} ) .

Given a non-empty finite set Q and a positive integer n <
Q , RND(n, Q) returns a random subset of Q whose cardi-

nality is n.

Definition 31: R is the set of all real numbers.

Definition 32: max: V (R) -+ R E)
V bounded and closed subset Q E R, El x E Q E)

1. y E Q #. y < x
2. max(Q) = x

The function max returns the largest value in a set of numer-
ical values.

Definition 33: min: V (R) -+ R E)
V bounded and closed subset Q E R, El x E Q E)

1. y E Q #. y > x
2. min(Q) = x

The function min returns the least value in a set of numerical
values.

Definition 34: s is said to be a string if and only if s E
°'' ({x: x is an ASCII character} ) .

Definition 35: S = {s: s is a string } .

4.3. Domain-Specific Definitions

4.3.1. System Input Data.

Definition 36: S0 = {s E S: s represents the ID of a sta-
tion in either the Space Network or the Ground Network}

The string “TDRS-B” is an example of a station ID. S0 is
supplied as input data to the scheduling system.

Definition 37: A' = {a E S: a represents an antenna ID}

A' is supplied as input data to the scheduling system.

Definition 38: A0 C_ S0 x A' x {“S”,“K”,“K1”,“K2”} x
{“MA”,“SA”} E)	

1
[
a = (a1 , ... , a4 ) E A0 , a4 =“MA” ] #. a3 =“S”

A0 contains a 4-tuple for each antenna in the communications
support infrastructure. The elements of each 4-tuple identify
the basic antenna attributes (the station where the antenna is
located, the antenna’s ID, the antenna’s frequency band, and
the antenna’s signal service capability). A0 is supplied as in-
put data to the scheduling system.

Note: It is assumed that all SA antennas are able to sup-
port S band.

Definition 39: SoA : S0 -+ N E) s E S0 #.
So

A (s) = {a E A0 : a1 = s, a4 = “SA” } .

Given station s, So
A (s) returns the number of SA antennas

in service at station s. This information is provided as input
data for the scheduling system.

Definition 40 (Outage Interval): O C_ S0 x A' x N2 E)

(o1 ,...,o4) E O #.
o3 is a start time and o4 is an end time.

O is the set of communications resource-outage intervals,
each corresponding to times known in advance when data
communications via prescribed antennas will be unavailable.
O is supplied as input data to the scheduling system.

Definition 41: U0 = {u E S: u represents a user ID}

A user (see definition of User on page 16) is any system ca-
pable of communications via an antenna in NASA’s space
data-communications infrastructure. U0 is supplied as input
data to the scheduling system.

Definition 42 (POCC Operation Periods): P: U0 -+ V (Z).

Given user u, P (u) is the set of time intervals during which
the user’s Project Operations Control Center (POCC) is in
operation. The intervals belonging to the set P (u) have start
and end times specified as seconds of offset from some stan-
dard epoch. If a POCC is always in operation, then there is
only one interval specified, the start time of which is the start
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of the scheduling period and the end time of which is an ar-
bitrary, sufficiently large number. P is supplied as input data
to the scheduling system.

Definition 43: L' = {x E S: x represents a link ID}

L' is provided as input data to the scheduling system

Definition 44: M' = {x E S: x represents a mission event
type}

M' is provided as input data to the scheduling sys-
tem. An example of the set of mission event types would
be: 

^
“NIL”, “ORBIT”, “COMM-VIEW-PERIOD”, “IN-

VIEW”, “DAY-LIGHT”, “NIGHT”, “OVER-WATER”,
“OVER-LAND”, “SUN-RISE”, “MOON-RISE”, “SUN-
SET”, “MOON-SET”, “DAY”, “WEEK”, “MONTH”

}
.

Some mission event types do not relate to a station in the sup-
port infrastructure. For example, for the mission event type
“MOON-SET”, a station ID is irrelevant, and so, for a mem-
ber of M (see Definition 47, page 19) for that mission event
type, the value of µ 3 could be given as •. Mission event type
“NIL” is reserved for cases where a user-support require-
ment/request is specified in relation to an exact time interval
(i.e., a “specific” requirement, as opposed to a “generic” re-
quirement; see definition of User Requirement, page 16).

COMM-VIEW-PERIODs are assumed to be intervals dur-
ing which RF communications with a given user via a given
network station are possible. COMM-VIEW-PERIODs are
determined in advance (and are assumed herein to be pro-
vided as input data), by considering all factors that affect
communications performance, as computed, for example, by
the NASA Communications Link Analysis and Simulation
System (CLASS) [18] and the “Automated Conflict Resolu-
tion System” and the “TDRS Look Angle System” [19]. It is
assumed that, according to the mission plan, the spacecraft
attitude will be adjusted and maintained as needed to enable
the appropriate on-board antenna(s) to receive and/or radi-
ate signals from/to the designated support antenna.

Definition 45: L0 C_ U0 x L' x {“S”,“K”,“K1”,“K2”} x
{“MA”,“SA”} x {“FWD”,“RTN”} x {“RCP”,“LCP”} x
N+ E) (A1 , ... , A7) E L0 #.

1. A4 indicates which type of signal service (Multiple Ac-
cess or Single Access) is required,

2. A5 indicates the direction of data flow,

3. As indicates the signal polarization required, and

4. A7 represents a data rate in units of Kbps (i.e., 103 bits
per second).

L0 provides all relevant information about all users’ commu-
nications links. The schedule-generation algorithm requires
this information in order to find a schedule that will satisfy

requests for communications services. L0 is supplied as in-
put data to the scheduling system.

Definition 46: MAXALLOWEDRTNRATE is a fixed pa-
rameter, provided as input data for a given scheduling sce-
nario, applicable to the entire data-communications support
infrastructure, defining the maximum allowed data rate (in
units of Kbps) for all return-data communications links com-
bined at any given instant.

Definition 47 (Mission Event): M C_ U0 x M' x S0 x N2 E)

(µ1 ,...,µ5) E M #.

1. µ4 is a start time

2. µ5 is an end time.

M, supplied as input data to the scheduling system, is the set
of mission event instances. The preparation of M requires a
computational resource such as CLASS.

Definition 48: L: U0 -+ ℘(L0 ) E)	
1L (u) = { A = (u, A2 , ... , A7) E L0 J

For a given user u, L (u) is u’s set of communications links.
The function L can be regarded as a table of data supplied as
input to the scheduling system.

Definition 49: V: S0 x U0 -+ ℘(M) E)
11

L
(s, u) E S0 x U0 , (µ1 , ... ,µ5) E V (s, u)

J
L
[
µ1 = u, µ2 = “COMM-VIEW-PERIOD”, µ 3 = s]

The function V, given ( s, u) E S0 x U0 , returns the set of all
communications view periods for station s and user u. V, ef-
fectively a table of data, is supplied as input to the scheduling
system.

Definition 50 (Potential Interference Intervals):
I: S2

0 x L2
0 -+ ℘(Z̄) E)

[ (s, s' , A, A') E S2
0 x L2

0 , ( E I(s, s' , A, A')] q
El (µ 1 ,...,µ5 ) E V(s,A1) ,El (µ'1 ,...,µ'5) E V(s' ,A'

1) E)

1. ( C_ [µ4 , µ5] n [µ'
4 , µ'

5 ] =6 Ø,
2.

^
t E (, links A and A ' are active at time t via stations

s and s' , respectively] q link A suffers unacceptable
degradation due to interference by link A',

3. Vβ E Z̄ E) (⊂β, Elt E β\( E) attime t,

(a) links A and A' are active via stations s and s ' , re-
spectively, and

(b) link A does not suffer unacceptable degradation
due to interference by link A'.

Potential interference intervals are supplied as input data by
(for example) the NASA CLASS interference analysis sys-
tem (IAS) (see Introduction, page 6). Note that CLASS can
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supply potential interference intervals for the cases where a
user’s communications link would be degraded by RF energy
from a non-specific source such as cellular-telephone signal
emitters or other non NASA sources such as radars. In such
cases, the interfering “link” would have a CLASS-supplied
link ID and user ID.

Definition 51: 450 : U0 -+ N E) du E U0, 450 (u) is the
NASA-assigned mission-priority value E)

[u' E U0, u' =6 u, and u' has lower priority than u] #.
45 0 (u' ) < 450 (u).

NASA-assigned mission priorities are supplied to the
scheduling system as input data.

Definition 52: -cb: U0 -+ R E)[
u E U0, m = max(

{
x : Elu' E U0, x = 450 (u')})] #.

45(u) = m-1 450 (u).

45, supplied as input data to the scheduling system, maps
NASA-assigned mission priorities to the interval [0, 1].

Definition 53 (Service): Y ⊆ L0 x N4 E)
(A, s- , s+ , d- , d+ ) E Y #.

1. s- and s+ represent, respectively, the minimum and
maximum allowed start-time offset from some given
reference time, and

2. d- and d+ represent, respectively, the minimum and
maximum allowed duration of the service.

Y is the set of tuples (A, s- , s+ , d- , d+ ) that specify users’
services in terms of links, earliest and latest start-time off-
sets, and minimum and maximum durations, and is supplied
as input data to the scheduling system.

Definition 54 (User-Prescribed Prototype Event List):

C: U0 -+ Ξ'
(
Ξ' (Y

)) 
E)

[u E U0, k E N+ , k< len(C(u)),
L i E N, i < len(C(u) [k] ),

C(u) [k] [i] = (A, •, •, •, •)] #. A E L (u).

p is said to be a prototype event if and only if Elu E U0 E)
(• , p) E C (u).

C (u) is the user-u prescribed list (sequence) of prototype
communications events for user u. Every communications
event scheduled by the algorithm for the given user u will
match the values of some element of C (u), with leeway on
the duration and the start-time offset relative to a given proto-
type event start time. The mission-operations project for each
user u supplies the list C (u) as input data to the scheduling
system.

Definition 55 (User Requirements): R0 is a set each element
of which is an ordered 17-tuple (r1 , ... , r17) E)

1. r1 E S represents a requirement ID,

2. r2 E U0 is a string representing a user ID,

3. r3 is a subsequence of the sequence C (r2 ), the list of
prototype events prescribed by user r2,

4. r4 E M' is a string representing a mission-event type
for user r2,

5. r5 E N is a mission-event skip factor specifying how
many mission events of type r4 must be skipped be-
tween consecutive instances of prototype events in the
sequence r3,

6. rs E Z is seconds of offset of an instance of a proto-
type event in the sequence r3 from the start (if r8 =
“START”), or end (if r8 = “END”) of a mission event
of type r4,

7. r7 E Z is seconds of offset of an instance of a proto-
type event in the sequence r3 from the start (if r9 =
“START”), or end (if r9 = “END”) of a mission event
of type r4,

8. r8 E {“START”, “END”} indicates whether the start of
a prototype event instance is relative to the start or end
of an instance of a mission event of type r4,

9. r9 E {“START”, “END”} indicates whether the end of
a prototype event instance is relative to the start or end
of an instance of a mission event of type r4,

10. r10 E N+ represents the total volume of data desired
to be returned from the user spacecraft in units of 103

bits during any instance of a prototype event in the se-
quence r3,

11. r11 E {“Y”, “N”} indicates whether the user’s POCC
must be open during an instance of a prototype event
in the sequence r3, where “N” means the POCC is not
required to be open,

12. r12 E {“Y”, “N”} indicates whether mutual interfer-
ence may be neglected in scheduling communications
events,

13. r13 E N is the minimum allowed separation, in sec-
onds, between any two consecutive instances of a pro-
totype event in the sequence r3 during any given com-
munications event window as defined below,

14. r14 E N is the maximum allowed separation, in sec-
onds, between any two consecutive prototype event in-
stances,

15. r15 E N is the offset, in seconds, from the start of the
scheduling period to the earliest time at which any in-
stance of a prototype event in the sequence r3 is allowed
to start,
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16. r1s E N is the offset, in seconds, from the start of the
scheduling period to the latest time at which any in-
stance of a prototype event in the sequence r3 is allowed
to end, and

17. r17 E N is the nominal prototype-event start time off-
set, in seconds, from the start of the scheduling period.

R0 , given as input data by the users, is a set each element
of which is a user requirement. A requirement specifies ei-
ther repeating or singleton (nonrepeating) communications
events to satisfy the user’s needs for communications via sta-
tions in the network. A requirement may specify (via param-
eters r13 through r1s, and via the last four parameters in each
of the user’s defined services (see Definition 53 (page 20)))
loose or tight tolerances on positioning of events in time.

Example of a communications event window relative to
the mission event type “SUNRISE”: Starting 20 sec before
each third sunrise, ending 15 min after the sunrise. In this ex-
ample, the mission-event skip-factor (r5 ) would be 2.

For every requirement r = (r1 , ... , r17) where the mis-
sion event type is “NIL”, there is a mission-event instance
µ = (µ1 ,. . . ,µ5 ) in M where µ2 = “NIL” and [µ4 , µ5] =
[r15, r1s ] .

4.3.2. Scheduling-Algorithm-Specific Definitions.

Definition 56 (Service Instantiation):
YI : Y -+ ℘(Nx A0 xN2 )E)
dy = (λ = (λ1 , ... , λ7) , s- , s+ , d- , d+ ) E Y,
(t, a, s, d) E YI (y) ⇔

1. a = (a1 , a2, a3 = λ3 , a4 = λ4 ) E A0 ,

2. s- < s < s+ , and

3. d- < d < d+

YI returns, for each defined service y, the set of all pos-
sible instantiations (t, a, s, d) of y where the link might
be activated on the assigned antenna a during the interval
[ (t + s ) , (t + s + d) ] .

Definition 57: YV : N x M x Y -+ Z̄ E)

^( t,µV = (µV
1 , . . . ,µV

5 ),

y = (λ = (λ1 , ... , λ7) , s- , s+ , •, d+ )J
 E 1

Nx M x YE) µV1 =λ1 ,µV E V(µV3 ,µV1 ) ] #-

YV (t, µV , y) = [µV4  , µV5 ] n [(t + s- ) , (t + s+ + d+

YV (t, µV , y) is the largest interval during which the service y
instantiation, relative to the given offset t from the start of the
scheduling period, would overlap the given view period µV .
The interval YV (t, µV , y) covers any possible instantiation of
y relative to the given view period µV and the given offset t
from the start of the scheduling period.

Definition 58: U: R0 -+ U0 E)
r = (r1 , ... , r17) E R0 #- U (r) = r2 .

U (r) represents the user for which r is a prescribed require-
ment.

Definition 59: Mtype : R0 -+ °' (°' (M) ) E)
dr = (r1 , ... , r17) E R0 ,
Mtype (r) = ^ E °' (°' (M)) ⇔

1. [i E N, i < len(^)] #- ^i [1] = r2 and ^i [2] = r4 and

2. [i, j E N, i < j < len(^)] #-
[^i [4], ^i [5]] < 

[
^j [4], ĵ [5]]

Given r E R0 , Mtype (r) is the time-ordered sequence of all
the members of M for user r2 that have mission event type
r4 .

Definition 60: MT : {“START”, “END”} x M -+ N E)
(x , µ = (µ1 , ... , µ5 )) E dom(MT) #-

r µ4 if x = “START”MT (x, µ) = 5l µ5 if x = “END”

MT returns a start time or an end time for a given mis-
sion event. The returned time is the reference time relative
to which a prototype event will be instantiated according to
rs .

Definition 61: tref: R0 x M -+ Z E)	
p-I(

r = (r1 , ... , r17) , µ = (µ1 , ... µ5 )) E Ro x M,,
µ1 = r2, µ2 = r4 ,
[r4 = “NIL” #- tp = r15

]
,

[r4 =6 “NIU” tp = MT (r8 , µ) + rs ] ]
tref(r, µ) =

`1 ^

t

^

p

.

tref(r, µ) returns the reference time specified by requirement
r relative to any mission event µ of type r4 , with respect to
which any prototype communications event would be sched-
uled, subject to the skip factor r5 .

Definition 62: Mskips : R0 x N -+ °' (N) E)
d(r = (r1 , ... , r17 ) , i) E R0 x N,
Mskips (r, i) = ^ E °' (N) ⇔

1. i < r5 ,

2. n = len(Mtype (r)) #-
len(^) = In − n mod (r5 + 1)] / (r5 + 1), and

3. [j E N, j < len(^)] #- ^ [j] = j (r5 + 1) + i

Mskips (r, i) is the list of indexes into Mtype (r) such that, start-
ing with the mission event instance Mtype (r) [i] , these ele-
ments of Mtype (r) correspond to the mission event instances
determined by applying the skip factor r5 . The concept (see
Figure 4.3.2 (page 22)) of applying a skip factor having the
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value n entails the process of (1) starting with some given
mission event instance, (2) ignoring (i.e., skipping) the next
n mission event instances, (3) keeping the next mission event
instance, (4) skipping the next n mission event instances, etc.
Note that in normal practice, the starting point for the pro-
cess will be not some arbitrary member of Mtype (r) , but in-
stead will be Mtype (r) [0], i.e., the first mission-event instance
of type r4 . This practice satisfies the normal mission expec-
tation that in maximizing the satisfaction of mission require-
ments, no opportunities for enabling data communications
will be foregone.

Instances of .ission event of a
type specified by para.eter r4:

. . .	 . . .?

?9? !? !* ffU

3. [77 E P(U(r) ) ,h = ri n ^3] #- g+ - g- > h+ - h-

P.ax (r, ^3) returns the POCC operation period for user U (r)
that has the largest intersection with the given interval ^3.

Definition 64: YI.ax: R0 x N2 x M2 -+ N x A0 x N2 E)

V(r = (r1 , ... , r17 ) , k, n, µ = (r2 , r4 , µ3 , µ4 , µ5 ) ,
µV = (µV

1 , ... , µV
5  )) E dom(Y.Iax ),

YI (r, k, n, µ, µV
) = 

(
tP , a, s, d).ax

1. 
(
tP , a = (a1 , ... , a4 ) , s, d) E codomain(YI.ax ),

2. µV E V (a1 ,r2 ) ,

3. tP = tref(r, µ ) ,

4. k < len(r3 ),

5. n < len(r3 [k]),

6. (tP , a , s , d) E Y
I (r3 [k] [n] ),

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11
[ (o1 = a1 , o2 = a2 , a3 , o4) E O #-

'_-.^indexes into Mtype(r)"""

d 	 dd
	

d
[o3 , o4] n [(tP + s) , (tP + s + d)] = Ø

1
2	 5^	 ^• 8	 11

"
Mtype (r ) indexes listed in Mskips (r, 2) 8.	 = “NIL”, [µ4 ,µ5] = [r15, r1s ] ,

r [

r4

(with r5 = 2)
^3 = YV (tP , µV , r3 [k] [n]) ), ^3 =6 Ø,[ [

r11 = N 	 ri = ^3
Figure 3. An example illustrating the skip-
factor concept. Twelve instances of a mission [

r11 = “Y” , 	 = P.ax (r, ^3 ) , ri =	 n3̂
^i^ V

event of type r4 are shown along the time line.
These instances have indexes 0 through 11 in # “NIL”, 	 = [tP , µV5 ] ,
the sequence Mtype (r) . The relevant parameter L

r4
L

values (see Definition 62 (page 21)) in this ex- ^3 =	 n YV (tP , µV , r3 [k] [n])), ^3 =6 Ø,
ample are the skip factor, r5 = 2, and the index,

[ [
r11 = “N” , ri = ^3

^ 
∨

i = 2, of the first (i.e., the left-most) instance of
a mission event of type r4 where an instance of [

r11 = “Y”,	 = P.ax (r, ^3) , ri =	 n ^3
^ i ^ # ,

a prototype event is to be scheduled. Thus, af-
ter skipping the next two instances of a mis-

9.tP + s = ri- , d = ri+ - (tP + s) > 0sion event of type r4 , the next index in the
list is Mskips (r, 2) (1) = 5. Note, however, that YI.ax (r, k, n, µ, µV) gives the largest interval in the given
in normal practice, the starting point for this view period µV where, (a) with respect to [r15, r1s] (when
process will be not some arbitrary member of r4 = “NIL”) or (b) with respect to the given mission event µ
Mtype (r ) , but instead will be Mtype (r) [0], i.e., the (when the given requirement specifies the start of the given
first mission-event instance of type r4 , corre- prototype event in relation to the given mission event), the
sponding to setting the index i to 0. given service (stipulated by (r, k, n ) ) can be instantiated with

an antenna assigned avoiding any resource outage.

Definition 65:

Definition 63: P.ax : R0 x 7G -+ 7G E)
CoRM: N x R0 x M -+ ℘(Ξ* (codomain(YI))) E)[
(k, r = (r1 , ... , r17) , µ = (µ1 = r2 , µ2 = r4 , ... , µ5))

[(r, ^3) E R0 x 7G, P(r, ^3) = E 7G] ^* 	E dom(CoRM ),

1. E P(U(r) ) ,	 p E C0
PRM (k, r, µ)] ^*

2. g = n ^3 =6 Ø, and	 1.	 k < len(r3 ),len(p) = len(r3 [k]),
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2.	
L [

tp = tref(r, µ) , n E N, n < len(p)] #.

(a) El (tp , a, s, d) E YI (r3 [k] [n]) E)
p [n] = (tp , a, s, d) ,

(b) ElµV = (µV
1 , ... , µV5) E M, El [s' , d'] E ¯Z,

El(tp , a, s' , d' ) = YImax (k , r, n, µ, µV
) E)

[s, (s + d)] ⊆ [s' , (s' + d' ) ] ] .

C0
PRM (k, r, µ) is the set of all possible instantiations of the

kth prototype event in the list r 3 for the mission event µ of
type r4 , with antenna assignments avoiding resource outage
intervals.

Definition 66 (Set of All Possible Schedules):
O ⊆ codomain(CoRM) E) d0 E O,

[ (k, r = (r1 , ... , r17) , µ = (µ1 = r2 , µ2 = r4 , ... ,µ5 ) )
E N x R0 x M,

k < len(r3 ),
x E CORM (k,r,µ) ,y E C0PRM (k,r,µ ) ,
x E 0, and y E 01 #. x = y

O is the set of all possible schedules.
A schedule is a set of prototype-event instantiations, with

no more than one such instantiation for each instance of the
mission event type stipulated by each requirement.

For each (k, r = (r1 , ... , r17 ) , µ = (r2 , r4 , ... , µ5)) E
N x R0 x M, with k < len(r3 ), the scheduling objective
is to schedule an instance of the prototype event r 3 [k] so as
to transmit a total quantity of data equal to r 10 x 103 bits,
subject to

• the minimum and maximum comunications-event sep-
arations r13 and r14 and

• the mission-event skip factor r 5 .

Definition 67: skipsatR' : O x R0 -+ R E)

[ (0, r = (r1 , ... , r17 )) E O x R0 ,

n = len(Mskips (r, 0)),
Q = 

{
p : Elj, k E N E) j< n, k< len(r3 ),

p E C0
PRM 

(
k,r Mtype (r) [MMI. (r, 0)[j ]] )

p E 0},

h = max({10-3 , 
I
IQ

I
I})] #.

skipsatR' (0, r) = nh- 1

Given a schedule 0 and a requirement r, skipsatR' returns
a value representing the ratio of the number of elements in
Mskips (r, 0) to the number of prototype events scheduled for
the members indexed by Mskips (r, 0). This final value will be

exactly 1 if the skip factor requirement is satisfied (the pos-
sibility that prototype event instances will be scheduled for
other mission events is irrelevant for this metric), and will
be a larger value otherwise. The assumption is that, from
the start of the scheduling period, the first mission event of
type r4 will have a mandatory first prototype-event instanti-
ation, then r5 mission events of type r4 will be skipped, and
then the next mission event of type r4 will have a manda-
tory prototype-event instantiation, with this pattern repeated
for the remainder of the scheduling period.

Definition 68: violationsSKIP' : O -+ R E)
0 E O #. violationsSKIP' (0) =

IIR0 II -1 
E skipsatR' (0, r)

rERO

Given a schedule 0, violationsSKIP' returns the total of the
metrics for all requirements as to how well their skip factors
are satisfied—averaged over all requirements. For a perfect
schedule, this metric will be exactly 1, and will be a larger
value otherwise.

Definition 69: skipFILL-R' : O x R0 -+ R E)

^
(0, r = (r1 , ... , r17)) E O x R0 , N = len(Mtype (r)),

h = len(Mtype (r)) − len(Mskips (r, 0)),
Q = 

{
p : Elm, k E N, k < len(r3 ),

m < len(Mtype (r)), ¬m E Mskips (r, 0),

p E C0
PRM (k,r,Mtype (r) [m]

)
,p E 0}]

skipFILL-R' (0, r) = 1+ h-1 IIQ II

Given a schedule 0 and a requirement r, skipFILL-R' returns
1 plus the ratio of I Q I (the number of prototype-event instan-
tiations that are not required under the mission-event skip re-
quirement r5 for mission events of type r4), to h (the number
of mission event instnaces of type r4 that are required to be
skipped). This metric has the value 1 if the schedule is perfect
(i.e., there are no prototype events instantiated when not re-
quired), and has a greater value otherwise. See the statement
of the assumption under Definition 67. (Note that h = 0 cor-
responds to an impossible condition, namely, that all of the
instances of the mission event of type r4 are to be skipped.)

Definition 70: violationsSKIPFILL' : O -+ N E)
0 E O #. violationsSKIPFILL' (0) =

IIR0
 II -1 E skipFILL-R' (0, r)

rERO

Given a schedule 0, violationsSKIPFILL' returns the to-
tal count, for all requirements r, of prototype-event instanti-
ations that are not required under the mission event skip re-
quirement r5 for mission events of type r4—averaged over
all requirements.
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Definition 71: startP : codomain(CoRM) -+ N E)

1. p E codomain(CoRM) #. El (k, r, µ) E N x R0 x M E)

p E C0
PRM (k, r, µ),

2. [Q = Iv: El(t, • ,s, •) E pE) v = t + s}] #.

startP (p) = min(Q )

Given the instantiation p of a prototype event, startP (p ) re-
turns the earliest start time of any service instantiation in the
event.

Definition 72: endP : codomain(CoRM) -+ N E)

1. p E codomain(CoRM) #. El (k, r, µ) E N x R0 x M E)

p E C0
PRM (k, r, µ),

2. [Q = Iv: El(t, •,s,d) E pE) v = t + s + d}] #.

endP (p ) = max( Q )

Given the instantiation p of a prototype event, endP (p ) re-
turns the latest end time of any service instantiation in the
event.

Definition 73: minsepsatP* : O x R0 -+ N E)

h
(B, r = (r1 , ... , r17)) E O x R0 ,

Q = { (p,p' ) E B x B: El(k,r,µ) E N x R0 x M E)
p E C0

PRM (k, r, µ),
El (k, r, µ') E N x R0 x M E) p' E C0

PRM (k, r, µ'),
startP (p') > endP (p )
startP (p ') — endP (p ) < r13 11 

#.

minsepsatP* (B, r) = Q

Given a schedule B and a requirement r, minsepsatP* (B, r)
returns the total count of pairs of prototype-event instantia-
tions for requirement r in B that are separated by less than
the minimum allowed separation r 13.

Definition 74: maxsepsatP* : O x R0 -+ N E)

h
(B, r = (r1 , ... , r17)) E O x R0 ,

Q = { (p,p' ) E B x B: El(k,r,µ) E N x R0 x M E)
p E C0PRM (k,r,µ ) ,

El (k, r, µ') E N x R0 x M E) p' E C0
PRM (k, r, µ'),

startP (p') > endP (p )
¬Elp'' E B E) startP (p ) < startP (p'' ) < startP (p' )
startP (p' ) — endP (p ) > r14}] #.

maxsepsatP* (B, r) = I Q

Given a schedule B and a requirement r, maxsepsatP* (B, r)
returns the total count of pairs of consecutive prototype-event
instantiations for requirement r in B that are separated by
more than the maximum allowed separation r 14.

Definition 75: violationsMINSEP* : O -+ R E)
B E O #. violations MINSEP* (B) =

1 + R0
 

1 E minsepsatP* (B, r)
rERo

Given a schedule B, violationsMINSEP* (B) returns the value 1
plus the ratio, averaged over all requirements r, of the num-
ber of pairs of prototype-event instantiations for requirement
r in B that are separated by less than the minimum allowed
separation r13 to the number of elements (prototype-event in-
stantiations) in the schedule. This metric will be exactly 1 for
a perfect schedule and a greater value otherwise.

Definition 76: violationsMAXSEP* : O -+ R E)
B E O #. violationsMAXSEP* (B) =

1 + I R0
 

1 E maxsepsatP* (B, r)
rERo

Given a schedule B, violationsMAXSEP* (B) returns a value
equal to 1 plus the ratio, averaged over all requirements
r, of the number of pairs of prototype-event instantiations
for requirement r in B that are separated by more than the
minimum allowed separation r14 to the number of elements
(prototype-event instantiations) in the schedule. This metric
will be exactly 1 for a perfect schedule and a greater value
otherwise.

Definition 77: schedolpairs: O -+ codomain(CoRM )2 E)

B E O #.
schedolpairs(B) = { (p, p' ) E B x B:

startP (p) < startP (p') < endP (p ) }

Given a schedule B, schedolpairs( B ) returns a set of overlap-
ping pairs of members of B so that not both (p, p' ) and (p' , p)
belong to the set and (p, p) does not belong to the set.

Definition 78: interf* : O -+ R E) dB E O,

^ = {x : r = (r1 , ... , r17 ) ,

r' = (r'
1 , . . . 

,lemenr
17) E R0 ,k,k' E N ,

µ is an et of the sequence Mtype (r),
µ' is an element of the sequence Mtype (r' ) ,

k < len(r3 ), k' < len(r '
3 ),

p E C0PRM (k,r,µ),p' E C0
PRM (k' ,r' , µ'),

(p, p' ) E schedolpairs(B),
n, n' E N, n < len(r3 [k]), n' < len(r'

3 [k']),
A = (r2 , A2 , ... , A7 ), A' = (r'

2 , A'
2 , ... , A'7) E L0 ,

( A , •, •, •, •) = r3 [k] [n],
(A' , •, •, •, •) = r'

3 [k'] [n'],
p [n] = (t, a = (a1 , ... , a4 ), s, d),
p '[n']=(t', a' =(a'

1 ,..., a'
4), s', d'),

e E I(a1 ,a'1 ,A,A' ) ,
e n [t + s,t + s + d] n [t' + s' , t' + s' + d'] =6 Ø,
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x = (p, p ' , n, n')}J #.

interf* (0) = 1 + 1 0 1 -1 |Q |

interf* returns the value 1 plus an integer representing the in-
stances where interference exists between two active links in
a pair of prototype-event instantiations in the schedule, aver-
aged over all elements (prototype-event instantiations) in the
schedule. This metric will be exactly 1 for a perfect sched-
ule and a greater value otherwise.

Definition 79: endpts : O-+ V (N) E) 0 E O #.
endpts(0) = {x : r = (r1 , ... , r17) E R0 ,

k E N, k < len(r3 ),
(•, µ) E Mtype (r),
p E C0PRM (k, r, µ ) , p E 0, (t, a, s, d) E p,
[
x = t + s ∨ x = t + s + d

^}

The function endpts(0 ) returns the set of all of the endpoints
of all service instantiations in all prototype-event instantia-
tions in 0.

Definition 80: endptsseq : O -+ °* (N) E) ∀0 E O,
ξ E endpts(0)seq ⇔

ξ E ° * (endpts(0)) and

[i E N, i + 1 < len(ξ)#. ξ [i] < ξ [i + 1]]

The function endptsseq (0) converts the set endpts( 0) into an
increasing sequence of times on the timeline.

Definition 81: resourceusage : O x N -+
V (N x R0 x M x N3 x L0 x A0) E)

10
EO ,i EN ,

^^,i +1 < Iendpts(0 )
(k, r = (r1 , ... , r17 ) , µ) E N x R0 x M,

p E C0PRM (k, r, µ ) , p E 0,
n E N, n < len(r3 [k]),
r3 [k] [n] = (λ = (r2 , λ2 ,... , λ7) , •, •, •, •),
(t, a, s, d) E N x A0 x N2 ,
p [n] = (t, a, s, d) ,
( = [endptsseq (0) [i] , endptsseq (0) [i + 1]^,

( ∩[(t + s),(t + s + d)]0Ø1 #.
(k, r, µ, n, (- , (+ , λ, a) E resourceusage(0, i)

Given a schedule 0 and an index i into the list of endpoints of
all the service instantiations in 0, resourceusage(0, i) returns
a set of 8-tuples containing values representing the resources
used during the interval starting at the time endptsseq [i].

Definition 82: KSN : {“S”,“K”,“K1”,“K2”} x
{“MA”,“SA”} x {“FWD”,“RTN”} -+ N E)
(b, c, d) E {“S”,“K”,“K1”,“K2”} x {“MA”,“SA”} x
{“FWD”,“RTN”} #.

Case K(a, c, d)
(1)c =“SA”and d =• 2
(2) c =“MA” and d =“FWD” 1
(3) c =“MA” and d =“RTN” 5

Table 1. Space Network Forward and Re-
turn Link constraints from the Space Network
Users’ Guide (SNUG)

Case K' (a, c, d)
(1)c =“SA”and d =• 4
(2) c =“MA” and d =“FWD” 2
(3) c =“MA” and d =“RTN’ 20

Table 2. Ground Network Forward and Return
Link constraints

KSN (b, c, d) = 0, except as shown in Table 1

KSN returns the constraints on combinations of Space Net-
work resource usage in any schedule.

Table 1 states the station constraints that are provided as
input to the scheduling system. For example, for any TDRS,
there can be only one MAF, only five MAR, only two SSAF,
only two SSAR, only two KSAF, and only two KSAR[18].

Definition 83:
KGN : {“S”,“K”,“K1”,“K2”} x {“MA”,“SA”} x
{“FWD”,“RTN”} -+ N E)
(b, c, d) E {“S”,“K”,“K1”,“K2”} x {“MA”,“SA”} x
{“FWD”,“RTN”} #.
KGN (b, c, d) = 0, except as shown in Table 2

KGN returns the constraints on combinations of Ground Net-
work resource usage in any schedule.

Table 2 states the ground terminal constraints that are pro-
vided as input to the scheduling system. For example, for
WSC (White Sands Complex), there can be only two MAF,
only 20 MAR, only four SSAF, only four SSAR, only four
KSAF, and only four KSAR. However, this is a simplification
that would have to be dealt with, both in a more realistic for-
mulation of the SN scheduling problem and in a full specifi-
cation of the problem solution (i.e., as a schedule-generation
algorithm to be implemented in a fielded, production-level
scheduling system). The actual SA constraints are subject to
additional rules that likewise would need to be included in
the specification for a fielded scheduling system. For exam-
ple, in the SNUG, Note 5 in Figure 3-1 “Telecommunications
Services for each SGLT” [18] states the following:

The SN can simultaneously support S-band and
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K-band (either Ku or Ka for TDRS spacecraft
F8 through F10) forward and/or return services
through one SA antenna to the same ephemeris.

Definition 84: violations$-D PTS :

Ox N x{“S”,“K”,“K1”,“K2”} x
{“MA”,“SA”} x {“FWD”,“RTN”} -+ N E)[

0 
E O, i E N, i + 1 < endpts(0) ,
(b, c, d) E {“S”,“K”,“K1”,“K2”} x

J{
“MA”,“SA”} x {“FWD”,“RTN” } ,

Q = 1 x: x = (•, •, •, •, •, •, A = (A1 , .. . , A7) , •) E
l resourceusage(0,i),	 o

A3 = b,A4 = c,A5 = d, ,

vSN = Q 1 — κ
SN (b, c, d)] #.

	

violationss-C-D D 	 i b c d) = max({0 v })B-C-D ( , , , ,	 , SN

The function violations$  ̂ D
PTS (0, i, b, c, d) returns the

count of violations of the constraints on usage of Space Net-
work resource (b, c, d) in the interval i in 0.

N:Definition 85: violations$-END  PTS

Ox N x{“S”,“K”,“K1”,“K2”} x
{“MA”,“SA”} x {“FWD”,“RTN”} -+ N E)[

0 
E O, i E N, i + 1 < endpts(0) ,
(b, c, d) E {“S”,“K”,“K1”,“K2”} x

{“MA”,“SA”} x {“FWD”,“RTN” } ,

Q = {x: x = (•, •, •, •, •, •, A = (A1 , ... , A7) , •) E
l resourceusage(0,i),	 o

A3 = b,A4 = c,A5 = d, ,

vGN = Q 1 — κGN (b, c, d)] #.

violationsGN-ENDPTS (0 i b c d) = max({0 v })$-C-D	 , , , ,	 , GN

The function violations$ D 
PTS (0, i, b, c, d) returns the

count of violations of the constraints on usage of Ground
Network resource (b, c, d) in the interval i in 0.

Definition 86: violationsSN-ENDPTS : O x N-+ R E)
[(0, i) E O x N, h = endpts(0) — 11 #.

violations SN-ENDPTS(0, i) =
h -1	 E	 violations$ CD

PTS (0, i, b, c, d)
(b,c,d) Edom(κSN )

The function violationsSN-ENDPTS (0, i) returns the count of
violations of the constraints on usage of all Space Network
resources in the interval i in 0, averaged by the number of el-
ements in endpts(0) less 1.

Definition 87: violationsGN-ENDPTS : O x N-+R E)
[(0, i) E O x N, h = endpts(0) — 11 #.

violations GN-ENDPTS (0,i ) =

h- 1
E 	

violations$ D PTS (0, i, b, c, d)
(b,c,d) Edom(κGN )

violationsGN-ENDPTS (0, i) returns the count of violations of
the constraints on usage of all Ground Network resources in
the interval i in 0, averaged by the number of elements in
endpts(0) less 1.

Definition 88: violationsSN : O -+ R E)
0 E O #. violations SN (0) =

1+ 0 
-1
	

E
	 violations SN-ENDPTS(0, i)

%EN
%+1<endpts(O)|

violationsSN (0) returns a value equal to 1 plus the count of
violations of the constraints on usage of all Space Network
resources in 0, averaged over all elements (prototype-event
instantiations) in the schedule. This metric will be exactly 1
for a perfect schedule and a greater value otherwise.

Definition 89: violationsGN : O -+ R E)
0 E O #. violations GN (0) =

1+ 0 
-1
	

E
	 violationsGN-ENDPTS (0, i)

%EN
%+1<|endpts(O)|

violationsGN (0) returns a value equal to 1 plus the count of
violations of the constraints on usage of all Ground Network
resources in 0, averaged over all elements (prototype-event
instantiations) in the schedule. This metric will be exactly 1
for a perfect schedule and a greater value otherwise.

Definition 90:
usageSTATION-SA-ENDPTS : O x N x S0 -+ N E)
[(0, i, s) E O x N x S0 , i + 1 < endpts(0) ,

l

x: x = (•, •, •, •, •, •, A = (A1 , . . . , A7) ,Q =

a = (a1 ,. . . ,a4 )) E“ resourceusage(0,i),

a1 = s, A4 = a4 = SA”11#.

usage STATION-SA-ENDPTS (0 i s) = 1 Q

Given a schedule 0, given an index i into the se-
quence of endpoints in endptsseq (0), and given a sta-
tion s, usageSTATION-SA-ENDPTS (0, i, s) returns the demand
for SA antenna support on s.

Definition 91:
violations STATION-SA-ENDPTS : O x N x S0 -+ N E)
[(0, i, s) E O x N x S0 ,

vSA = usage STATION-SA-ENDPTS(0,i, s) — S0
SA (s )J #.

violations STATION-SA-ENDPTS(0, i, s) = max ({0, vSA})

violations STATION-SA-ENDPTS(0, i, s) returns the count of vio-
lations of the constraints on usage of SA antennas on station
s in the ith interval in 0.
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Definition 92: violations SA-ENDPTS : O x N -+ R E)
[ (0, i) E O x N, h = endpts(0) - 1] ⇒

violations SA-ENDPTS(0, i) =
h-1 E violations STATION-SA-ENDPTS(0, i, s)

sES0

violationsSA-ENDPTS (0, i) returns the count of violations of
the constraints on usage of SA antennas in the ith interval in
0, averaged by the total number of elements in endpts( 0) less
1.

Definition 93: violations SA : O -+ R E)
0 E O ⇒ violations SA (0) =

1+ 0 
-1
	

E
	 violationsSA-ENDPTS (0, i)

% EN
%+1< jendpts(0) j

violationsSA (0) returns a value equal to 1 plus the count of
violations of the constraints on usage of SA antennas in 0,
averaged over all elements (prototype-event instantiations)
in the schedule. This metric will be exactly 1 for a perfect
schedule and a greater value otherwise.

Definition 94: stnswPEI : O x N x R0 x M -+ Z+ E)
d(0, k, r = (r1 , ... , r17 ) , µ) E O x N x R0 x M,

if p E CPRM
0 (k, r, µ),

if p E 0, and

Q =
{
x: ∃i, j E N,∃A E L0 E)

i,j < len(r3 [k]), i =6 j,
r3 [k][i] = (A, •, •, •, •),
r3 [k] [j ] = (A, •, •, •, •),
p [i] = (t, a = (a1 , ... , a4), s, d),
p [j] = (t, a ' = (a '1 , ... , a'

4 ), s' , d' ),
s + d < s ' ,
a1 =6 a, ,[
m E N, m < len(r3 [k] ),

m =6 i,m =6 j,

p[m] = (t, a' = (a'1 , ... , a'4 ), s' , d' ),
r3 [k] [m] = (A, •, •, • , •)

^ 
⇒ s' < s' , and

x = (i, j, A) }, then

stnswPEI (0, k, r, µ) = Q

stnswPEI (0, k, r, µ) returns the number of station switches
that occur in the prototype-event instantiation p identified by
(k, r, µ) in schedule 0.

In this disclosure, for the metric stnswPEI , a station switch
is said to occur if, for a prototype-event instantiation p iden-
tified by (k, r = (r1 , ... , r17 ) , µ), there are two services
r3 [k] [i] = (A, •, •, •, •) and r3 [k] [j ] = (A, •, •, •, • ), i, j E
N, i, j < len(r3 [k]), i =6 j such that if p [i] = (t, a =
(a1 , ... , a4 ), s, d) and p [j] = (t, a' = (a'

1 , ... , a'4 ), s' , d' ),
and s + d < s' , then a1 =6 a'

1 (i.e., the station providing
the link service changes from the earlier service instantiation

to the later), and if m E N, m < len(r3 [k] ), m =6 i, m =6
j,p [m] = (t,a' = (a'1,..., a'4 ) , s', d' ), and r3 [k] [m] =
(A, •, •, •, • ), then s ' < s' . Other possible definitions of “sta-
tion switch” may be substituted for the one given above or
may be included as additional metrics.

Definition 95: violationsSTNSW : O -+ R E)
0 E O ⇒ violations STNSW (0) =

1+ 0 1 
-1
	

E
	 stnswPEI (0, k, r, µ)

r=(r1 , ...,r17) ER0
k EN3 k <len(r3 )
(•, µ) E Mtype (r)

violationsSTNSW (0) returns a value equal to 1 plus the num-
ber of station switches that occur totaled for all prototype-
event instantiations in schedule 0, averaged over all elements
(prototype-event instantiations) in the schedule. This metric
will be exactly 1 for a perfect schedule and a greater value
otherwise.

Definition 96: rtndatarate COMBINED : O x N -+ N E)
[ (0, i) E O x N, i + 1 < endpts(0) ] ⇒

rtndatarate COMBINED (0, i) =
E	 A7

(•,•,•,•,•,•,a=(a1,...,a7), • ) Eresourceusage(0,%)
a5=“RTN”

rtndatarateCOMBINED (0, i) returns, for the interval indexed
by i in schedule 0, the combined data rate in all the active
“RTN” links.

Definition 97: violationRTNRATE : O x N -+ N E)
[ (0, i) E O x N, i + 1 < endpts(0) ,

x = rtndatarateCOMBINED (0, i)
[x > MAXALLOWEDRTNRATE ⇒ v = 1

^
,

[x < MAXALLOWEDRTNRATE ⇒ v = 0
^ i 

⇒

violationRTNRATE (0, i) = v

Given a schedule 0 and an index i into the sequence of
endpoints in endptsseq (0), violationRTNRATE (0, i) returns the
value 1 if the total of the data-rate values in all of the ac-
tive “RTN” links during the interval in 0 whose left end-
point is indexed by i exceeds the value of the fixed param-
eter MAXALLOWEDRTNRATE, and returns 0 otherwise.

Definition 98: violations RTNRATE : O -+ R E)
0 E O, h = endpts(0) - 1
violations RTNRATE (0) =

1 + h-1	 E	 violationRTNRATE (0, i)
% EN

%+1 < jendpts(0) j

violationsRTNRATE (0) returns a value equal to 1 plus the
number of intervals in schedule 0 in which a data-rate vio-
lation exists, averaged over the total number of intervals in
0. This metric will be exactly 1 for a perfect schedule and a
greater value otherwise.
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Definition 99: satisfied PEI : O x N x R0 x M -+ R E)[(
0, k, r = (r1 ,..., r17) , µ) E O x N x R0 x M,

p E C0
PRM (k, r, µ) , p E 0, x E R,

Q =
{

(d,e) E N2 : n E N,
n < len(r3 [k], ( • , • , •, d) = p [n] ,
(λ = (λ1 , ... , λ7) , •, •, •, •) = r3 [k] [n],
λ5 = “RTN”, e = λ7 o,

x = E ed > 
0] 

#.
(d,e) E Q	

^^satisfiedPEI (0, k, r, µ) = 1 - ^^ 1 - x/r10

satisfiedPEI (0, k, r, µ) returns the total data bits returned to
Earth during the prototype-event instantiation identified by
(k, r, µ) in schedule 0, divided by the desired volume r 10

of data returned in the instantiation of any prototype event
scheduled to satisfy r. This metric will be exactly 1 when the
total number of returned data bits equals the desired quan-
tity, and will be a nonnegative number less than 1 otherwise.

Definition 100: satisfiedR  O x R0 -+ R E)[(
0, r = (r1 , ... , r17 ) ) E O x R0 ,

Q = {p: El (k,µ) E N x M E)

p E C0
PRM (k,r,µ) ,p E 0

o

h = max({1, Q I})] #.

satisfiedR (0, r) =
h−1	 E	 satisfiedPEI (0, k, r, µ)

k ∈N, k<len(r3 )

(-,Ie)EMtype(r)

satisfiedR (0, r) returns, for requirement r, the ratio repre-
senting the satisfaction of the requirement r 10 for total data
bits returned by all the prototype-event instantiations for re-
quirement r in schedule 0, averaged over all such prototype-
event instantiations. The value returned is a nonnegative
number not exceeding 1. The metric will have the value 1
if the schedule is perfect.

Definition 101: satisfied' : O -+ R E) 0 E O #.
satisfied' (0) = 2 - Q Φ (U (r)) satisfiedR (0, r)

rER0

satisfied' (0) returns, for all requirements r, a value equal to
2 minus the product of all of the user-priority-weighted ratios
representing the satisfaction of the data-return requirements
r10 for total data bits returned to Earth by all the prototype-
event instantiations for requirement r in schedule 0. This
metric corresponds to the overall degree to which the sched-
ule satisfies all data-return requirements. The value returned
will be exactly 1 for a perfect schedule and a greater value
otherwise.

Definition 102: dj E {0, ... ,11 } , Jj : O -+ R E) 0 E O #.

J0 (0) = violations STNSW (0) ,

J1 (0) = violationsSKIP' (0),
J2 (0) = violations SKIPFILL' (0) ,

J3 (0) = violationsMINSEP' (0),
J4 (0) = violations MAXSEP' (0) ,

J5 (0) = violations SN (0),
J6 (0) = violations GN (0),
J7 (0) = violations SA (0),
J8 (0) = violations STNSW (0) ,

J9 (0) = violations RTNRATE (0),
J10 (0) = interf' (0), and
J11 (0) = satisfied' (0)

Definition 103: fitness: O -+ R E) 0 E O #.
fitness(0) =	

Q
	 Jj (0)

jE{0,...,11}

This is the “fitness function”, which returns 1 for a perfect
schedule and larger values for schedules that are not so good.

Note the perhaps unexpected numerical aspect of the fit-
ness function defined above, by which a better schedule has
a lower numerical value than a worse schedule. The best pos-
sible schedule is not less than, but indeed is indistinguishable
from, unity.

We now define a series of functions that provide the
genetic mutation and crossover transformations needed to
evolve the working population during the operation of the
schedule-generation algorithm (see Section 5 (page 32)).

Definition 104: rndpei : O -+ N x R0 x M E)

[0 E O, r = rndmember(R0),
j = rndint(0,len(Mtype (r)) - 1), µ = Mtype (r) [j ] ,

k = rndint(0, len( r3 ) - 1),

p E C0
PRM (k, r, µ) ,p E 

0] 
#.

rndpei(0) = (k, r, µ)

Given a schedule 0, rndpei(0) returns a parameter tuple
(k, r, µ) that corresponds randomly to a prototype-event in-
stantiation belonging to 0.

Definition 105: rndsvc : O -+ N x R0 x M x N E)[
0 E O, ( k, r, µ) = rndpei(0),

n = rndint(0,len(r3 [k]) - 1)] #.

rndsvc(0) = (k, r, µ, n)

Given a schedule 0, rndsvc(0) returns a parameter tu-
ple (k, r, µ, n) that corresponds randomly to a service in a
prototype-event instantiation belonging to 0.

Definition 106:
modsvc:O x N x R0 x M x N2 x A0 x N2 -+ O E)

[
(0, k, r, µ, n, t, a, s, d) E

O x N x R0 x M x N2 x A0 x N2 ,
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0' E O,
p E C0

PRM (k, r, µ ) , p E 0,
p' E C0

PRM (k, r, µ) , p' E 0',
0\{p} = 0'\{p'},
[j E N, j < len(p), j =6 n] #. p [j] = p' [j ] , and

p' [n] = (t, a, s, d)] #.
modsvc(0, k, r, µ, n, t, a, s, d) = 0'

Given the tuple (0, k, r, µ, n, t, a, s, d) , the function modsvc
returns a schedule identical to 0 except with the service in-
stantiation indexed by n in a prototype-event instantiation be-
longing to 0 (and identified by the tuple (k, r, µ) ) replaced
with a service instantiation (t, a, s, d) .

Definition 107: slipsvc : O -^ O E)

h
(0, k, r, µ, n, t, a, snew, d) E

OxNx R0 x M xN2 x A0 xN2 ,
( k, r, µ, n) = rndsvc(0),
p E CPRM

0 (k, r, µ ) , p E 0, p [n] = (t, a, s, d) ,
µV = (µV

1 , ... , µV5) E M,
µV E V (a1 , r2 )
( s' , d' ) E N2 ,
(t , a , s' , d') = Y Imax (r, k, n, µ, µV ) , and

snew = rndint(s' , (s' + d' - d) )] #.
slipsvc(0) = modsvc(0, k, r, µ, n, t, a, snew, d)

Given a schedule 0, slipsvc(0) returns a schedule identical to
0 except with a randomly selected service instantiation in a
prototype-event instantiation belonging to 0 replaced with a
service instantiation resulting from slipping the original ser-
vice instantiation to the left or right by an allowed random
amount.

Definition 108: chngsvcdur : O -^ O E)

h
(0,k,r,µ) EOxNx R0 x M,

(k, r, µ, n) = rndsvc(0),
p E C0

PRM (k, r, µ ) , p E 0, p [n] = (t, a, s, d ) ,
µV = (µV

1 , ... , µV5) E M,
µV E V (a1 , r2 ) ,
(s' , d' ) E N2 ,
(t, a, s' , d') = YImax (r, k, n, µ, µV ) ,
(λ, •, •, d- , d+) E L0 x N4 ,
r3 [k] [n] = (λ, •, •, d-, d+ ) ,
dmax = min({d' , d+ }) , and

dnew = rndint(d- , dmx )] #.
chngsvcdur(0) = modsvc(0, k, r, µ, n, t, a, s, dnew)

Given a schedule 0, chngsvcdur(0) returns a schedule iden-
tical to 0 except with a randomly selected service instantia-
tion in a prototype-event instantiation belonging to 0 replaced

with a service instantiation resulting from changing the du-
ration of the original service instantiation by an allowed ran-
dom amount.

Definition 109: chngsvcsta: O -^ O E)

h
(0,k,r,µ) EOxNx R0 x M,

(k, r, µ, n) = rndsvc(0),
p E C0

PRM (k, r, µ ) , p E 0, p [n] = (t, a, s, d ) ,
1; E E(A0 ), i = rndint(0, 

IIA0 I - 1),
j E N, j < len(1;),1; [j ] = a, i =6 j,

a' =1; [i], a'
1 =6 a1 , a'3 = a3 , a'4 = a4 ,

µV = (µV
1 , ... , µV5) E M,

µV E V (a1 , r2 ) ,
(s' , d' ) E N2 ,
(t, a' , s' ,d' ) = YImax (r, k, n, µ, µV ), and

[(t + s) , (t + s + d)] C [(t + s' ) , (t + s' + d') ]
] 

#.

chngsvcsta(0) = modsvc(0, k, r, µ, n, t, a' , s, d)

Given a schedule 0, chngsvcsta(0) returns a schedule iden-
tical to 0 except with a randomly selected service instan-
tiation in a prototype-event instantiation belonging to 0 re-
placed with a service instantiation resulting from changing
the support antenna of the original service instantiation to a
randomly selected allowed antenna on a different station.

Definition 110: chngsvcant: O -^ O E)

h
(0,k,r,µ) EOxNx R0 x M,

(k, r, µ, n) = rndsvc(0),
p E C0

PRM (k, r, µ ) , p E 0, p [n] = (t, a, s, d ) ,
1; E E(A0 ), i = rndint(0, 

I
IA0 I - 1),

j E N, j	 1;
t
< len( ), 1;[ j ] = a, i # j,

a' = S [i ] ,a'
1 = a1 , a'

3 = a3 , a'
4 = a4

] 
#.

chngsvcant(0) = modsvc(0, k, r, µ, n, t, a' , s, d)

Given a schedule 0, chngsvcant(0) returns a schedule iden-
tical to 0 except with a randomly selected service instanti-
ation in a prototype-event instantiation belonging to 0 re-
placed with a service instantiation resulting from changing
the support antenna of the original service instantiation to a
randomly selected allowed antenna on the same station.

Definition 111: replacepei : O -^ O E)

h
(0, 0' , k, k' , r, µ) E O2 x N2 x R0 x M,

(k, r, µ) = rndpei(0),
k' = rndint(0, len(r3 ) - 1), k' =6 k,
p E C0

PRM (k,r,µ ) ,p E 0,
p' E C0

PRM (k' , r, µ ) , p' E 0',

0\{p} = 0'\{p'
}] 

#.

replacepei(0) = 0'
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Given a schedule 0, replacepei(0) returns a schedule identi-
cal to 0 except a randomly selected prototype-event instan-
tiation belonging to 0 is replaced with an instantiation of a
randomly selected different prototype event for the same re-
quirement and for the same mission event relative to which
the original prototype event was instantiated.

Definition 112: cutexcesspei : Θ -+ Θ E)

[
(0, 0' , k, k' , r, µ) E Θ2 x N2 x R0 x M,

violationsSKIPFILL* (0) > 0,

Q = 
{
p: (k, i, r, µ) E N2 x R0 x M,

i < len(Mtype (r)), ¬i E Mskips(r, 0),

µ = Mtype (r) [i] , p E C0
PRM (k,r,µ) ,p E 

0}] 
#.

cutexcesspei(0) = 0\Q

Given a schedule 0, cutexcesspei(0) returns a schedule iden-
tical to 0 except all excess prototype-event instantiations be-
longing to 0 excised. Excess prototype-event instantiations
are those that cause the function violationsSKIPFILL* (see
Definition 70) to return a value greater than 0.

Definition 113: swappei: Θ2 -+ Θ2 E)

[
(0, 0' , e, e' , k, k' , r, µ) E Θ4 x N2 x R0 x M,

0 =6 0' , (k, r, µ) = rndpei(0),
k' = rndint(0, len( r3 ) - 1), k' =6 k,

p E C0
PRM (k, r, µ ) , p E 0,

p' E C0
PRM (k' , r, µ ) , p' E 0',

e = 0\{p} U {p'},
e' = 0'\{p'} U {p}] #.

swappei(0, 0') = (e, e')

Given a pair (0, 0' ) of schedules, swappei(0, 0') returns a
pair (e, e' ) of schedules identical to (0, 0' ) except a ran-
domly selected prototype-event instantiation belonging to 0
is swapped in 0 ' with an instantiation of a randomly selected
different prototype event for the same requirement and for
the same mission event relative to which the original proto-
type event was instantiated.

Definition 114: swappeionr: Θ2 -+ Θ2 E)

[
(0, 0', e, e' ) E Θ4 , 0 =6 0',

r = rndmember(R0 ),

Q =
{

x : x E 0, (k,r, µ) E N x R0 x M,

x E C0
PRM (k,r,µ) } E)

[ (k, r, µ) E N x R0 x M, x E Co
RM (k, r, µ) ,

y E C0
PRM (k,r,µ) ,x E Q,y E Q] #. x = y,

B =
{

x : x E 0', (k,r, µ) E N x R0 x M,

x E C0
PRM (k,r,µ) } E)

[
(k,r,µ) E N x R0 x M,x E C0

PRM (k,r,µ) ,

y E C0
PRM (k,r,µ) ,x E B,y E B] #. x = y,

e = (0\Q) U B,

e' = (0'\B) U 
Q] 

#.
swappeionr(0, 0') = (e, e')

Given a schedule pair (0, 0 ' ) , swappeionr returns a schedule
pair (e, e' ) identical to (0, 0' ) except that for a randomly se-
lected requirement r all prototype-event instantiations for r
belonging to 0 are swapped with all prototype-event instanti-
ations for r belonging to 0'.

Definition 115: swappeionu: Θ2 -+ Θ2 E)

[
(0, 0' , e, e' ) E Θ4 , 0 =6 0',

u = rndmember(U0),

Q = 
{
x: (k , r = (r1 , ... , r17 ) , µ) E N x R0 x M,

r2 = u,x E C0
PRM (k,r,µ) ,x E 0} E)

[
(k,r,µ) E N x R0 x M,x E C0

PRM (k,r,µ) ,

y E Co
RM (k,r,µ) ,x E Q,y E Q] #. x = y,

B = 
{
x: (k , r = (r1 , ... , r17) , µ) E N x R0 x M,

r2 = u,x E C0
PRM (k,r,µ) ,x E 0'} E)

[
(k,r,µ) E N x R0 x M,x E C0

PRM (k,r,µ) ,

y E C0
PRM (k,r,µ) ,x E B,y E B] #. x = y,

e = (0\Q) U B,

e' = (0'\B) U 
Q] 

#.
swappeionu(0, 0') = (e, e')

Given a schedule pair (0, 0' ) , swappeionu returns a schedule
pair (e, e' ) identical to (0, 0' ) except that for a randomly se-
lected user u all prototype-event instantiations for u belong-
ing to 0 are swapped with all prototype-event instantiations
for r belonging to 0'.

Definition 116: swapearlypeionr : Θ2 -+ Θ2 E)

^
(0, 0' , e, e ') E Θ4 , 0 =6 0',

r = rndmember(R0 ),len(Mtype (r)) > 1,
j = rndint(0, len(Mtype (r)) - 2),

Q = {x : x E 0,

(i , k , r = (r1 , ... , r17 ) , µ) E N2 x R0 x M,

i ≤ j, µ = Mtype (r) [i], x E C0
PRM (k, r, µ) } E)

[
(k,r,µ) E N x R0 x M,x E C0

PRM (k,r,µ) ,

y E C0
PRM (k,r,µ) ,x E Q,y E Q] #. x = y,

B = {x : x E 0'
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( i, k, r = (r1 , ... , r1g), µ) E N2 x R0 x M,

i < j, µ = Mtype (r ) [i], x E C0
PRM (k, r, µ) } E)

[
(k, r, µ) E N x R0 x M, x E CoRM (k, r, µ),

y E CoRM (k,r,µ) ,x E B,y E B] #. x = y,

e = (0\Q) U B, 
1

e' = (0'\B) U Q] #.

swapearlypeionr(0, 0 ' ) = (e, e')

Given a schedule pair (0, 0'), swapearlypeionr returns a
schedule pair (e, e ') identical to (0, 0' ) except that for a ran-
domly selected requirement r and a randomly selected mis-
sion event instance of type r4 all prototype-event instantia-
tions for r earlier than m belonging to 0 are swapped with
all prototype-event instantiations for r earlier than m belong-
ing to 0'.

Definition 117: swapmidpeionr: O2 -+ O2 E)

^
(0, 0 ' , e, e ') E O4 , 0 =6 0',

r = rndmember(R0 ),len(Mtype (r)) > 2,
i = rndint(0, len(Mtype (r)) - 3),
j = rndint( i + 1, len(Mtype (r)) - 2),

Q = {x : x E 0,

(n, k , r = (r1 , ... , r1g), µ) E N2 x R0 x M,
i < n < j, µ = Mtype (r ) [n],

x E C0
PRM (k,r,µ) } E)

[
(k, r, µ) E N x R0 x M, x E C0

PRM (k, r, µ),

y E C0
PRM (k,r,µ) ,x E Q,y E Q] #. x = y,

B =
{

x : x E 0',

(n, k, r = (r1 , ... , r1g), µ) E N2 x R0 x M,
i < n < j, µ = Mtype (r ) [n],

x E CoRM (k,r,µ) } E)

[
(k, r, µ) E N x R0 x M, x E C0

PRM (k, r, µ),

y E C0
PRM (k,r,µ) ,x E B,y E B] #. x = y,

e = (0\Q) U B, 
1

e' = (0'\B) U Q] #.

swapmidpeionr(0, 0' ) = (e, e')

Given a schedule pair (0, 0'), swapmidpeionr returns a
schedule pair (e, e ') identical to (0, 0' ) except that for a ran-
domly selected requirement r and two randomly se-
lected mission event instances µ and µ' of type r4

all prototype-event instantiations for r inclusively be-
tween µ and µ' belonging to 0 are swapped with all

prototype-event instantiations for r earlier than m belong-
ing to 0'.

Definition 118:
rndsvcs : N2 x R0 x M -+ V (N x A0 x N2 ) E)

d (n, k, r = (r1 , ... , r1g), µ = (µ1 ,... , µs)) E
N2 x R0 x M,

(tp , a, s, d) E rndsvcs(n, k, r, µ) #.
µ1 = r2 , µ2 = r4 , k < len(r3 ), n < len(r3 [k]),

t[[
Q

p = tref(r, µ),

=
{

(tp ,a,s' , d' ) E N x A0 x Z x N:

EIµV E M E) (tp , a, s' , d') E Y.
I
 (r, k, n, µ, µV

) },

(tp , a, s ' , d') = rndmember( Q ),
(• , s- , s+ , •, d+ ) = r3 [k][n],

= [s', (s' + d')] n [s- , (s+ + d+
]] 

#.

[s = rndint((- , ((+ - d-)),
dmax = min( {d+ , ((+ 

1
- s)}),

d = rndint(d- , dmax )] 
J

Given (n, k, r, µ), rndsvcs(n, k, r, µ) is a set of randomly se-
lected service instantiations for service r3 [k] [n] relative to
mission event instantiation µ.

Definition 119: rndpeis : N x R0 x M -+
V(codomain(YI)) E)
d (k, r = (r1 , ... , r1g), µ = (µ1 , ... , µs )) E

N x R0 x M,
1; E rndpeis( r, k, µ) #.
µ1 = r2 , µ2 = r4 , k < len(r3 ),
1;is a sequence having len(r3 [k]) elements, and[ ^

n E N, n < len(1;)] #. 1; [n] E rndsvcs(n, k, r, µ)]

Given (k, r, µ), rndpeis( k, r, µ) is a set of randomly selected
prototype-event instantiations for prototype event r 3 [k] rela-
tive to mission event instantiation µ.

Definition 120: ORND: N+ -+ V(O) E) dn E N+ ,
EIQ C O E) Q l = n and 0 E Q #.
dp E 0,

EI (k, r = (r1 , ... , r1g), µ = (µ1 , ... , µs )) E
N x R0 x M E)

µ1 = r2, µ2 = r4 ,
k = rndint(0,len( r3 ) - 1),

EIi E N E)
i < len (Mtype (r)) E)
µ = Mtype (r) 

^
Mskips (r, 0) [i ] ^, and

p E rndpeis( k, r, µ),
and ORND (n) = Q

ORND (n) returns a set of n randomly generated schedules.
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5. Optimal Schedule-Generation
Algorithm

The definitions given in Section 4 (page 15) permit a pre-
cise specification of an algorithm for generating optimal so-
lutions for the NASA space-data communications schedul-
ing problem. These definitions encompass functions for gen-
erating random permissible solutions, creating mutations of
members of the solution space, creating children of pairs of
members of the solution space using the “genetic crossover”
mechanism, and evaluating the fitness of members of the so-
lution space.

5.1. Specification of Optimal
Schedule-Generation Algorithm

Algorithm 1 (Optimal-Schedule Generation Algorithm):

1. Assume given:

(a) v E N+ is the run time limit in units of seconds.

(b) n0 E N+ is the nominal working size of the pop-
ulation at the beginning of each iteration of the
algorithm.

(c) 11 = ΘRND (n0 ) , the initial, randomly selected
population of schedules.

(d) ψ E N+ , the number of steps in which new mem-
bers of the population are generated in each iter-
ation of the algorithm, i.e., the number of steps
starting with step 4 and ending with step 15.

(e) a E NO , a tuple having ψ elements E)

i. Vj E { 1, ... ,ψ}, aj E N is the number of
new candidate members to be added to the
schedule population in step j + 4 in the al-
gorithm.

ii. aj = n0 .
j ∈{1,...,O}

The sequence a consists of the values of the
internal parameters of the algorithm.

(f) 0 ≤ T E R, a small value to represent a policy
or judgment as to how close to perfect a sched-
ule must be to be considered “good enough” to
exit the algorithm. T normally would be set small
enough to ensure that the algorithm always ran
for the maximum allowed run time v.

2. Let 11 ' = Ø. In each iteration of the algorithm, 11 ' will
accumulate members to be added to the present popu-
lation, from which combination the n0 best schedules
will be extracted to compose the next generation.

3. V7r E 11, let 7r' = cutexcesspei( 7r) and let 11 =
(11\{ 7r} ) U {7r ' } .

4. Vj E {1, ... ,ψ}, randomly form 11j C 11 E) I11j =
aj .

5. V7r E 11 1 , let 7r' = slipsvc(7r), and let 11' = 11 ' U {7r ' } .

slipsvc (Definition 107) provides a “mutation”
mechanism, where parts of an “organism’s” “genome”
are modified to produce an offspring, which is then in-
corporated into 11' .

6. V7r E 112 , let 7r' = chngsvcdur( 7r), and let 11' = 11' U
{7r' } .

chngsvcdur (Definition 108) provides a “mutation”
mechanism, where parts of an “organism’s” “genome”
are modified to produce an offspring, which is then in-
corporated into 11' .

7. V7r E 113, let 7r' = chngsvcsta(7r), and let 11 ' = 11' U
{7r' } .

chngsvcsta (Definition 109) provides a “mutation”
mechanism, where parts of an “organism’s” “genome”
are modified to produce an offspring, which is then in-
corporated into 11 ' .

8. V7r E 114 , let 7r' = chngsvcant( 7r), and let 11' = 11 ' U
{7r' } .

chngsvcant (Definition 110) provides a “mutation”
mechanism, where parts of an “organism’s” “genome”
are modified to produce an offspring, which is then in-
corporated into 11 ' .

9. V7r E 115 , let 7r ' = replacepei( 7r), and let 11' = 11' U
{7r' } .

replacepei (Definition 111) provides a “mutation”
mechanism, where parts of an “organism’s” “genome”
are modified to produce an offspring, which is then in-
corporated into 11 ' .

10. Let Q = RND(
12
as , 112s) 

E) (7r,0) E Q ⇒¬ (0, 7r) E
Q. V(7r, 0) E Q, let (7r' , 0') = swappei( 7r, 0) and let
11' = 11 ' U {7r' ,0' } .

swappei (Definition 113) provides a “crossover”
mechanism, where the “parents” (7r, 0) produce “off-
spring” (7r ' , 0' ), parts of whose “genome” are from dif-
ferent parents. Since two new solutions are added for
each member of Q, a total of as now solutions will be
added. Similarly for each of the subsequent crossover
steps below.

11. Let Q = RND( 1
2 a7 , 1127) 

E) (7r, 0) E Q ⇒ ¬ (0, 7r) E
Q. V(7r, 0) E Q, let (7r' , 0') = swappeionr( 7r, 0), and
let 11 ' = 11 ' U {7r ' , 0'} .

swappeionr (Definition 114) provides a “crossover”
mechanism, where the “parents” (7r, 0) produce “off-
spring” (7r ' , 0' ), parts of whose “genome” are from dif-
ferent parents.
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12. Let Q = RND( 1
2 a8 , li28) E) (7r, o) E Q #- ^ (o, 7r) E

Q. d (7r, o) E Q, let (7r ' , o ') = swappeionu(7r, o ) , and
let li' = li' U 1 7r' , o ' } .

swappeionu (Definition 115) provides a “crossover”
mechanism, where the “parents” (7r, o) produce “off-
spring” ( 7r' , o ' ) , parts of whose “genome” are from dif-
ferent parents.

13. Let Q = RND( 1
2 a9 , li29) E) (7r, o) E Q #- ^ (o, 7r) E

Q. d (7r, o) E Q, let 7r' , o ' = swapearlypeionr( 7r, o ) ,

and let li' = li' U 1 7r' , o ' } .

swapearlypeionr (Definition 116) provides a
“crossover” mechanism, where the “parents” (7r, o)

produce “offspring” (7r ' , o' ) , parts of whose “genome”
are from different parents.

14. Let Q = RND( 1
2 a10 , li2

10 ) E) (7r, o) E Q #-^(o, 7r) E
Q. d(7r, o) E Q, let (7r ' , o') = swapmidpeionr( 7r, o ) ,

and let li' = li' U 1 7r' , o ' } .

swapmidpeionr (Definition 117) provides a
“crossover” mechanism, where the “parents” (7r, o)

produce “offspring” (7r ' , o' ) , parts of whose “genome”
are from different parents.

15. Let li'' = ORND (a11) . Let li' = li' U li'' .
This adds to the population at most a11 new mem-

bers randomly selected from O.

16. Find lit C_ li U li' E) IIlit II = n0 and [7r1 E lit , 7r2 E
(li U li' ) \lit] #- fitness(7r1) < fitness(7r2 ). Set li =
lit and set li' = Ø.

17. Find 7r1 E li E) ζ E li #- fitness(ζ) > fitness(7r1). 7r1

is the best member of li. If fitness(7r1) < 1 + T or run
time exceeds the limit v, go to step 18; otherwise, go to
step 4.

18. Output the best schedule 7r in li and exit.

5.2. Schedule-Generation Algorithm: Internal
Parameters

Every successive generation of the population of schedules
retains the best members of the previous generation com-
bined with the new members added in the course of running
the algorithm. The best member of a generation will be at
least as fit as any member of the preceding generation, and
consequently the fitness of the best member of each genera-
tion will be a monotonic function of processing time (or the
iteration count) (see Appendix 10 (page 40)).

The algorithm as specified in the previous subsection does
not stipulate the values of the internal parameters (repre-
sented by the tuple a), and is silent on exactly how they
should be chosen. There is no obvious relationship between
the values selected and the performance that should be ex-
pected of an implementation of the algorithm, although a

method of finding a performance-optimizing set of choices
for those values would be, potentially, highly advantageous.

While any reasonable choices of the values of the above
internal parameters would not prevent an implementation of
the algorithm from reaching an optimal schedule for a given
scheduling scenario, other choices might improve perfor-
mance. In theory, while keeping constant (a) the seeds for
the random-number generator, (b) the run time, and (c) the
computing resources between runs, runs of the algorithm us-
ing different choices of the values of the internal parameters
may not find solutions with the same fitness; that is, some
of the choices may be significantly more effective in find-
ing optimal solutions with better fitness scores. It should be
noted that these internal parameters (as represented by the tu-
ple a) are not the only internal parameters that might be de-
fined. For example, in the mutation steps 5 through 9, the
number of places in the individuals’ genome that are modi-
fied to produce new individuals could be adjusted to reveal
the effect on the algorithm performance.

If, for a given representative scheduling scenario, experi-
mental runs of the implementation using a variety of choices
for the internal-parameter values revealed a significant per-
formance advantage for a particular choice, it would be valid,
absent any further insight or data, to use that choice when
running the implementation for other scheduling scenarios.
The idea would be that a random or uninformed choice of the
values is not likely to be better than a choice that has been
found to be, for some representative scheduling scenario, the
best one of a set of tested alternatives.

Section 6 will specify an algorithm by which, for any
given scheduling scenario, an optimal choice of the values for
the internal parameters may be found, assuming such an op-
timum exists (where “optimum” is again used in the sense in-
dicated in Section 2.4.7 on page 13). The optimal choice, for
any given scheduling scenario, would be one for which the
algorithm’s performance could not be improved by means of
a different choice, and the problem of finding such an opti-
mum will hereinafter be referred to as the S O problem.

In Section 7, we will propose an answer to the question
of whether there is any reasonable way of relating schedul-
ing scenarios to each other, where a “small” difference be-
tween two scheduling scenarios would mean a correspond-
ingly small difference in the optimal choice of the values
for the internal parameters. We will seek to identify a solu-
tion space for what we hereinafter call the S ll problem—the
final abstraction of the overall space data-communications
scheduling problem—in which, for the implementation of
the schedule-generation algorithm specified in Section 5.1,
there exists an automated way to preprocess a given schedul-
ing scenario to identify an optimal choice of the internal-
parameter values. The remaining question of whether the per-
formance of the overall system will be sensitive to differences
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in the choice of the values of the internal parameters will be
left to future work—likely entailing considerable computa-
tional effort rather than theoretical analysis.

6. Internal-Parameter Optimization:
The S ^ Problem

We will now take up the problem—which was denominated
in the previous section as the S l problem—of finding an op-
timal choice of the values of the schedule-generation algo-
rithm’s internal parameters for a given scheduling scenario,
thereby to optimize the schedule-generation algorithm for
solving that scheduling scenario.

6.1. The S O Problem: Introduction

The internal parameter-optimization algorithm to be speci-
fied in Section 6.3 will employ the same probabilistic search
concepts presented in Section 5 in specifying the schedule-
generation algorithm. As before, a population of solutions of
the optimization problem will be evolved iteratively, and on
each iteration the fitness of each member of the population
will be determined. Not all, but just the fittest members of
each generation will be allowed to survive into the next gen-
eration.

By definition, each member of the population is not a
schedule (as in the schedule-generation algorithm itself),
but rather a choice, e, of values of the internal parameters
of the schedule-generation algorithm, and choice e will re-
main fixed until the schedule-generation application program
produces the best possible (optimal) schedule for the given
scheduling scenario y. The fitness of each member of the
evolving population of such choices e would be a numerical
value representing the performance of the system. By defini-
tion, the performance of the system (given the choice e) will
be the fitness score of the best schedule that can be produced
by the schedule-generation algorithm in a prescribed amount
of processing time, with prescribed computing resources.

During the entire iterative process of finding the best so-
lution (i.e., the best choice, ê, of values of the internal pa-
rameters of the schedule-generation algorithm), the schedul-
ing scenario will remain fixed, and at the end of the iterative
process, the choice of the internal parameter values that re-
sulted in the best performance is considered to be optimal.

This abstracted search problem—the Sl problem—will
also have its own internal parameters, one of which is the pre-
scribed amount of processing time allowed for the above it-
erative process to produce a solution. Additional internal pa-
rameters will be described below. While a subsidiary problem
could be defined for the optimization of these parameters, it
will be seen that this subsidiary problem would also have its

own internal parameters to be optimized, leading to a sub-
subsidiary problem of optimizing these internal parameters,
and so on, without end—a kind of infinite regression. In the
case of the NASA scheduling domain, it seems reasonable to
ignore these subsidiary problems of optimizing internal pa-
rameters of optimization problems, and instead, just make ju-
dicious choices for the values of the internal parameters for
the problem at hand (i.e., the S l problem), in the full expec-
tation that the only disadvantage of doing so is that, to reach
a solution that has the same fitness, processing time might be
greater than it would have been with optimization. This posi-
tion is further justifiable on the grounds that a one-time effort
solving the S ll problem, as proposed in Section 7, can obvi-
ate the need to pursue indefinitely a chain of S l -problem op-
timizations using the above iterative process.

6.2. The S O Problem: Definitions

Definition 121 (Set of All Scheduling Scenarios):

r=
{

y : y = (Ll C L0, Ol C O,Il C I,

o
Pl C P,Ml C M,Rl C R0) E)

y = (Ll , O l , Il , Pl , M l , Rl ) E r #.

1. (r1, ... , r17) E Rl , k E N, k < len(r3 ),
i E N, i < len(r3 [k]) #.

r3 [k] [i] = (A, •, •, •, •) #. A E Ll,

2. (A1, ... , A7) E Ll #. El (r1, ... , r17) E Rl E) A1 = r2,

3. (µ1, ... , µs) E M l #. El (r1, ... , r17) E Rl E)

µ1 = r2,

4. ( (s, s' , A, A' ) ,•) E I l ⇔
El (µ1, ... , µs) E V (s, A1) ,

El (µ'
1 ,..., µ's) E V ( s', A'1 ) ,

El (r1, ... , r17) E Rl , and
El (r'

1 , ... , r'17) E Rl E)

A1 = r2, A'
1 = r '2,

µ1 = r2, µ'1 = r '2

5. (u, •) E Pl #. El(r1, ... , r17) E Rl E) u = r2

r is the set of all possible scheduling scenarios.

Definition 122: fitnessl : r x NO x N+ → R E)

(y, e, t) E r x NO x N+ #.

t is the run time allowed in units of seconds
fitnessl (y, e, t) = fitness(σ) is the fitness score of the

best schedule, σ, produced by the schedule-generation algo-
rithm running on the prescribed computing resources during
a run interval of length equal to t seconds, for the schedul-
ing scenario y and the choice e of the values of the internal
parameters. (See Definition 103 (page 28) for the definition
of the function fitness.) ψ, recall, is the number of internal
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parameters of the schedule-generation algorithm (see Algo-
rithm 1, steps 1d and 1e (page 32)).

fitness l is the “fitness function” for the Sl problem, which re-
turns 1 for a perfect choice of the values of the internal pa-
rameters of the schedule-generation algorithm and larger val-
ues for choices that are not so good.

6.3. Algorithm for Solving the SO Problem

Algorithm 2 (S l Algorithm):

1. Assume given:

(a) y E P, a scheduling scenario.

(b) v E N+ , representing the allowed run time for the
schedule-generation algorithm whenever it is ex-
ecuted in the following steps.

(c) vl E N+ , representing the allowed run time for
performing iterations of the following steps in the
search for the optimal choice of the values of the
internal parameters of the schedule-generation al-
gorithm.

(d) V)' E N+ , the number of steps in which new
members of the population are generated in each
iteration of the algorithm, i.e., the number of steps
starting with step 3 and ending with step 7.

(e) a' E Nψ E) dj E 11, ... , V)' } , a'j is the num-
ber of new candidate members to be added to the
population in step j + 2 in the algorithm. Let

X
n'0 =	 a 'j

j∈{1,...,ψ'}

be the nominal working size of the population on
each iteration of the algorithm.

(f) ADDSLI%IT l E N+ . This is the limit on the
number of new members of the population that
can be added to the population in any algorithm
step.

(g) II= RND(no , Nψ ) E) 0 E II ⇒
dj E 11 ,. .0 . , V)} , 0 [j] < ADDSLI%IT l .

(b) let j = rndint(11, ... , V) }),
(c) let 7r' [j] = rndint(11, ... , ADDSLI%ITl }),
(d) let II' = II ' U 17r' }.

This is a “mutation” mechanism, where one element of
an “organism’s” “genome” is modified to produce an
offspring, which is then incorporated into II ' .

5. Let Q =RND( 1
2 a'

2 , II2
2 ) E)

(7r, 0) E Q ⇒¬(0, 7r) E Q.

d(7r, 0 ) E Q,

(a) let n = rndint(11, ... , V)}),
(b) let 7r' = (7r [1], ... , 7r [n] , 0 [n + 1],... , 0 [V)]),

(c) let 0' = (0 [1], ... , 0 [n] , 7r [n + 1], ... , 7r [V)]), and

(d) let II' = II ' U 17r ' , 0'} .

This is a “crossover” mechanism, where ran-
domly many of the first elements of one “organism’s”
“genome” are swapped with the same elements in an-
other, resulting in two new members, which are then
incorporated into II' .

6. Let Q =RND( 1
2 a'

3 , II2
3 ) E)

(7r, 0) E Q ⇒¬(0, 7r) E Q.

d(7r, 0 ) E Q,

(a) let n1, n2 = rndint(11,... , V) }), n1 =6 n2,

(b) let 7r' = (7r [1], ... , 7r [n1],
0 [n1 + 1], ... , 0 [n2 ], 7r [n2 + 1], ... , 7r [V)]),

(c) let 0' = (0 [1], ... , 0 [n1],	
l'7r [n1 + 1], ... , 7r [n2 ], 0 [n2 + 1],. , 0N)]) ,

(d) and let II' = II ' U 1 7r' , 0'} .

This is a “crossover” mechanism, where a random
section of one “organism’s” “genome” is swapped with
the same elements in another, resulting in two new
members, which are then incorporated into II ' .

7. Let Q ⊆ Nψ E) 0 E Q ⇔
dj E 11, ... , V)} , 0 [j] < ADDSLI%IT l .
Let II' = II ' U RND(a'

4 , Q ).
This adds a'

4 new members to the population ran-
domly selected from Nψ.

2. Let II' = 0. In each iteration of the algorithm, II' will	 8. Find IIt ⊆ II U II' E)
accumulate members to be added to the present popula- 	 IIt  = no and [7r E IIt , 0 E (II U II ')\II t ] ⇒
tion, from which combination the n'0 best members will 	 fitnessl (y, 7r, v) < fitnessl (y, 0, v).
be extracted to compose the next generation. 	 Let II = II t and II' = 0.

3. dj E 11, ... , V)' } , randomly form	 9. Find 7r E II E) ζ E II
IIj ⊂ II	 aj .

	 fitnessl (y, ζ, v) ≥ fitness l (y, 7r, v ).
4. Let Q ⊆ II1 E) Q = a

'
1 .	 7r is the best member of II.

d7r E Q,	 10. If run-time exceeds vl , output the best member 7r in II
(a) let 7r' = 7r,	 and exit; otherwise, go to step 3.
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7 A FURTHER ABSTRACTION: THE Sii PROBLEM

6.4. The SO Problem: Discussion

As in the case of the schedule-generation algorithm itself, the
population of solutions in the S i algorithm evolve (through
the iterative steps of evolutionary search) with a monotonic
improvement of the fitness score of the best member of the
population toward some evidently limiting value. After some
elapsed processing time, the run must be terminated and if
the “knee” of the curve that represents the fitness of the best
member of the population at the end of each iteration of the
algorithm has been passed (see Section 10.2 (page 41)), then
the best solution produced to that point is considered to be
the optimal solution of the S i problem.

The question might arise whether the evolving population
of solutions might enter a runaway progression of the magni-
tude of the values of the internal parameters in the execution
of the above algorithm. It is quickly seen that this is not a con-
cern: recall that each of the schedule-generation algorithm’s
internal parameters represents the number of new schedules
that will be allowed to be added to the population in some
given step in each iteration of the algorithm. If a choice, e,
of the values of the internal parameters included a very large
value, the fitness of the best schedule produced within the
schedule-generation algorithm’s run-time limit, v (a given in
the S i algorithm), would be so bad that e likely would not be
a member of the next generation.

While no experimentation has been conducted to test it,
the working hypothesis is that a diminishing return would re-
sult from unbounded increases in the magnitude of any one
of the internal parameters, other factors being constant. Ac-
cording to this hypothesis, the performance achieved by the
schedule-generation algorithm could be graphed as a func-
tion of the value of an arbitrarily chosen one of the schedule-
generation algorithm’s internal parameters, keeping other pa-
rameters constant. This graph would have a point to the right
of which the performance would worsen monotonically. The
left-most such point could be found through applying the
approaches described herein, but it could only be regarded
as pseudo optimal since it would differ from the optimal
solution that would be found when the other internal pa-
rameters were unconstrained as well. Further analysis based
on a model of the performance of the schedule-generation
algorithm will be undertaken in Appendix A (Section 10
(page 40)).

7. A Further Abstraction: The S ^^

Problem

7.1. The SOO Problem: Introduction

To maximize the practicality of the technology disclosed
herein, we now consider the S ii problem (described briefly
at the end of Section 5)—i.e., the problem of estimating an
optimal choice of the values of the schedule-generation al-
gorithm’s internal parameters so that it would not be neces-
sary to perform the whole iterative (and computationally ex-
pensive) process of solving the S i problem for every given
new scheduling scenario. The S ii objective is to specify a
means of easily estimating the best (i.e., optimal) choice of
the schedule-generation algorithm’s internal parameters, us-
ing (abstracted) information about the given scheduling sce-
nario itself.

No reason has been identified to suspect that the S ii so-
lution space is so ill-behaved as to render it impossible to
find a reasonably accurate means of estimating an optimal
choice of the values of the algorithm’s internal parameters
for “points” in the solution space that are “between” other
points for which the optimal choice has actually been calcu-
lated (as a solution of the S i problem). However, the remain-
der of this section (which describes an approach for solving
the Sii problem) may be regarded as somewhat speculative
in the sense that (a) the author has performed only a lim-
ited amount of relevant experimentation (as mentioned ear-
lier in Section 2.4.6 (page 12)) and (b) the author’s proposed
use of certain function-fitting (data regression) techniques,
while plausible, is not accompanied by a thorough support-
ing analysis. It is assumed that available computing platforms
are adequate for solving the S ii problem, and that some data-
regression technology must suffice.

To enable a data-regression approach, we make use of a
scheduling-scenario characterization function:

Definition 123 (Scheduling Scenario Characterization):
A: r → N8 E) y = (Li , Oi , Ii , Pi , Mi , Ri ) E r ⇒
EI (x1 , ... , x8 ) E N8 E) A(y) = (x1 , ... , x8 ) and

1. Q = {r = (r1 , ... , r17) E Ri : r4 = “NIL” l

x 1 = 11Q 1	 J

2. Q = S r =(rl ,...,r1^ ) E RO : r4 # "W'

x2

 
= 11Q 11
	

l
ll	 J

3. Q = 
{
p: EIr = (r1 , ... , r17) E Ri , p is an element of

the sequence r3 } ⇒ x3 = 11Q 11

4. Q = 
{
µ: EIr = (r1 , ... , r17) E Ri ,
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µ = (µ1, ... , µ5) E M
l
, µ2 = r4 # “ ”l

x4 = Q II
	 J

5. x5 = IILlII

6. x6 = IIO lII

7. x7 = IIIlII

8. x8 = IIPlII

The function A produces an eight-dimensional “point” in
N8 , and, in relation to the Sll problem, we assume that, for
two scheduling scenarios y, y ' , the ordinary Euclidean dis-
tance

^X8	 1
2

a'
i - ai )

2

i=1

between two points

a = A(y) = (a1, ... , a8) E N8

a' = A(y
') = (a'

1 , ... , a'
8 ) E N8

representing the characterizations of y and y' , respectively,
corresponds to (is commensurate with) the “distance” be-
tween y and y'.

7.2. Data-Regression Approach

In the following paragraphs relative to solving the Sll prob-
lem, we assume the availability of a data-regression tech-
nique such as evolutionary search (genetic algorithms), ar-
tificial neural networks, Baysian networks, or support vector
machines.

Data regression [17, 26], a collection of well-studied
methods of modeling multi-dimensional data interrela-
tionships, is assumed to be viable as a means to derive a
function for rapidly estimating, for an arbitrary schedul-
ing scenario, the optimal choice of the values of the internal
parameters of the schedule-generation algorithm.

Data regression (or simply “regression”) is analogous to
simple least-squares curve fitting with one independent scalar
variable and one dependent scalar variable. Regression aims
to fit a hypersurface to the set of known data points in the so-
lution space. The best-fitting hypersurface can be expressed
as a function that returns the dependent value given the in-
dependent value. In the Sll problem, the independent value
would be the scheduling scenario (or, normally, the tuple
that characterizes a scheduling scenario (i.e., the value re-
turned by the function A (see Definition 123 (page 36))),
and the dependent value would be the estimate of the op-
timal choice of the values of the internal parameters of the
schedule-generation algorithm.

The essential, broad steps in applying a data-regression
approach to the Sll problem are as follows:

Algorithm 3 (Algorithm for Optimal-Internal-Parame-
ters Estimation):

Given:

A set P' ⊆ P of realistic/actual scheduling scenarios.
The results of running an implementation of the present
algorithm are highly dependent on the number and dis-
tribution of these scenarios. If the accuracy of the es-
timation function generated by this implementation is
not deemed adequate, then P' would need to be re-
vised and used in a fresh rerun. (Over the past three
decades, a great many actual scheduling-problem sce-
narios have been constructed and solved by the NASA
space-data communications scheduling system. These
scenarios would be a rich (and probably the most ap-
propriate and reliable) source of data for building the
set P'.)

Perform the following steps:

1. For each y E P',

(a) solve the Sl problem computationally, producing
the optimal choice e of the values of the internal
parameters of the schedule-generation algorithm,

(b) compute the characterization c = A(y).

2. Retain the set Q of known (calculated) points (c, e ) , as
obtained in step 1.

3. Randomly assign each member of the set Q to either of
two (approximately equally numerous) disjoint sets: a
training set Qtrain and a test set Qtest 3

QtrainI - 
I
IQtstI E {-1,0,1}

4. Perform data-regression using the training data set
Qtrain, resulting in the determination of the internal-
parameters-estimation function that best fits the mem-
bers of Qtrain.

5. Using the test data set Qtest, test and verify the estima-
tion function derived in step 4.

6. If the derived function passes the test, let f designate
the derived function (which represents the fitted hyper-
surface) and exit indicating success. If the derived func-
tion fails the test, then exit indicating failure, calling
upon the user to alter the given set of actual/realistic
problem scenarios (e.g., by increasing their number
or variety) (noting that this alteration gives an altered
problem) and rerun the algorithm.

The derived function f estimates the optimal choice of
the internal parameters of the schedule-generation algorithm,
given any scheduling scenario. This function can be incor-
porated into a fielded scheduling system to maximize overall
performance, and can be used as specified in Section 7.3.
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8 IMPLEMENTATION

7.3. Operational Use of Derived Estimation
Function.

The resulting tested and verified estimation function (speci-
fied as in Algorithm 3) would then become a tool for oper-
ational use within a fielded data-communications scheduling
system. The routine use of this tool would involve the follow-
ing straightforward steps:

Process 1 (Operational Use of Estimation-Function):

1. Prepare a scheduling scenario y.

2. Supply the characterization Λ(y) as input to the estima-
tion function.

3. Capture the estimation-function output a—the estimate
of the optimal choice of the schedule-generation algo-
rithm’s internal parameters for scheduling scenario y.

4. Use a in configuring the schedule-generation algorithm
for an execution run to produce an optimal schedule for
y.

7.4. The SOO Problem: Discussion

The data-regression technology called for in Algorithm 3
is associated with extensive research and application litera-
ture [2, 4, 6, 9, 13, 15, 20, 22, 23, 26, 29]. For the overall al-
gorithm optimization approach specified in Section 7 for the
S OO problem, it may be unjustifiable to assume the ready ap-
plicability of off-the-shelf applications. Effective use of the
relevant techniques and available applications may require
trial-and-error efforts and/or the guidance of experts.

It is explicitly assumed herein that, for the schedule-
generation algorithm disclosed herein (see Section 5),

optimizing the internal parameters of the schedule-
generation algorithm (see Section 6) is feassible

the relationship between the independent variables (the
problem-scenario characterization) and the dependent
variables (the solution found with fixed computing re-
sources) is smooth enough to support approximation
by means of some available data-regression technique
analogous to a standard curve-fitting technique, e.g.
the artificial neural network (ANN) techniques or some
other “hypersurface-fitting” technique.

the optimization would be effective in the follow-
ing sense: a system that implemented the schedule-
generation algorithm would require less computing
resources and have more rapid response in produc-
ing high quality schedules, if it took advantage of the
optimization of the choice of the values of the inter-
nal parameters, than if otherwise.

This set of assumptions has been tested by the author only
preliminarily (relative to the prototype implementation of the
unpublished predecessor of the algorithms in the present dis-
closure) and may, with experience, prove to be unjustified
with respect to the S OO problem. For example, it may be
found that, while the first two assumptions are confirmed to
be valid, the third one is not: the relationship identified in
the second assumption may be found to be essentially flat. It
would seem more likely, however, that the relationship identi-
fied in the second assumption lacks sufficient smoothness to
support any reasonable optimization process using the sug-
gested hypersurface-fitting technologies. A determination on
this question would require involvement of experts in any
such technology chosen for use.

The effort needed to obtain a usable function for esti-
mating the optimal values of the internal parameters (as de-
scribed in the present section) would be nontrivial, but it
would be a one-time effort with a potentially worthwhile in-
crease in operational efficiency of the scheduling system as a
whole. In carrying out the effort, it might be learned that no
significant variation in solution quality resulted from differ-
ent choices for the internal parameters. In that event, the de-
termination could be made that the effort had insufficient re-
turn and could be discontinued.

8. Implementation

8.1. Prototype Implementation of Predecessor
Algorithm

The author implemented the unpublished predecessor of the
foregoing algorithms (see Sections 5 and 6) for a proto-
type automated interference-mitigation scheduler and tested
it with input data for selected scheduling scenarios for three
actual NASA missions. For these limited cases, the proto-
type (some 54,000 lines of C++ code) performed with effi-
ciency at a level adequate for practical use—even when exe-
cuted on the 1995-vintage Unix workstation available at the
time. A limited comparison of results with output from the
Network Planning and Analysis System (NPAS) [30] devel-
oped at NASA Goddard satisfied the author as to the validity
and practicality of the approach.

In implementing the prototype, the author noted the util-
ity of a mathematically precise specification of the algo-
rithms. Such a specification clearly supports implementabil-
ity. It seems reasonable to believe that an implementation at-
tempted without such a specification but with only a typi-
cal set of system requirements (a) would entail considerable
risks of software rework as high level requirements became
better understood and fleshed out in detail and (b) would re-
quire a multiple of the schedule time and funding that would
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9 CONCLUSION

be sufficient with a specification as precise and complete as
the one provided in this disclosure.

8.2. Implementating the Disclosed Methods
and Algorithms

The present version of the algorithm improves—but main-
tains the essence of the approach of—its predecessor. In par-
ticular, readability, implementability, and solution-space cov-
erage are all improved. The present version should also be
more adaptable to accommodate inevitable changes in the
communications infrastructure, e.g., changes required to im-
plement possible new capabilities for supporting future ex-
ploration of the Moon and Mars.

The implementation of the predecessor algorithm sug-
gests no significant question as to the implementability of
the method and algorithm disclosed herein (see Section 5
(page 32)), given that the software-system design process is
carried out by individuals with an adequate background in
NASA’s Space and Ground Networks, mathematics, and ap-
propriate data-regression technique (if the implementation of
the S OO algorithm (Algorithm 6.3 (page 35)) were planned).

Any programming language that is in use in present
software implementation projects in NASA’s data-
communications network infrastructure, such as Java
and C++, possesses characteristics that would assure suc-
cess in implementing the disclosed algorithms. However,
preference should be given to a language that is also sup-
ported on an available supercomputer or grid computing sys-
tem for the purpose of running the scheduling system’s
internal-parameter optimization method described in Sec-
tion 6 and especially the further algorithm for deriving an
estimator function for the optimal values of the internal pa-
rameters as described in Section 7. These algorithms (as
distinguished from the schedule-generation algorithm it-
self) are very compute-intensive and should be carried out on
the most powerful available computing system, not on the or-
dinary computers that would be used for development or
operations.

An operational implementation of the herein disclosed
schedule-generation algorithm (Algorithm 1 (page 32))
might, in terms of size, be comparable to the prototype im-
plementation of the predecessor algorithm. However, under
current NASA system-development guidelines, opera-
tional systems must be implemented with more-stringent
development standards than were used for the earlier pro-
totype implementation, and, further, must accommodate
interfaces with existing operational systems. Conse-
quently, the necessary size of an operational implementation
of a new scheduling system based on the present disclo-
sure is presently undetermined but is likely to be signifi-
cantly greater than the size of the prototype.

9. Conclusion

The present disclosure describes an evolutionary (i.e., proba-
bilistic) search strategy as the primary approach for attaining
an optimal solution of the scheduling problem in the civilian
or military space data-communications network. In terms of
computer processing time for a problem domain of this kind
(whose solution space is so large that no direct algorithmic
prescription or brute-force method will suffice (see solution-
space analysis in Subsection 2.2)), a probabilistic search ap-
plication of the kind specified herein progresses, after an ini-
tial rapid improvement in quality, monotonically in an iter-
ative fashion towards (but without any expectation of actu-
ally arriving at) some evident (but nevertheless unspecifi-
able) limiting result that could not be improved upon through
any amount of processing, relative to some prescribed mea-
sure of “goodness” of solutions.

At any point during processing, the amount of additional
processing time that would be necessary to achieve an ad-
ditional improvement over already-found solutions becomes
greater and greater as the search proceeds. Even if no pre-
scriptive method exists by which to find an optimum in any
absolute sense, a probabilistic search strategy can approach
arbitrarily close to the limiting result, given unlimited pro-
cessing resources and time. But, as was observed in Subsec-
tion 2.4.5, it is not known how to determine how close to
the optimum is the best solution attained at any intermedi-
ate point in the processing. The existence of a limiting re-
sult (an optimum) seems intuitive, but in practice and in the-
ory, the limiting result cannot assuredly be attained nor can it
actually be specified—otherwise, logically, an optimum so-
lution itself would be at hand.

Nevertheless, it is well known that probabilistic search
techniques and methods of the kind described herein can
be used to reach optimal solutions for scheduling problems,
which leaves an opening for the herein disclosed attack on
the space data-communications scheduling problem. The rig-
orous specification of a system based on these probabilistic
search techniques and methods is presented fully herein for
the NASA space data-communications scheduling problem,
with no known previous equivalent. No other true optimiz-
ing scheduler for this problem domain is known to have been
specified.

A number of constraints must be considered in design-
ing any system that solves the space data-communications
scheduling problem. The methods and algorithms disclosed
herein incorporate, among others, the RF-interference miti-
gation constraint, with the objective of assuring that the sys-
tem generates high quality schedules that accomplish over-
all goals of the space data-communications infrastructure.
How and to what degree interference predictions should fi-
nally constrain schedules represents an issue in the design of
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such a system. While the algorithm as disclosed herein does
satisfy RF-interference mitigation constraints, it does not ex-
plicitly provide for fine-grained control of this factor; how-
ever, a modification to do so could be incorporated without
difficulty. Fine-grain control of this constraint could, for ex-
ample, include a further parameter in the definition of mis-
sion event (see Definition 47 (page 19)) to indicate whether
or not to apply the constraint for a prescribed instance of a
prototype event relative to that mission-event instance.

While the primary context of the present disclosure relates
to NASA, the method and algorithm have broader applicabil-
ity, and, despite domain differences, should readily be adapt-
able for the military context.

Two abstractions related to the overall problem of devis-
ing the most cost-effective possible system for generating op-
timal schedules were developed in Section 6 (page 34) (the S O

problem) and Section 7 (page 36) (the S OO problem). In pre-
senting the former abstraction, Section 6 described a method
and algorithm that increase the efficiency of the search for the
optimal schedule given a scheduling scenario y, by applying
an iterative process for determining the optimal choice of the
values of the schedule-generation algorithm’s internal param-
eters. For the given scheduling scenario y, any other choice of
the values of the schedule-generation algorithm’s internal pa-
rameters would mean either decreasing the expected quality
of the generated schedule or increasing the expected search
time for a schedule of a given quality (relative to some pre-
scribed measure of “goodness”). In presenting the latter ab-
straction (in a somewhat speculative vein unsupported by ex-
perimental results), Section 7 builds upon the method and al-
gorithm in Section 6 and describes a further method and ap-
proach by which to obtain an estimator function that, given
a scheduling scenario (or its characterization via a charac-
terization function), would return an estimate of the optimal
choice of the values of the schedule-generation algorithm’s
internal parameters, thus assuring (in the full embodiment
and application of the technology disclosed herein) the most
cost-effective possible system for operational use in gener-
ating optimal, constraint-satisfying schedules for the civilian
or military space data-communications infrastructure.

Before leaving the subject of the NASA space data-
communications scheduling system, Appendix A explores
an assumed model of the performance of the probabilis-
tic search techniques described in the main body of the
present disclosure. Analysis of the model imparts un-
derstanding and insight into the issue of how the dis-
closed evolutionary-search algorithm’s internal parameters
might be set to maximize performance of the system in op-
erational use.

Finally, Appendix B describes a class of problem domains
(the Type-G problem domains), which encompasses a very
broad range of optimization problems including the space

data-communications scheduling problem, among many oth-
ers. A rigorous specification of algorithms and methods for
reaching optimal solutions for problems of Type G is dis-
closed. The disclosed specification affords to developers an
efficient implementation path for developing systems to solve
such problems.

10. Appendix A. Modeling Algorithm
Performance

10.1. Best-Solution Fitness Modeled as a
Function of Algorithm-Iteration Count

To support an effort to gain insight into the nature of the
optimization attainable by the schedule-generation algorithm
(Algorithm 1 (page 32)) and the S O algorithm (Algorithm 2
(page 35)), we will assume and analyze a model for the per-
formance of the schedule-generation algorithm. We will as-
sume that for a given scheduling scenario y and a given
choice a of the values of the internal parameters of the
schedule-generation algorithm, the solution (schedule) fit-
ness plotted against the iteration count during a run of the
algorithm would be representable by a function having the
form:	

v

	

f (p)= (p — u)z + w
+ q	 (1)

where the independent variable p E N+ represents the it-
eration count during a run of the algorithm, and the depen-
dent variable f (p) represents the fitness of the best sched-
ule in the schedule population at the end of that iteration.
The values of the parameters v, u, w, q, z E R determine
the precise curve that approximates the performance of the
schedule-generation algorithm (for the given scheduling sce-
nario y and given choice a of the values of the internal pa-
rameters).

Figure 4 (page 41) illustrates an instance of the function
f (with particular values for the parameters v, u, w, q, and z)
along with the derivative of f with respect to p:

df (p )
= —vz (p — u)z-1

dp 	 ((p — u)z + w)2	
(2 )

Note that the value of f (0) is finite (assuming (0 — u ) z +
w =6 0), corresponding to the fact that the population of ran-
domly formed solutions at the initialization of the run of the
schedule-generation algorithm (Step 1c, page 32) will have a
range of fitness scores, all of which will be finite values. The
intersection of the function f with the vertical axis represents
the best score in the range of scores of the members of the ini-
tial population. Of course, a negative iteration count is mean-
ingless and so the model f for the performance of the algo-
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rithm as a function of algorithm-iteration count has no mean-
ing to the left of the vertical axis.

An everywhere differentiable monotonic function (such as
f) has a monotonic derivative, and in the case of the present
model, the derivative is always negative, corresponding to
the fact that the assumed fitness model is a function whose
slope is always negative—corresponding, in other words, to
the fact that the fitness, in general, improves with increas-
ing iterations of the schedule-generation algorithm. Note that
the rate of improvement decreases with increasing iterations
of the schedule-generation algorithm.

10.2. Assumed-Model Versus Actual
Performance

Whether such a function (Equation 1) could be a fair rep-
resentation of the actual performance of the schedule-
generation algorithm makes a reasonable question that is dif-
ficult to answer in the affirmative, but it can be argued that at
least some such function would be a worst-case representa-
tion.

The actual performance of the schedule-generation algo-
rithm, as previously indicated, is, for a given run of the al-
gorithm, a discrete (and monotonic) function of the iteration
count during the run. That is, the quality of the best schedule
in the population at the end of an iteration will be the ordinate
of a discrete point whose abscissa is the iteration count, and,
plotted against iteration count, all such points resulting from
the run will be separate dots on the graph, as illustrated in
Figure 5. Since the performance of the schedule-generation
algorithm has a monotonic relation to the iteration count, if g
is the set of points representing the performance of any given
run of the algorithm, then there exists a model—i.e., an in-
stance fworst of Equation 1 (with some choice of the values
of the parameters v, u, w, q, and z)—such that

1. Elx E dom(g) E) g (x) = fworst (x) , and

2. Vx E dom(g) E) g (x) < fworst (x)

Figure 4. Best-Solution Fitness modeled as a
function of the schedule-generation algorithm
iteration count (upper curve) (Equation 1), and
its derivative (lower curve) (Equation 2). Points
on the graph to the left of the vertical axis are
to be ignored, since they are meaningless in
relation to the actual performance of the al-
gorithm. The model for fitness is assumed to
be a continuous function, whereas the actual
performance is a set of discrete points, one
for each integer representing the schedule-
generation algorithm iteration count.

and we can refer to this instance of Equation 1 (see Figure 5)
as the worst-case model of the actual performance. In the re-
maining subsections of this appendix, the worst-case model
can be considered to be the subject of the discussion.

Two further observations are offered regarding Figure 5.
First, the discrete points in the lower graph are merely repre-
sentative and are not actual data from a run of the algorithm.
However, the lower graph is notionally consistent with ac-
tual execution results of genetic-algorithm applications gen-
erally (for example, see [27]). Second, the Equation 1 model,
even if it is the worst-case model as depicted in the upper
graph in Figure 5, suggests a means of judging a trade-off
between the quality of the results from running the algorithm
and the power of the computing resources (or the processing
time) needed. The model represented by the upper graph has
a kind of “knee” where the slope of the curve changes more
rapidly than for points either to the left or to the right. To
the right of the knee, there is a diminishing-returns situation.
The farther to the right, the less improvement in schedule
quality expected from a run, but the more computing power
(or processing time) required to attain that improvement. To
the left of the knee, there is a larger gain in improvement
for a given increment in additional computing power (or pro-
cessing time). In view of the diminishing returns of applying
more processing resources at the far right end of the graph,
one insight gleaned from considering the model (even the
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Figure 5. Best-Solution Fitness versus it-
eration count. The discrete points in the
lower graph represent a hypothetical run of
the schedule-generation algorithm. The up-
per curve is a graph of Equation 1, the as-
sumed model of fitness as a function of it-
eration count during a run of the algorithm,
with choices for the values of the parameters
v, u, w, q, and z so as to obtain a best-fitting
curve of the form of Equation 1 having the dis-
crete points as a lower bound.

worst-case model) is that reaching a judgement concerning
a trade-off between computing power (or processing time)
and the quality of the results from running the algorithm can
be expected to be facilitated by actual experience running the
algorithm. Further, such experience would augment under-
standing as to how quickly the “knee” will be reached, as
well as how long it may take to reach the point of negligi-
ble expectation of further improvement. 6

10.3. Fitness as a Function of a Single
Parameter

We now consider the behavior of the model when a full run
of the algorithm is repeated with a change in the value of
one of its internal parameters. In the repeated run, no other
change is imposed. For the present discussion, we let the pa-
rameter n represent the change in the value of internal pa-
rameter aj (see definition of a in step 1e of the specification
of Algorithm 1 (page 32)). Thus, in each iteration of the al-
gorithm during the repeated run, at step j + 4 (noting that
step 4 (page 32) is the first step performed in each iteration)
the number of candidate schedules to be generated for inclu-
sion in the population will be changed by the value of n.

For the initial run (which is assumed to have reached a
point in the processing where a large additional amount of
processing would not entail a significant expectation of im-
provement in the fitness of the best schedule, thus reaching
an optimum), let p denote the total number of iterations, so
far, of the steps of the schedule-generation algorithm, and let
ms denote the number of schedules (i.e., solutions) gener-
ated and considered during the run. Then

ms = no + pno 	 (3)

where no is as defined in step 1b (page 32).
When the run is repeated, the total run time will be the

same (governed by the run-time limit ν defined in step 1a
(page 32)). The generation and evaluation of the schedules
created during a given iteration will consume a greater or
lesser total amount of computation time, and will decrease
or increase the number of iterations of the algorithm during
the run, but the total number of schedules that can be gener-
ated and evaluated during the repeated run will be the same,
equal to ms, as for the initial run. Thus, with ms constant be-

6 Consideration of these expectations would tend to be reminiscent of the
law of diminishing returns—and interesting relationship between pro-
duction and effort in the sense studied in economic theory. It may also
remind the reader of another diminishing-returns situation found in the
Special Theory of Relativity in which any constant application of en-
ergy applied by a propulsion system to increase the speed of a space-
craft eventually produces a vanishingly small increase in speed as rela-
tivistic effects cause the spacecraft mass to increase without bound.
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Figure 6. Best-Solution Fitness as a function
of the parameter n (representing the change
in the fixed number of new members gener-
ated at each step) for the assumed model (see
Equation 6).

tween the runs, for the repeated run, we have

ms = n0 + p (n0 + n)	 (4)

and so the iteration count can be considered to be a function
of n E N, the independent variable representing the change
in the number of new schedules that will be added in some
prescribed step of the schedule-generation algorithm:

ms - n0

	

p(n) = n0 + n	
(5)

Equation 1 can now be rewritten to express the fitness
function in terms of n:

f(n) =	
v

	

z	 + q	 (6))(
m.—

n0
n0+n -u) + w

illustrated in Figure 6. Notice that the fitness worsens for ev-
ery positive value of n: the slope of the graph is everywhere
positive. The derivative of f (n), given by Equation 7 and il-
lustrated in Figure 7, is always positive, approaching the hor-

Figure 7. Derivative of best-solution fitness as
a function of n (representing the change in the
fixed number of new members generated at
each step) for the assumed model (see Equa-
tion 7).

izontal axis asymptotically.
z—1

m .—n
0 - ud f (n) 

=
	 vz (ms - n0 )	 n0+n

dn

	 ((

2	 2	 (7)
m .—n

0 - u + w	
(n0 + n)

no 	

) z	 )

From these observations it is seen that a larger value of n
worsens the fitness by a greater amount than does a smaller
one, but the effect diminishes with ever larger values of n.

Thus, when the algorithm’s performance is directly related
to the number of iterations of the steps of the algorithm, as
in the assumed model (Equation 1), the following questions
arise:

First, does the model of fitness as a function of n (the
change in the number of candidate schedules generated in
some prescribed step in each algorithm iteration for inclu-
sion in the population in the repeated run) (see Equation 6
(page 43)) imply that arbitrarily increasing the value of an
internal parameter necessarily brings a decrease in the qual-
ity of the best solution (schedule)—in comparison to the best
schedule that can be produced in the number of iterations per-
formed in the initial run?
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Second, does the model imply that decreasing the value of
an internal parameter in the repeated run necessarily brings
an increase in the quality of the best solution (schedule)—in
comparison to the best schedule that can be produced in the
number of iterations performed in the initial run?

In each run of the algorithm (when used as specified
in Algorithm 1), values of the internal parameters are held
constant (i.e., the number of candidate solutions (schedules)
added in each of the algorithm’s steps 4 through 15 (page 33)
remains the same until the end of the run). At the end of the
run (the duration of which will equal the run-time limit ν),
the system will output the best schedule in the population.
In a repeated run with the increase/decrease of n in the num-
ber of candidate schedules generated in each iteration, even if
all other parameters are held the same, at any given iteration
number, say the kth, the algorithm will necessarily have con-
sidered either more schedules or fewer schedules (depending
on whether n is positive or negative), and from the first iter-
ation onward, the population of schedules will increasingly
diverge from the population in the initial run. Therefore, the
model assumed in Equation 1 has limited use in answering
the stated questions, but nevertheless affords a useful insight
into the setting of the algorithm’s internal parameters, as dis-
cussed in the next section.

10.4. Fitness as a Function of Elapsed Run
Time

It will now be insightful to analyze the behavior of the fit-
ness model (Equation 1) as a function of the elapsed run time
of the algorithm, when holding fixed the value of n (i.e., the
variable representing the change in the value of a single inter-
nal parameter as described in the preceding section). In this
analysis, we assume we are given the following:

1. ν, the duration of the algorithm execution run

2. n0 , the number of schedules added to the population
during each iteration of the steps of the algorithm

3. n, the change (relative to a previous run) in the value of
a single internal parameter as described in the preced-
ing section

4. ms , the total number of schedules that can be added
and evaluated during a run of duration ν seconds as de-
scribed in the preceding section

With the above given information, we seek to reformulate
Equation 1 to calculate the fitness of the best member of the
evolving population of schedules as a function of time.

Since ms schedules can be created and evaluated by the
algorithm during a run of ν seconds duration with the as-
sumed given computing resources, the time required to cre-

ate and evaluate each schedule (as an overall average) is

ms

When the iteration count is p during a second run of the
algorithm, the cumulative number of schedules added will be

ncum = n0 + (n0 + n )p

It is now possible to calculate how much time has elapsed
when the run reaches iteration p:

t = ncum ν = (n0 + (n0 + n)p) 
ν

ms	 / ms

We can now express the iteration count p as a function of
t:

mst n0 ν
p (t) = (

n0 + n)ν

Thus, Equation 1 can be rewritten to relate fitness to
elapsed run time t:

f (t) =	
v	

/8z	 + q	 l )
m.t-n0

ν — u + w(n0+n)ν

illustrated in Figure 8. In the upper curve, the value of n is
a positive number, and, in the lower curve, n is a negative
number of the same magnitude. The conclusion from these
two curves is that, given any two runs of the algorithm where
the first has a larger, and the second has a smaller, number n
of schedules added in each iteration, and given any particu-
lar elapsed time t during each run, the run that has the smaller
value of n will have a better value of the fitness of the best
member of the population at time t. The two curves illus-
trate the fact that the effect is greatest at the beginning of the
run and necessarily vanishes at the end when the elapsed time
equals ν.

However, these relationships are subject to a caveat. In the
second run of the algorithm contemplated above, the popu-
lation starting at the second iteration of the steps of the al-
gorithm begins to diverge from that of the first run, since the
number of schedules added in each iteration in the second run
will be either greater than or less than the number added in
each iteration in the first run. The model described by Equa-
tion 1, while arguably representative of the performance of
the system during any given run, has no relevance to the dif-
ferences between two different runs. If Equation 8 or Fig-
ure 8 is at all suggestive of some guidance in setting the val-
ues of the internal parameters, it would be that smaller rather
than “large” values would improve performance.

10.5. Key Insight Afforded by the Assumed
Model

Clearly, the model assumed in Equation 1 does imply that in-
creasing or decreasing the number of iterations in a run in a
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Figure 8. Fitness modeled as a function of the
elapsed run time, holding fixed the value n for
the change in the value of a single internal pa-
rameter. Two runs are illustrated. The upper
curve has n set to a positive number, while the
lower curve has n set to a negative number of
the same magnitude.

manner that does not result in a difference in the number of
candidates generated in any step of the algorithm (by, for ex-
ample, increasing or decreasing the value of v) will, in gen-
eral, correspondingly affect the quality of the solution pro-
duced by the algorithm.

Significantly, the model of fitness as a function of the pa-
rameter n (see Equation 6 (page 43) and Figure 6 (page 43))
implies that the number of new schedules that will be added
in each step of the algorithm is very important: negative val-
ues of n result in generating fewer candidate schedules in
each iteration, and therefore result in a greater number of it-
erations during the run. This, together with the analysis in

Section 10.4, leads to the hypothesis that experimentation
(or, better, the application of the S i algorithm (Algorithm 2
(page 35))) would show that the optimal choice of the val-
ues of the internal parameters for a given scheduling sce-
nario would entail smaller values rather than larger.

This is perhaps the most useful insight to be drawn
from considering the above model of the performance
of the schedule-generation algorithm—namely, that de-
spite the fact that the specification of the algorithm is
silent on how to choose the values of the internal param-
eters, large values would be contraindicated. This insight
still does not give quantitative guidance on what con-
stitutes “large” values, however, and therefore does not
really substitute for the quantitative guidance that ulti-
mately would be available when a solution to the S ii prob-
lem is implemented as described in Section 7 (page 36).
But the stated insight suggests that even routine experi-
ence running an implementation of the schedule-generation
algorithm would eventually lead to a level of practical under-
standing of at least how not to set the values of the internal
parameters.

11. Appendix B. The Generalized
Algorithms and Methods

11.1. The General Problem

11.1.1. Introduction.

In this appendix, we present a generalization of the methods
and algorithms (and of the problem domain itself) that were
described in Section 5 (page 32), Section 6 (page 34), and
Section 7 (page 36). Reaching toward such a generalization
is motivated by the recognition (a) that there are many dif-
ferent problem domains where an evolutionary search strat-
egy can be used profitably, and (b) that application develop-
ers may benefit from having such a generalization in translat-
ing to another domain the methods and algorithms that were
described herein for the NASA space-data-communications
scheduling problem.

The generalization presented in this appendix is intended
to facilitate development of applications for any problem do-
main matching the essential characteristics of the Type-G
problem domain defined below. While the Type-G problem
domain is not all-encompassing, it is general enough to be
broadly useful and has certain characteristics that facilitate
implementation as well as efficient computation. (For ex-
ample, integer values suffice for the vast majority of all of
the calculations that are required for execution of the algo-
rithms.)
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This appendix also delineates steps for implementing the
generalized methods and algorithms.

Material to be presented below starts with a description
of Type-G problems and the approaches for reaching opti-
mal solutions to such problems, and progresses then to de-
scriptions of Type-G problem abstractions that, along with
methods to solve them, are designed to support the optimiza-
tion of those approaches themselves, for use in fielded sys-
tems that solve Type-G problems. The abstractions, based on
the idea of Type-G meta problems, are referred to as the G O

and GOO problems.

11.1.2. Basic Definitions.

In the case of the earlier treatment of the NASA space-
data communications-scheduling problem, a problem sce-
nario was a set of data structures that, in part, expressed user
requirements for data-communications events by which sci-
ence data (among other kinds of data) could be returned to
earth via antennas in the NASA data-communications sup-
port infrastructure, or by which commands or other types
of data could be received from earth by the user spacecraft,
again via antennas in the NASA data-communications sup-
port infrastructure. A problem scenario also contained addi-
tional data structures comprising infrastructure constraints,
characteristics of support antennas, etc.

Similarly, in the case of the generalized problem domains
that we are discussing in the present section, a problem sce-
nario is considered to be a finite data structure that expresses
requirements and constraints that a problem solution must
satisfy.

Definition 124: y is a problem scenario of Type G ⇒ El k E
N+ E) y is a sequence of exactly k finite data structures that
expresses requirements/constraints that are internally consis-
tent and that every allowable solution for y must satisfy.

Definition 125:
r = {y: y is a problem scenario of Type G } .

r is the set of all possible problem scenarios of Type G.

Definition 126: rdim: N+ → V(r) E)

d (k, y) E N+ x r, y E rdim (k) #^ len(y) = k.

rdim (k) is the set of all problem scenarios of length k (i.e.,
of dimension k).

Relative to the optimization issues addressed in this dis-
closure, we will refer to problem domains of Type G defined
as follows.

Definition 127: A=
{

6 : El kp E N+ E) 6 C rdim (kp) } .

Definition 128:

6 is said to be a problem domain of Type G if and only if
6 E A.

A problem domain of Type G is a set of Type-G problem sce-
narios all having the same dimension.

Note that the term “Type-G problem”, as distinct from the
term “Type-G problem domain”, will have a more specific
definition (see Definition 136 (page 48)).

Definition 129: Adim : A → N+ E) d (6, kp) E A x N+,

Adim (6) = kp #^ [dy E 6, len(y) = kp]

Adim (6) is the dimension of 6, i.e., Adim (6) is a positive in-
teger representing the length of every problem scenario in 6.

We now identify the set of all permissible solutions for
Type-G problem domains.

Definition 130 (Set of All Permissible Solutions):

O=
{

0 : El6 E A ,Ely E 6 E)

0 is a permissible solution for problem scenario y
}

.

O is the set of all permissible solutions for all problem sce-
narios y E 6 E A, with no omissions or exceptions. The
problem-domain dependent notion of “permissible” is left
undefined.

Definition 131 (Set of All Permissible Solutions for a Given
Problem Scenario): Oscenario : A x r → V(O) E)

d(6,y) E A x r E) y E 6,0 E Oscenario (6,y) #^

0 is a permissible solution for problem scenario y.

11.1.3. Associating Generalized Problem Domains with
Real Problem Domains.

It will be taken for granted herein that the context for discus-
sion relates to a certain class of real-world problems for each
of which the following hold:

• it can be stated in some proper manner and given an ap-
propriate working association with some member of A,

• it has a definable solution that can be expressed as a fi-
nite data structure, and

• its implementation following the generalized methods
and algorithms disclosed herein would flow from the
actual problem statement and its associated member of
A.

The way in which a problem domain in this class might
be given an association with a member of A, and the specifi-
cation of the implementation of the actual problem statement
in the context of the generalized methods and algorithms, are
each beyond the scope of this disclosure.

The foregoing definitions lead to the following observa-
tions concerning a problem domain of Type G:
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1. There exists a function that assigns to each allowable
solution for any given problem scenario a quantitative
“goodness” or “fitness” score.

2. Every problem scenario has an optimal solution with
reference to a given fitness function.

Type-G problem domains are numerous and varied, and
include not only the schedule-optimization problem ad-
dressed earlier by means of evolutionary search (genetic
algorithms) (Section 5 (page 32)), but also the meta prob-
lem designated as the S 1 problem that likewise was addressed
by means of evolutionary search (genetic algorithms) (Sec-
tion 6 (page 34)).

11.1.4. A Note on Applicability.

While in theory the disclosed generalized methods and algo-
rithms could be used to reach a solution to many problems
for which standard numerical or closed-form methods exist,
such usage would be inefficient and would produce less ac-
curate solutions. Nothing in this disclosure is to be construed
so as to obviate common sense in the use of the methods de-
scribed herein. Only appropriate applications are to be con-
templated.

There are numerous appropriate applications of the meth-
ods and algorithms specified in this appendix for reach-
ing optimal solutions of problem scenarios of Type G. The
design-optimization applications in the realm of space mis-
sions mentioned in Section 1.6 (page 6) are representative of
a wide variety of design-optimization problems, from archi-
tecture to automobiles to industrial plants to rail systems to
product packaging, to mention only a few that—

• can be found in the literature concerning applications of
evolutionary search,

• can be classified as problems of Type G, and

• therefore can be solved by a system following the meth-
ods and algorithms specified herein.

Scheduling and planning generally can be cast as prob-
lem domains of Type G. But the range of Type-G problems
is greater yet, and is not likely soon to be fully traversed.

11.1.5. The Essential Evolutionary Search Functions.

Genetic algorithms, and evolutionary programming, are ap-
plicable to a broad range of problems (see discussion in Sec-
tion 2.3 (page 10) and Section 2.4 (page 11)), and form the
central technical approach for solving Type-G problems as
presented herein. The essential mechanisms of evolutionary
search (beyond the basic notion of evolving a population of
candidate solutions through an iterative process) are

• fitness

• random selection

• genetic mutation

• genetic crossover

These mechanisms will be embodied in functions defined
below.

11.1.5.1. Fitness Functions. A crucial part of an evolu-
tionary search algorithm as described herein is the fitness
function that will be used to evaluate candidate solutions in
the solution space. A valid fitness function for a given prob-
lem scenario y maps each member of the set of all per-
missible solutions for y to a real number greater than or
equal to 1, where unity is the fitness of a perfect solution.
While other choices for the definition of “perfect” fitness are
worth considering, the chosen value, 1, affords certain de-
sirable numerical advantages for constructing an actual fit-
ness function. For example, the fitness function defined in
Definition 103 (page 28) for the space-data communications
scheduling problem constituted a number of independent
sub-functions, each defined with fitness in the semi-closed
interval [1, oo ) , where the final fitness was computed as the
product of the values returned by the constituent functions,
thus ensuring that the final fitness value always remained in
[1, oo) and, further, that the final fitness value strongly re-
flected the degrading effect of any one of the constituent val-
ues that exceeded 1.

More exactly,

Definition 132 (Set of All Fitness Functions):
Ffitness: A x r → V ( [1, oo)® )

 E)
V (6, y) E A x r, f E Ffitness (6,y) ⇔

1. dom(f) = 0scenario (6, y)

2. V0,0' E 0scenario (6,y) ,

f (0) < f (0') ⇒ 0 is more fit than 0'.

Ffitness (6, y) is the set of all possible fitness functions for
problem scenario y in the target problem domain 6. (See Def-
inition 11 (page 17) for the meaning of the notation of the
form XY , where each of X and Y is a set. In the present def-
inition, [1, oo ) ® designates the set of all functions that map
0 to the semi-closed interval [1, oo) on the real-number line.)

11.1.5.2. Random Selection. The search strategy also
employs, for given problem scenario y for given target prob-
lem domain 6, a means to create a set of new candidate mem-
bers of the working population by either (a) randomly
generating permissible solutions for y or (b) randomly se-
lecting members of 0scenario (6, y).

Definition 133 (Selection of a Random Set of Solutions):

Frandomselection : A x r → 
V( (

V(0)
) N+ /

 E)
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d(S, y) E A x r, f E Frandomselection (S,y) ⇔

1. codomain(f) C V(Θscenario (S, y)),
2. dn E N+ , f (n) = RND (n, Θscenario (S,y)

)

Note that this function is a “pseudo function” (see remark be-
low Definition 15 (page 17)).

11.1.5.3. Mutation Functions. Evolutionary search algo-
rithms also involve functions that generate new candidate
members of the working population of solutions using mu-
tation and crossover concepts (see the discussion of genetic
algorithms in Section 2.4 (page 11)). To generate a mutation
of a member 0 of the working population during a search, a
new data structure is created representing the new member
of the population, i.e., the mutated version of the given mem-
ber 0. The new data structure (a finite data structure by defi-
nition) will be the same as that of the given member 0, except
for some deliberate (yet random), problem-scenario-specific
alterations made by the mutation function. Once created, the
new member is incorporated into the working population on
an equal footing with all other members until the member-
evaluation phase of the search algorithm is reached during
an iteration through the steps of the algorithm. If by chance
the mutation produces a child that is identical with its parent,
then it will be ignored. It may be noted that the mechanism
for making mutations legitimately may not select purely ran-
dom parts of the data structure representing a member of the
population, as such a mutation mechanism would likely pro-
duce offspring containing uninterpretable/impossible data,
rendering them impermissible as solutions of the given prob-
lem scenario. Therefore, it may be taken for granted that the
mutation mechanism must not lead to nonsensical or other-
wise impermissible offspring.

Definition 134: Fmutation : A x r -+ V
(
Θ® ) E)

d(S, y) E A x r, f E Fmutation (S,y) ⇔

1. dom(f) = Θscenario (S, y)

2. codomain(f ) C Θscenario (S, y)

3. 0 E rndmember
(
Θscenario (S,y

)) 
⇒

f (0) is a random mutation of 0.

Fmutation (S, y) is the set of all possible mutation functions for
problem scenario y in the target problem domain S. Note that
this function is a “pseudo function” (again see remark below
Definition 15 (page 17)).

11.1.5.4. Crossover Functions. The crossover mecha-
nism is defined similarly. A crossover function accepts two
randomly selected members of the current working popula-
tion and produces, in some random yet problem-scenario-
specific manner, two new members whose characteris-
tics and fitness will be determined partly by each of their

“parents”—the two given members. Each crossover func-
tion operates by identifying two random crossover points.
The crossover points define segments of the data struc-
ture of each of the parents. Once the segments are deter-
mined, the two “children” of the parents will be assem-
bled from their parents’ corresponding segments in such
a way that the children differ from each other and from
each parent—preserving, in that way, the concept of swap-
ping some, but not all, of the chromosomal material be-
tween the parents as a means to produce the children. If
by chance the children and their parents do not all dif-
fer from each other—a result that is not allowed—then it
will be necessary to repeat the step for randomly select-
ing the parents and the segments to be swapped. It may
be noted, again, that the crossover points legitimately may
not define purely random parts of the data structure rep-
resenting a parent, as swapping portions defined in that
manner would often (perhaps nearly always) produce off-
spring containing uninterpretable/impossible data, render-
ing them impermissible. Therefore, it may be taken for
granted that the mechanism for selecting crossover points
must not lead to nonsensical or otherwise impermissible off-
spring.

Definition 135: Fc rossover : A x r -+ V
(
(Θ2 )®2 )

 E)
d(S, y) E A x r, f E Fcrossover (S,y) ⇔

1. dom(f) = Θscenario (S, y)2

2. codomain(f) C Θscenario (S, y ) 2 ,
3. (0, 0') E rndmember(Θscenario(S, y) 2 ), 0 =6 0' ⇒

f (0, 0') is a pair (0c , 0'
c) of children generated as

crossovers between parents 0 and 0'.

Fcrossover (S, y) is the set of all possible crossover functions
for problem scenario y in the target problem domain S. Note
that every member of Fc rosso ver (S, y) is a “pseudo function”.

We now seek to formulate the Type-G problem, generally
applicable to any problem domain of Type G.

11.2. The Type-G Problem

A Type-G problem is a member of the set G:

Definition 136 (Set of All Type-G Problems):
G C AxrxN+ x [0,00) x (N+ )3

x(V(Θ))N+
x [1,00)® x

Θ® 
/
x (Θ2 )®2 x Θ E)

g = (S, y C S, v, T, a, fr , ftest, fm , fc , π) E G ⇒

1. v represents, in units of seconds, an adequate run time
for the search,

2. T represents a small value (not necessarily positive) that
reflects the user’s judgment or policy as to how close to
perfect a solution for the given problem scenario must
be to be considered “good enough”,
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3. a is a vector (i.e., a tuple (a1 , a2 ,... )) consisting of
values of the internal parameters of g, with len(a) =
Adim (6),

4. fr E Frandomselection (6,'Y) ,

5. ftest E Ffitness (6,'Y ) ,

6. fm E Fmutation (6, 'Y) ,

7. fc E Fcrossover (6, 'Y) , and

8. 7r E 0scenario (6, 'Y) .

g is said to be a Type-G problem if and only if g E G.
It will be useful to identify the Type-G problems for a

given Type-G problem scenario 'Y, as follows:

Definition 137 (Set of All Type-G Problems for a Given
Problem Scenario): Gscenario : A x r -+ V (G) E)

∀ (6, 'Y) E A x r,
Gscenario (6, 'Y) = { (6, 'Y, •, •, •, •, •, •, •, •) E G} .

11.3. Type-G Problems: The G-Algorithm

In moving on toward defining an algorithm for solving a
Type-G problem, it will be helpful to define a function that
embodies certain steps that must be performed by the algo-
rithm relative to a given set of candidate solutions of a given
Type-G problem:

Definition 138 (Internal Steps of a G-Algorithm):
Wsteps : V(0) x G -+ V(0) E)
∀(11 , g = (6, 'Y, v, T, a, fr , ftest, fm , fc , 7r)) E V(0) x G
if

1. 11 ⊆ 0scenario (6, 'Y) ,

2. npopulation =	 aj ,
jE{1,...,len(α)}

3. 111 1 ≥ npopulation,

4. 11 1 = RND (a 1 , 11),

5. 112 = RND
(1

2 a2 , 112) E) (0, 0' ) E 112 ⇒
¬ (0' , 0) E 112 ,

6. 113 = 
U {

fm (0)} 
I U

	

I

eEn1

	 (01, 
lllI U

	
{
fc 02 )

IJ 
U fr (a3 ) ,and

(e1 ,e2 ) ErI2

7. 114 ⊂ 113 E)

(a) 1114 1 = npopulation and

(b) [0 1 E 114 , 02 E 113 \114] ⇒ ftest (01 ) ≤ ftest (02 ) ,

then Wsteps (11 , g) = 114 .

The G-algorithm for solving a Type-G problem is an
evolutionary-search algorithm specified as follows:

Algorithm 4 (G-Algorithm Specification):
Given:

• g = (6,'Y, v, T, a, fr , ftest, fm , fc , 7r) E G

Perform the following steps:

1. Let 11 = fr 

I 	
aj

 

I .
jE{1,...,len(α)}

2. (a) Let 11' = Wsteps (11 , g) .

(b) Find 7r' E 11' E) C E 11' ⇒ ftest (C) ≥ ftest ( 7r ' ) .

(c) Set 7r = 7r ' .

(d) Set 11 = 11' .
(e) If ft (7r) < 1 + T or runtime exceeds v, then exit,

returning the value 7r; otherwise, go to step 2a.

When the G-algorithm is executed to solve a Type-G prob-
lem g = (6,'Y, v, T, a, fr , ftest, fm , fc , 7r) E G, the result is
that 7r has been set equal to the optimal solution for the prob-
lem scenario 'Y E 6. This optimal solution is calculated given
a, the vector of the values of the Type-G problem’s internal
parameters (where a different choice of their values would
generally result in a different solution for the problem sce-
nario 'Y).

11.3.1. Execution of a G-algorithm.

Executing the G-algorithm (Algorithm 4) for a given Type-G
problem

g = (6, 'Y, v, T, a, fr , ftest, fm , fc , 7r) E G

consists of performing the prescribed steps given in the speci-
fication of Algorithm 4 and capturing the final value returned.

Definition 139 (Function to Execute the G-algorithm (Algo-
rithm 4)):

fg-execute 
:/ 

G -+ 0 E)
∀g = (6, 'Y, v, T, a , fr , ftest, fm , fc , 7r) E G,
if 7r is the optimal solution for problem scenario 'Y as re-

turned from a run of the G-algorithm (Algorithm 4 (page 49))
against the Type-G problem g,

then fg-execute (g) = 7r.

Note the implicit dependency on the computing resources:
the quality (that is, the fitness) of the output result 7r will,
in general, be improved through the use of a more power-
ful computing platform.

11.4. The GO Problem

Having described the general problem domain of Type G and
an algorithm by which to find its optimal solution, we pro-
ceed along the line of deliberation indicated in the introduc-
tion (Subsection 11.1.1 (page 45)). That is, we proceed to de-
scribe methods, algorithms, and processes by which
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1. a Type-G problem may be optimized (thus assuring the
maximum performance of the G-algorithm itself), and
by which the Type-G problem of doing this can be opti-
mized, and, again, by which the Type-G problem of do-
ing that can be optimized, etc., indefinitely (which is
referred to as the G O problem), and

2. a mechanism (the GOO algorithm) can be derived by
which all of the problem scenarios in a given Type-
G problem domain may be solved with maximum ef-
ficiency.

These additional optimization methods depend on the
concept of a Type-G meta problem.

11.4.1. Regarding Type-G Meta Problems.

Importantly for our purposes, the G-algorithm specification
(Algorithm 4 (page 49)) applies not only to finding an opti-
mal solution for a given target problem domain of Type G,
but also to optimizing the Type-G problem itself. Suppose
that, by Definition 136 (page 48),

g = (6, y, v, τ, α, fr, ftest, fm, fc, π) E G

is a Type-G problem of finding an optimal solution for a
given problem scenario y in target problem domain 6. Then
there is a “meta” problem 6' and a “meta” problem scenario
y' E 6' for finding the optimal choice of the values of the in-
ternal parameters of g, and this problem is solved as another
Type-G problem

g' = (6' , y' , v' , τ' , α' , f'r, f'test, f
'
m , f

'
c , π

' ) E G

The remaining elements of the tuple g' are to be consistent
with Definition 136 and must satisfy certain additional con-
ditions that will be described below.

11.4.2. Meta-Problem Scenarios Compounded
Indefinitely.

Consider (as suggested above) an infinite sequence of Type-
G problems whose first element is g, a Type-G problem of
deriving the optimal solution of some Type-G problem sce-
nario y, where each element after the first element of the se-
quence is formed as the Type-G problem of optimizing the
choice of the values of the internal parameters of the preced-
ing Type-G problem in the sequence. This idea, designated as
the GO problem, will, as in the S O problem, entail evolution-
ary search (genetic algorithms) as the favored solution tech-
nology.

Given a Type-G problem g in the infinite sequence men-
tioned above, the successor Type-G problem, g' , represents
the task of solving the Type-G meta problem of optimizing

the choice of the values of its predecessor’s internal param-
eters. The problem scenario for g' would be a data structure
that stipulates the requirements and constraints applicable to
the solution of the Type-G meta problem (and this data struc-
ture would be in one-to-one correspondence with the data
structure that represents the internal parameters of g). One
possible such requirement/constraint would be that the value
of a, some given internal parameter of g, should fall in some
particular range (a > 10, for example). Meta-problem sce-
narios and internal parameters is the subject of the next sub-
section.

We might contemplate a method by which to address the
entire composite problem that consists of (a) optimizing the
solution of the initial Type-G problem and (b) optimizing the
solution of the meta problems in the infinite sequence men-
tioned above. In pursuing this, we would naturally confront
the question of whether it makes sense to try to apply such
a search algorithm or method indefinitely to an infinite se-
quence of problems of Type G as describe above.

11.4.3. Approaching the G O Problem.

This is moot, however, since in fact we seek not a theoreti-
cal solution for this entire indefinitely compounded problem,
but rather a feasible means of attacking a useful part of it.
We alluded to a similar issue in the last paragraph of Sec-
tion 6.1 (page 34), and indicated that, in avoiding a kind of
infinite regression, a justifiable approach—

1. would first generate a set of data cases for the problem
represented by the first element of the sequence. Each
of the data cases would consist of

(a) an actual or realistic problem scenario for the
given problem and

(b) the calculated optimal choice of the values of
the internal parameters of the Type-G prob-
lem for solving the problem scenario, where the
optimal choice is discovered via an appropri-
ate probabilistic search strategy (i.e., an evolu-
tionary search strategy), and

2. would then use a hypersurface-fitting method to fit to
the generated data cases an estimation function that,
given an arbitrary problem scenario for the problem
represented by the first element of the sequence, would
return an estimate of the optimal choice of the values of
the internal parameters of the Type-G problem for the
problem scenario.

The first part of the above approach is satisfied through
the application of appropriately defined instances of a search
algorithm—which will be specified below as an evolution-
ary search algorithm. The second part of the above approach
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is satisfied through a generalized version (the G OO algorithm
(see Subsection 11.5 (page 53))) of the methods and algo-
rithms described in Section 7 (page 36).

11.4.3.1. Internal Parameters of Type-G Problems.
Each internal parameter

ai , i E { 1, ... , len(a) }

of Type-G problem (6, y, V, T, a, fr , ftest, fm , fc , 7r) has an in-
teger value that represents the number of new candidate so-
lutions that will be added to the working population in each
step respectively in each iteration of the steps listed in the
definition of a G-algorithm (Algorithm 4 (page 49)). Since a
problem scenario y' for meta problem 6' is a vector of con-
straints on the solutions of the meta problem (that is, con-
straints on the values of the internal parameters of the given
Type-G problem), it may, without loss of generality, be as-
sumed that all problem scenarios for all meta problems are
identical, and further that every such constraint is simply that
the value of the internal parameter must be nonnegative. In
fact, this assumption will align with the proposition stated
elsewhere that the constraints represented by a problem sce-
nario should be as loose as possible so as to ensure the most
thorough possible exploration of the solution space by the
evolutionary search algorithm.

11.4.3.2. Constructing Type-G Meta Problems. We
now define a function that, given a problem scenario
y in Type-G problem domain 6, returns the Type-G
meta-problem scenario y ' in Type-G meta-problem do-
main 6', i.e., the problem of finding an optimal choice of
the values of the internal parameters of g (the Type-G prob-
lem of finding an optimal solution for the given problem
scenario y).

Definition 140:
Fnew-g : O x G → G E)

len(a)d(0 E N	 , g = (6, y, V, T, a, fr , ftest, fm , fc , 7r)) E
O x G,
Fnew-g (0, g) = (6, y, V, T, 0, fr , ftest, fm , fc , 7r) .

Fnew-g, given a Type-G problem g and a vector 0 representing
a choice of the values of the internal parameters of g, returns
a new Type-G problem identical to g except that g’s internal
parameters are replaced with 0. Note that O, the set of all per-
missible solutions for problems of Type G, includes permis-
sible solutions for Type-G meta problems, and thus, a vector
0 E Nlen(a) representing a choice of the values of the inter-
nal parameters of g, and representing, therefore, a permissi-
ble solution of the Type-G meta problem, belongs to O.

Definition 141:
FMETA C GG E) f E FMETA ⇒

dg = (6, y, V, T, a, fr , ftest, fm , fc , 7r) E G,
g' = (6' 'Y' v

'
 T

' a' jr, 	 f f 7r
') = f (g) ⇔>	 >	 >	 ,	 , r ^ftesty m^ c^

1. 6' is the meta problem of optimizing the Type-G prob-
lems for solving problem scenarios in 6,

2. y' E 6' is the meta problem scenario of optimizing g,

3. T' = T,

4. f'
r E Frandomselection (6', y') ,

5. f'
test = ftest o fg-execute o Fnew-g,

6. f'
m E Fmutation (6', y') ,

7. fc' E Fcrossover (6', y' ).

A function f that belongs to the set FMETA will accept as in-
put a Type-G problem g and return as output another Type-G
problem for solving the meta problem of finding an optimal
choice of the values of the internal parameters of g.

A number of observations apply to the above definition
in relation to its complexity, particularly as to its use in opti-
mizing a GO problem as described below (Subsection 11.4.5).
The complexity arises mainly from the definition of the fit-
ness function f'test, which is the composition7 of three other
functions. In the Type-G meta problem g ' , the fitness func-
tion f'test is defined as g’s fitness function, ftest, applied to the
optimal solution obtained by executing Algorithm 4 against
the modified version of g, i.e., the version of g obtained by
replacing the existing choice of the values of g’s internal pa-
rameters, a, with 0, the given candidate choice of the val-
ues of the internal parameters of g. Thus, since the execution
of Algorithm 4 against the modified version of g takes place
during the process of running the fitness function of the Type-
G meta problem, this fitness function does the heavy lifting
in executing Algorithm 4 against a Type-G meta problem, as
will be explained in Subsection 11.4.5.

While the insight that was afforded in Section 10.5
(page 44) into the effect of changing the value of any
given internal parameter may be relevant to Type-G prob-
lems, we do not pursue the idea of modeling the perfor-
mance of the G-algorithm (Algorithm 4). Instead, it can
be noted that a direct approach would consist of the im-
mediate application of some f E FMETA, where, dg E G,
the optimal choice of the values of the internal parame-
ters of g is simply

fg-execute (f (g))

An extension of this approach will be described in Subsec-
tion 11.4.5 relative to a chain of Type-G meta problems.

7 In mathematics, “function composition” (indicated by the symbol o)
refers to the use of the output of one function as the input for another.
See Definition 12 (page 17).
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11.4.4. The GO Problem: A Chain of Type-G Meta
Problems.

We proceed to consider the generalization of the concepts
addressed in the main body of this paper, namely, the prob-
lem of (1) how to choose the values of the internal param-
eters of the Type-G problem to maximize the performance
of the G-algorithm in a fielded system, (2) how to optimize
the internal parameters of the Type-G problem of optimizing
that Type-G problem, (3) how to optimize the Type-G prob-
lem that does this, etc., indefinitely. We refer to this problem
as the G O problem. Note that its rather theoretical underly-
ing idea will not preclude a treatment of the G O problem sup-
porting practicality and feasibility.

Definition 142 (GO Problem):
G* C E*(G) E) ^ E G* #.

1. Elg E GE) g = ^0 ,

2. Elf E FMETA E)	
t	 // ttdj E j1, ... , len(^) — 1j , Sj = f (bj_1)

G* is the set of all possible G O problems. Each element ex-
cept the first element of the sequence ^ E G* is a Type-G
meta problem of optimizing its predecessor. ^0, the first ele-
ment of ^, is a Type-G problem representing the base case for
the recursive process that takes place when one of its succes-
sors in ^ is executed. By Definition 136, ^0 represents some
Type-G problem g = (6, y, v, T, a, fr, ftest, fm, fc, 7r) E G

for finding an optimum solution for problem scenario y E 6.

11.4.5. Optimized G O Problem.

Definition 143 (Optimized G O Problem):
A GO problem ^ E G* is said to be optimized if and only

if Algorithm 4 has been run against the Type-G meta prob-
lem ^len(^)_1, resulting, recursively, in the replacement, in
Type-G problems ĵ, j E 10, ... , len(^ ) — 2 1 , of the val-
ues of their internal parameters with the optimal values com-
puted by recursively executing Algorithm 4 against each ele-
ment of ^ starting with its last element ( l̂en(^)_1 ) .

11.4.5.1. Explanation of Recursive Optimization in the
GO Problem. Algorithm 4 is recursive by virtue of the def-
inition of the fitness function of a Type-G meta problem (see
remarks under Definition 141). This fact enables the opti-
mization of the G O problem, where the entire chain (i.e.,
sequence) of Type-G meta problems described in Defini-
tion 142 will be optimized by application of the algorithm
to the last element of the chain.

By way of further explanation, note that some prescribed
function f E FMETA, given some element ^i in the chain (se-

quence) ^ as input, will have produced the Type-G meta prob-
lem

^i+1 = (6'
, y'

, v'
, T',a',f'r ,f'test ,f'm ,f'c ,7r')

for optimizing ^i. By Definition 141, y' E 6' is the meta prob-
lem scenario of optimizing target Type-G problem ^i. Apply-
ing Algorithm 4 to ^i+1 will take the following course:

1. Step 1 executes the random-selection function f'
r and

returns II, a set of candidate solutions of problem sce-
nario y' , the problem of optimizing the choice of the in-
ternal parameters of Type-G problem ^i. Thus, II is a set
of vectors representing possible such choices, i.e., solu-
tions of problem scenario y'.

2. Step 2a executes the function Wsteps with the ordered
pair (II, ^i+1) as input and then sets II' to the value re-
turned. As Wsteps executes, the composite function f'test
will be used to test the candidate solutions individu-
ally. Since by Definition 141, f'

test executes the func-
tion fg-execute with the Type-G problem ^i as the input,
then, by Definition 139, Algorithm 4 will itself be in-
voked again part-way through the steps of the self-same
algorithm, thus resulting in recursion.

Step 2 of Algorithm 4 progresses through successive gen-
erations of candidate solutions, ultimately ending with either
the expiration of the allowed run time v' or the discovery of
a “good enough” solution according to the parameter T' , and
the best solution found during this iterative search process is
returned at the termination of step 2.

It may be helpful to elaborate somewhat on the use, in the
definition of the G O problem (Definition 142), of the function
f E FMETA, which, in constructing ^, produces, for each el-
ement ^i, the Type-G meta problem ^i+1 that will be solved
via Algorithm 4. The key part of the definition of f E FMETA

is the composite function f'
test . When invoked during the ex-

ecution of the function Wsteps against the set II of candidate
solutions, f'

test first applies the function Fnew-g to the candi-
date Type-G problem given as input along with the candidate
solution (a choice, 7r (see step 2b of Algorithm 4), of the val-
ues of the Type-G problem’s internal parameters), producing
as output a modified version of the target Type-G problem,
with 7r in place of the original vector a of internal parame-
ters. This output from Fnew-g (i.e., the modified version of the
target Type-G problem) is used next (according to the defini-
tion of f'test as the composite function ftest o fg-execute o Fnew-g)

as input to the function fg-execute, whose output (the optimal
solution returned from running Algorithm 4 against the mod-
ified version of the target Type-G problem) is used as input to
the fitness function ftest, which is the fitness function of the
target Type-G problem itself.

But the recursive nature of Algorithm 4, when used on a
member of a chain of Type-G meta problems, means that the

52



11.5 Overall Optimization: G OO Problem. 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

above sequence of operations continues until the base case
is reached in the chain (i.e., the first element of the chain),
where the target Type-G problem, by the definition of a G O

problem (Definition 142), is not a Type-G meta problem (i.e.,
the problem scenario is not to optimize a predecessor in 1;)

and, in completing the recursive process, the fitness of the so-
lution returned from applying Algorithm 4 against it is used
in following in reverse order the progression of operations
that took place in the recursive chain ending at the base case.

11.4.5.2. Limits on Run Time. Optimizing a GO problem
1; E G*, involving recursion during the execution of Al-
gorithm 4, in which each new recursive step involves the
full evolutionary search process that itself is a repetitive
process of evolving a population of solutions through per-
haps many generations, is easily seen to be very demanding
computationally—the more so the longer the sequence 1;.

From an implementer’s point of view, an early question
would concern how much run time to allow for the optimiza-
tion of 1; (see Definition 143). That is, suppose i E N+ is the
index of a Type-G meta problem in 1;, and

1;i = (b0 , γ
0 , v

0 , T0 , a0 , f
0

r, f0test, f
0
m , f

0
c , 7

0)

Then what value should v' (i.e., 1;i [3]) have?
Experience with an evolutionary-search application for a

given problem domain will eventually teach the practitioner
the empirical fact that runs of the application will process
some typical number nI of generations before reaching the
optimal solution. For argumentation purposes, we assume
that the idea of the existence of such a typical value applies
in the case of a G O -problem optimization. Thus, if

1;0 = g = (b, γ, v, T, a, fr, ftest, fm, fc, 7) E G

(where v, the run time of g (or at least its typical value), will
also be learned from experience) then the run time expected
for the execution of the Type-G meta problem 1;i will be given
by the relation

v0 = ni
I v	 (9)

Hence, given the simplifying assumption that each evolution-
ary search will (with fixed computational resources) process
nI generations before reaching the optimal solution, the con-
clusion is that the computational burden increases exponen-
tially with the size of the G O problem 1; E G* (i.e., exponen-
tially with the length of 1;).

The assumption regarding nI could be modified to reflect
that undoubtedly the “typical” number of generations for the
runs of the application program varies as a function of the in-
dex i into the sequence 1;. That is, nI: N -+ N. If we now
consider that the allowed run time is a sequence (vi) (where
vi = 1;i [3]) we can restate Equation 9:

vi+1 = nI (i + 1) vi 	 (10)

Despite the fact that no principles support the a priori
choice of an optimal vector of the values of the internal pa-
rameters of the base case (i.e., for the Type-G problem 1;0),

we must allow for the possibility that Type-G meta problems
may all have the same optimal vector of the values of their in-
ternal parameters. In this circumstance, after computationally
establishing this optimal vector for 1;1, it would render unnec-
essary any further computation to optimize any of the subse-
quent Type-G meta problems in 1;. Therefore, the question
of run-time limits becomes moot in this circumstance, but
whether this circumstance actually prevails in general would
have little chance of resolution short of experimentation, and
so in the meantime it must be categorized as speculative.

Such experimentation could hardly be conducted in the
first place upon any assumption other than the one repre-
sented by Equation 10 (absent any a priori knowledge to the
contrary) and thus is established the usefulness of the forego-
ing analysis.

11.4.6. Practical Stopping Point in the GO Algorithm.

As indicated previously (Subsection 11.4.3 (page 50)), how-
ever, the purpose of having an optimized G O problem is not
to have some lengthy sequence of Type-G meta problems op-
timized, for which the necessary computational power would
(as shown in the preceding paragraph) increase exponentially
with the length of the sequence. Indeed, reflecting the au-
thor’s judgment, the requirement for practical operational use
would be much more modest (see further remarks in Para-
graph 11.5.1.3), and would afford adequate advantage with
the sequence 1; having length 2, with a single Type-G meta
problem 1;1 to optimize the Type-G problem 1;0 for solving a
given target problem scenario. Thus, executing Algorithm 4
against Type-G problem 1;1 would optimize the internal pa-
rameters of the Type-G problem 1;0, supporting the practical
approaches to be described next for the use of the above G O

method and algorithm.

11.5. Overall Optimization: G OO Problem.

11.5.1. The Final Issue.

The final issue to be addressed relative to the generalization
of the concepts covered in the main body of this paper per-
tains to the practicality of the GO method and algorithm for
operational use.

11.5.1.1. Internal Parameters Estimation Functions.
Various relevant considerations were presented in Sec-
tion 7 (page 36) in discussing approaches for obtaining
efficient estimation functions. In the present context, an es-
timation function, given a problem scenario, would return
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an estimated optimal choice of the values of the inter-
nal parameters of the Type-G problem for solving the
given problem scenario. (In the earlier discussion, the con-
text was the NASA space-data communications scheduling
problem, whereas here we are in a more abstract discus-
sion of optimization of a Type-G problem.)

11.5.1.2. Concerning the Goal. As in Section 7
(page 36), our goal in the present section is to maxi-
mize the practicality of the overall general optimization
methods. We address the problem, which we will re-
fer to as the GOO problem, of devising a means for efficiently
estimating an optimal choice of the values of a Type-G prob-
lem’s internal parameters for any given new problem sce-
nario so that it will not be necessary each time to use the
GO algorithm to perform the whole iterative (and computa-
tionally expensive) process of solving the internal parame-
ter optimization problem. Clearly, the overall optimization
problem is computationally very demanding, and con-
sequently the method and algorithm described above for
solving the G O problem would not be advantageous to use op-
erationally for every new problem scenario. (To be sure, such
a burdensome strategy would quickly be seen to be coun-
terproductive, since an optimal solution for the given prob-
lem scenario would be reached anyway during the very first
iteration of the effort to solve the G O problem, thus obvi-
ating any additional effort in that direction.) However, the
GO method and algorithm will support the goal of solv-
ing the GOO problem of deriving an estimation function
that, given an arbitrary problem scenario for the given tar-
get problem domain 6 E A, would, at low cost, return an
estimated optimal choice of the values of the internal pa-
rameters of the Type-G problem for solving that prob-
lem scenario. The objective, then, is to specify an estimation
method/algorithm that uses (abstracted and computation-
ally inexpensive) information about the given problem
scenario itself.

11.5.1.3. A Judicious Stopping Point. Although the
method and algorithm specified above for addressing the G O

problem 1; E G* (see Definition 142) allowed for any ar-
bitrary number of Type-G meta problems listed in the
sequence 1;, the author considers (as indicated in Subsec-
tion 11.4.6) that, for practical operations using the meth-
ods and algorithms disclosed herein, the length of 1;

would be 2, so that Type-G problem 1;1 (i.e., the last ele-
ment of 1;) would be the Type-G meta problem for optimiz-
ing 1;0 for solving the initial problem scenario 1;0 [2] (note
that 1;0 is a tuple, whose second element, 1;0 [2], is a prob-
lem scenario y). Indeed, upon practical considerations of
computational feasibility as opposed to purely theoret-

ical considerations, it is unlikely that any value greater
than 1 for the index into 1; could be entertained at all, and
so in this sense the GO algorithm is academic. In the dis-
cussion that follows, it will be included in the process
for implementing the G OO algorithm, with the understand-
ing that, in use, there would be only one level of Type-G
problem optimization (corresponding to a single applica-
tion of Type-G problem optimization) representing a kind of
minimal use (and perhaps the only feasible use, as will be ex-
plained) of the GO algorithm).

The question of the efficiency of the Type-G problem-
optimization process would itself involve the question of how
to set the values of the internal parameters of 1;1, the Type-G
meta problem for solving the meta problem scenario 1;1 [2].
This is an open question, although, since all of the Type-
G meta problems have identical problem scenarios (i.e., all
of the constraints they specify are, by assumption (see Para-
graph 11.4.3.1), the same), it cannot be dismissed that (as
discussed in Paragraph 11.4.5.2) the optimal choice of the
values of the internal parameters of all of the Type-G meta
problems would be the same or at least nearly the same.
Whether a substantial improvement in performance might oc-
cur for small changes in the values of the internal parameters
is not known, but seems unlikely over a wide range of possi-
ble choices; in other words, performance may be insensitive
to the choice, and, consequently, the effort to optimize the
Type-G meta problems listed in 1; may not have much justifi-
cation. As to choosing the values of the internal parameters of
a Type-G meta problem, the only guidance that could be of-
fered to a developer (especially one who ventures to extend
the Type-G problem optimization to any level correspond-
ing to a value greater than 1 for the index into 1;, by which
to specify the Type-G meta problem to initiate the optimiza-
tion of the GO problem) would be a matter of informed judg-
ment at best.

11.5.1.4. Challenges From the Real World. It should be
well noted that real-world problem domains of Type G typ-
ically entail significant complexities that inevitably would
translate into challenges in using the methods to be presented.
An estimation function, even if derivable in principle, may
be difficult to obtain within realistic limits on computing re-
sources (see also the remarks in Section 7.4 (page 38) and
Subsection 11.4.6 (page 53)). The approaches to be described
for solving the GOO problem will produce results (i.e, will pro-
duce instances of estimation functions), but the approaches
assume a selection of real-world input data to which, in ef-
fect, a model will be fitted (see the outline of the approach
given in Subsection 11.4.3 (page 50)). The accuracy of the
derived estimation functions will be directly related not only
to the shrewdness of the choices that determine the form or
architecture of the model, but also to the selected input data
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to which the model will be fitted, i.e., the number of pre-
computed data points and their distribution across the so-
lution space. The required accuracy of the derived estima-
tion functions may require a significant number of precom-
puted data points, and correspondingly significant comput-
ing resources [23]. Further, since the accuracy metric un-
doubtedly would exhibit asymptotic behavior in relation to
the number of precomputed data points, and since the asymp-
tote is not known in advance, even more computation would
be needed to gain the assurance of any prescribed accu-
racy. Thus, the real-world challenges in using the methods
to be described would be considerable. However, the meth-
ods can be expected to achieve the objective mentioned in
Paragraph 11.5.1.2 (page 54) given a reasonably tame rela-
tionship between the independent variable (the problem sce-
nario (or rather its characterization (see Paragraph 11.5.1.5)))
and the dependent variable (the optimal choice of the values
of the internal parameters of the Type-G problem for solv-
ing the problem scenario). The tameness of this relationship
may be expected to be target-problem dependent, but an in-
dependent means of determining the tameness in advance is
unknown—although, reasonably, some probabilistic method
would be strongly indicated (if not unavoidable).

11.5.1.5. Characterization Functions. The approaches
described in Section 7 relied upon the concept of a
problem-scenario characterization function—which is a con-
cept also involved in the approaches described in the fol-
lowing paragraphs concerning mechanisms for estimating
optimal choices of the values of the internal parame-
ters of Type-G problems. The characterization function is
intended to be a computationally inexpensive means of dis-
tinguishing between problem scenarios in terms that are
relevant to the efficiency of the evolutionary search meth-
ods that will be used in solving arbitrary problem scenarios
in the given Type-G problem domain. The efficiency of the
search methods that we disclose herein is related to (among
possibly many other things) the sizes of the data struc-
tures that represent the elements of the problem scenario: by
Definition 124 (page 46), a problem scenario is a finite se-
quence each element of which is a finite data structure. In the
case of the problem domain of scheduling space-data com-
munications (see Section 7 (page 36)), each of these data
structures was a set, and the sizes of all of the data struc-
tures listed in a given problem scenario were used as the
elements of the vector returned by the characterization func-
tion (Definition 123 (page 36)). Partly for reasons of
tractability and operational efficiency, we elect to use a simi-
lar scheme here.

We proceed by specifying, in the context of Type-G
problem domains, the concept of a problem scenario-
characterization function, noting from Definition 129

(page 46) that, for a given target problem domain 6 of Type
G, there exists a positive integer kp = Δdim (6) such that
all problem scenarios y E 6 have length kp, and, thus, ev-
ery problem scenario y E 6 has a kp-dimensional characteri-
zation

c E Nkp

For the S OO problem, the characterization was defined so that
flj E {1, ... , kp I, cj was the size of the finite data structure
yj (see Definition 123 (page 36)). For the generalized prob-
lem of Type G, the definition of the characterization func-
tions must be somewhat generalized and must accommodate
Type-G meta problems.

Definition 144: D0 = {x : ∃n E N 3 x E Nn I

D0 is the set of all tuples whose elements are integers. Each
problem-scenario characterization is a member of D0, as is
each choice of (i.e., each vector that represents) the values of
the internal parameters of a Type-G problem.

Definition 145 (Problem-Scenario-Characterization Func-
tion for Given Problem Domain):

Λ: Δ → ℘( D0 ×Γ
l

fl6 E Δ, A E Λ(6) 
J

⇒ fly E 6, A (6, y) E NAdim (bi

Λ(6) returns a set of characterization functions for the prob-
lem domain 6.

11.5.2. Regression Methods for Solving the G OO Problem

Deriving an estimation function festimation that returns an es-
timate of the optimal choice of the values of the internal pa-
rameters of a Type-G problem may be accomplished through
the application of some form of regression technology [15].
There are several of these technologies that potentially would
be applicable, including:

• Artificial Neural Networks (ANN)

• Evolutionary Search

• Support Vector Machines

• Baysian Networks

The estimation function to be derived is imagined (with
the risk of oversimplification) as a hypersurface whose do-
main (consisting of the values of the independent variable) is
the set of all possible problem scenarios (or, rather, their char-
acterizations) and whose codomain (consisting of the val-
ues of the dependent variable) is the set of estimated optimal
choices of the values of the internal parameters of the Type-G
problems for solving problem scenarios in target problem do-
main 6. A data regression approach as identified above repre-
sents a kind of hypersurface-fitting technique, as mentioned
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in the discussion in Subsection 7.2 (page 37), which con-
cerned a method for scheduling-algorithm optimization.

It should be reiterated that applying any of the indicated
regression technologies would be subject to cautions simi-
lar to the ones stated earlier (Subsection 7.4 (page 38) and
Paragraph 11.5.1.4 (page 54))). However, the evolutionary-
search approach, in particular (as one of the available regres-
sion technologies), may be accomplished through the appli-
cation of the techniques required for the application of the G-
algorithm described herein: it will be seen that the problem
at hand (i.e., the problem of deriving the optimal-internal-
parameters-estimation function) itself can be formulated as a
problem of Type G and therefore the application of the G-
algorithm (i.e., Algorithm 4) would be sufficient to obtain a
solution, although the computing resources required for a so-
lution may present an issue to be investigated by compar-
ing this approach with others based on alternative regression
technologies.

Regardless of which regression technology is employed,
the derived estimation function would have value in an op-
erational system in terms of maximizing the performance
of the G-algorithm. For any given problem scenario to be
solved by the system, the values of the internal parameters of
the Type-G problem would first be adjusted according to the
estimate that would be generated by the derived estimation
function. The process for using the derived estimation func-
tion operationally will be further specified in Subsection 11.7
(page 60).

The objective of applying a regression technology to a G OO

problem is to derive an estimation function festimation from a
given known data set Q C D2

0 , where for each (c, e) E Q, c
is a characterization of a problem scenario and e is a corre-
sponding calculated optimal choice of the values of the inter-
nal parameters of the Type-G problem for solving the prob-
lem scenario.

11.5.3. Functions That Model a Given Data Set.

It is assumed that at least one data-regression technology
will have been selected for application in solving G OO prob-
lems. Solving a given GOO problem would consist of apply-
ing the selected data-regression technology to an appropri-
ate precomputed data set Q to derive a function that mod-
els Q. The derived function may then be used to estimate the
value of the dependent variable for any given value of the in-
dependent variable. The value of the independent variable for
a given GOO problem would be a tuple representing the char-
acterization of the given problem scenario, and the value of
the dependent variable would be a tuple representing the es-
timated optimal choice of the values of the internal param-
eters of the Type-G problem for solving the given problem
scenario.

Definition 146 (Set of Selected Data-Regression Technolo-
gies):

A,. = {a: a is a data-regression technology } .

If not otherwise stipulated, it will be understood that a data-
regression technology a,.eg,. E A,. has been selected for use in
solving GOO problems.

Definition 147 (Functions That Model a Given Data Set):
A function f E D0

° is said to model Q C D2
0 if and only if

(c, e) E Q #- f (c) = e

Note that f in the above definition is a subset of D20.

Definition 148:
T: p(D 20 ) -+ D

D°

0 E) dQ C D20,

T(Q ) is a model of Q derived by applying data-regression
technology a,.eg,. to the data set Q.

Thus, if T (Q) models Q, then d (c, e) E Q, T (Q) (c) = e.

Definition 149 (Training-Data Sets):
D: Δ x p(r) x codomain(Λ) -+ p(D2

0 ) E)

d(6, B C 6, λ E Λ(6)) E Δ x p(r) x codomain(Λ),
dQ E D (6, B, λ) , (c, e) E Q #-

1. Ely E B,

2. El optimized GO problem 1; E G* E)

(a) 1;0 = (6, y, •, •, α, •, •, •, •, •) E Gscena,.io (6, y ) ,

(b) c = λ (6, y) , and

(c) e = α = 1;0 [5]

D represents the set of all possible training-data sets for G OO

problems (to be described in the next section). Each such data
set Q will be assumed to comprise actual calculated data.
Each member of Q, then, is an ordered pair (c, e ) , where
c is the calculated characterization of some realistic/actual
problem scenario drawn from the given set B, and, for a cor-
responding GO problem 1; that has been optimized by run-
ning Algorithm 4 (page 49) (see Definition 143 (page 52)),
e is the optimal choice of the values of the internal parame-
ters of the Type-G problem 1;0 . It is assumed that each such
training-data set Q can be modeled by applying to Q the se-
lected data-regression technology a,.eg,.. The derived model is
identified as an estimation function that, given the character-
ization of an arbitrary problem scenario y in the given prob-
lem domain 6, will return the estimated optimal choice of the
values of the internal parameters of the Type-G problem for
solving y.

11.5.4. The GOO P,.oblem.

Definition 150 (GOO Problem):
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A tuple
(
6 E Δ, B ⊆ 6, A E Λ(6), festimation)

is said to be a GOO problem if and only if

each member of B is an actual/realistic problem sce-
nario,

2. EI Q E D (6, B, A) 3 festimation = T(Q).

11.5.5. The GOO Algorithm Employing Data-Regression
Technology.

The essential steps in applying a data-regression approach in
the GOO problem are as follows:

Algorithm 5 (GOO Algorithm Employing Data-Regression):
Given:

• 6 E Δ,
• B ⊆ 6 is a set of actual/realistic problem scenarios se-

lected from the set 6,

• A E Λ(6),

(Note: The results of running an implementation of the
present algorithm are highly dependent on the num-
ber and distribution of the scenarios in B. If the accuracy
of the estimation function generated by the implementa-
tion is not deemed adequate, then these scenarios would
need to be revised to improve their solution-space cover-
age and used in a fresh rerun.)

Perform the following steps:

1. Let Q E D (6, B, A ) .

2. Perform data-regression using the training-data set Q,
resulting in the determination of a function that best fits
the members of Q. That is, let festimation = T(Q ).

3. If step 2 (the data-regression step) succeeds, then form
the GOO Problem

(6, B, A, festimation)

and exit indicating success. If data regression fails, then
exit indicating failure, calling upon the user to alter the
given set B of actual/realistic problem scenarios (e.g.,
by increasing their number or variety) (noting that this
alteration gives an altered GOO problem) and rerun the
algorithm.

Step 1 above will, in general, involve significant computation
of a recursive nature using Algorithm 4 (page 49) to derive
the data set Q (see Definition 149 (page 56)).

11.6. Implementation Process

Implementation of the generalized methods and algorithms
described in this Appendix may be straightforward (not to
say trivial) for some problem domains but likely would be
challenging for others. For the sake of completeness of this
disclosure, we now delineate a nominal implementation pro-
cess, which would be applicable to all implementation ef-
forts, but which does not preclude appropriate variations or
adaptations for particular cases.

11.6.1. The Basic Implementation Alternatives.

The minimum implementation effort would have the goal of
building a system that implements a Type-G problem

g = 
(
6, y, L, T, a, fr , ftest, fm , fc , 7r) E G

configured initially with arbitrary (non-optimized) choices of
the values of the internal parameters a for solving the given
problem scenario y E 6. A more ambitious possible effort
would have this minimal implementation as one goal, and
would have the further goal of implementing a system for
solving the GOO problem for the same problem domain 6 E Δ.

In either case, the implemented system will produce opti-
mal solutions for problem scenarios in the target domain 6.
The system developed in the more ambitious possible effort
mentioned above would be expected to perform more effi-
ciently in the routine operations mode—at the cost of the ef-
fort to solve the GOO problem to derive the estimation function
(see Subsection 11.5) for estimating, for each given problem
scenario y, the optimal choice of the values of the internal pa-
rameters of g E Gscenario (6, y ) .

The general implementation approach that will be de-
scribed below in detail is first to implement modules sepa-
rately, and then to integrate those modules, together with all
other necessary modules (e.g., interfaces with users and an-
cillary systems), into the overall fielded system, with appro-
priate testing, documentation, etc.

11.6.2. The First Implementation Alternative (Basic
Implementation of the G-Algorithm).

In the first alternative (i.e., the basic implementation of the
G-algorithm), the implementation steps follow the first few
steps enumerated in the G-algorithm specification (Algo-
rithm 4 (page 49)). A subsystem that is capable of creating
and solving a Type-G problem

g = (6,y, L, T, a, fr , ftest, fm , fc , 7r) E G

would be constructed by means of the following process:
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Process 2 (Process for Implementation, First Alterna- 	 (b) Develop a module to capture II, the output of
tive (Basic Implementation for Creating and Solving a	 function fr when given the input equal to
Type-G Problem) ) :

Given:	 a j

• 6 E O
	 j ∈{1,...,len(α)}

• y E 6

Perform the following steps:

1. Implementation steps for a subsystem for creating a
Type-G problem for solving y E 6.

(a) Develop a module that supports the cre-
ation/setting of—

i. v E N+ , a value that represents the run-time
limit in units of seconds.

ii. T E R, a small nonnegative value to repre-
sent a policy or judgment as to how close to
perfect a solution must be (i.e., how close a
solution’s fitness must be to unity) to be con-
sidered “good enough” to exit the algorithm.
This value normally would be small enough
(0, say) to ensure that the algorithm always
ran for the maximum allowed run time v.

iii. a E D0 , the vector representing the user’s
initial choice of the values of the internal pa-
rameters of g, with len(a) = Odim (6).

(b) Develop a module that embodies a random-
selection function fr E Frandomselection (6, y)

(c) Develop a module that embodies a fitness func-
tion ftest E Ffitness (6,y) .

(d) Develop a module that embodies a genetic-
mutation function fm E Fmutation (6,y) ) .

(e) Develop a module that embodies a genetic-
crossover function fc E Fcrossover(6, y)).

(f) Develop a module that supports the creation of a
place-holder data structure 7r representing an ar-
bitrary member of Θscenario (6, y).

(g) Develop a module that supports the creation of
the data structure

g = (6, y, v, T, a, fr , ftest, fm , fc , 7r) E
Gscenario (6, y)

according to Definition 136 (page 48) and Defini-
tion 137 (page 49)

2. Implementation steps for a subsystem embodying
Algorithm 4:

(a) Develop a module that embodies the function
Wsteps according to Definition 138 (page 49), in-
corporating the module developed in step 1g.

(c) Develop a module to capture II' , the out-
put of function Wsteps (the module devel-
oped in step 2a) when given the ordered pair
(II, g) as input, where II and g are the out-
puts of the modules developed in steps 2b
(for for creating a random-selection func-
tion fr E Frandomselection (6,y) (for a given (6, y))
and 1g (for for creating a Type-G problem), re-
spectively.

(d) Develop a module to find a member 7r' E II' 3

( E II' ⇒ ftest (() ≥ ftest (7r' ) , where II' is the
set captured by executing the module developed
in step 2c.

(e) Develop a module that sets 7r to the output, 7r ' ,
from executing the module developed in step 2d.

(f) Develop a module that sets II to the output, II ' ,
from executing the module developed in step 2c.

(g) Develop a module that performs the test ft (7r) <
1 + T and tests whether the elapsed run time ex-
ceeds v, and if either test is affirmative, then exits,
returning the value 7r, and, if otherwise, then re-
sumes execution of the sequence of modules de-
veloped in steps 2c through 2g.

3. Develop a module that embodies the function fg-execute,

which in turn will incorporate the module embodying
Algorithm 4 developed in step 2.

4. Develop a module that (a) executes, with g E G as in-
put, the module embodying the function fg-execute devel-
oped in step 3 for a given Type-G problem and (b) re-
turns the optimal solution of g.

5. Perform system integration and testing of the modules
developed as specified above, along with all other nec-
essary modules (e.g., user interfaces).

Once implemented, the fielded system would be used op-
erationally according to the following straightforward pro-
cess:

Process 3 (Process for Operational Use of Implementa-
tion Under First Alternative (Basic Implementation for
Creating and Solving a Type-G Problem) ) :

Given:

• 6 E O

• y E 6
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Implementation Steps for Support-Modules for
Type-G Problem Optimization. Supporting mod-
ules in an implementation of a Type-G problem- 	 3.
optimization function will be constructed by means of
the following steps:

Perform the following steps:

1. Prepare all input data required for a run of the system
developed in Process 2 (page 58) (including the target
problem scenario and other inputs as required by the G-
algorithm specification (Algorithm 4 (page 49))).

2. Initiate a run of the system with the stipulated inputs
and capture output upon termination of run. The out-
put is an optimal solution for the given problem sce-
nario y (see remarks in Section 2.4.7 on page 13 con-
cerning the concept of “optimum”).

11.6.3. The Second Implementation Alternative
(Implementation of the G OO Algorithm).

The second implementation alternative incorporates all of the
steps in the first alternative as described above (Process 2
(page 58)), which produces an implementation of a system
that can create and solve a Type-G problem

(S, y, v, T, a, fr , ftest, fm , fc , 7r) E G

The additional steps required in the second implementation
alternative will be described next, and have the objective of
maximizing the performance of the fielded system over the
broad range of possible problem scenarios. This objective
is achieved by implementing the G OO algorithm (see Algo-
rithm 5 (page 57), which incorporates the G O problem opti-
mization (see Definition 143 (page 52)), which, in turn, in-
corporates the G-algorithm (Algorithm 4 (page 49)).

It is necessary, then, to describe implementation steps for
the GO problem optimization, as well as the G OO algorithm).

Process 4 (Process for Implementation, Second Alter-
native (Implementation of G OO Algorithm (Algorithm 5
(page 57))) :

Given:

. S E Δ

Perform the following steps:

(a) Develop (see implementation steps specified in
Process 2 (page 58)), or incorporate, a module
that supports the creation and solving of a Type-G
problem

g = (S, y, v, T, a, fr , ftest, fm , fc , 7r) E G.
Note that this module incorporates (from step 3
of Process 2) a module that implements the G-
algorithm-execution function fg-eXecute (see Defi-
nition 139).

(b) Develop a module that embodies the function
Fnew-g (see Definition 140 (page 51))

(c) Develop a module that embodies the definition of
a function in the set FMETA that, given a Type-G
problem

g = (S, y, v, T, a, fr , ftest, fm , fc , 7r) E G

returns a Type-G meta problem g' (see Def-
inition 141 (page 51) in Paragraph 11.4.3.1
(page 51)).

2. Implementation Steps for a Subsystem that Sup-
ports the Creation of a Module that Embodies the
GO Problem Optimization. A subsystem that supports
the creation and optimization of a G O problem ^ E G*
(Definition 142) (where len(^) = 2, in accord with
the position taken in Subsection 11.4.6 (page 53) and
in Paragraph 11.5.1.3 (page 54)) will result from inte-
grating modules constructed by means of the following
steps:

(a) Develop or incorporate a module that implements
the G-algorithm-execution function fg-eXecute (see
step 3 of Process 2).

(b) Develop a module that creates the G O problem
^ E G* , with ^0 = g, in accordance with Defi-
nition 142 (page 52), where

g = (S, y, v, T, a, fr , ftest, fm , fc , 7r) E G
is a given Type-G problem. This module incorpo-
rates the module developed in step 1c, which is
an implementation of a function in FMETA, which
in turn incorporates the module developed or in-
corporated in step 2a for the function fg-eXecute.

(c) Develop a module that incorporates the module
developed in step 2 of Process 2 and supports
the execution of Algorithm 4 against the Type-G
problem l̂en(^)-1, which results in the optimized
version of the GO problem ^ E G* (see Defini-
tion 143 (page 52)).

Implementation Steps for the GOO Algorithm
Via Data-Regression. A system incorporating a
data-regression approach for solving a GOO prob-
lem (S, B, A, festimation) will be constructed by means
of the following steps:

Given:
S E Δ
Perform the following steps:

(a) Develop a module that embodies a problem-
scenario characterization function A E Λ(S) (see
Definition 145 (page 55)).
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(b) Develop a module to support the creation of B C
6 consisting of actual/realistic problem scenarios
in 6.

(c) Incorporate a module supporting the creation of
Type-G problems for problem scenarios for the
given target problem domain 6 (see step 1a above
and Subsection 11.6.2).

(d) Develop or incorporate a module that em-
bodies the function D (see Definition 149
(page 56)), which incorporates the module de-
veloped in step 2c for optimizing a G O prob-
lem.

(e) Develop or incorporate a module that embodies
the function T (see Definition 148 (page 56)),
which implements the data regression technol-
ogy aregr (see explanation below Definition 146
(page 56)), and which incorporates the modules
developed in steps 3a and 1a.

(f) Develop a module that executes the module de-
veloped in step 3e and captures the output (i.e.,
the function festimation = T(Q), where Q E
D (6, B, A ) ).

(g) Develop a module that

i. executes the module developed in step 3a
and retains the function A

ii. executes the module developed in step 3b
and retains the set B.

iii. executes the module developed in step 3d
and retains the set Q E D (6, B, A ) .

iv. executes the module developed in step 3f
and retains the function festimation = T(Q )

v. if the data-regression step 3(g)iv is success-
ful, then constructs the G OO problem

(6 E Δ, B C 6, A E Λ(6), festimation)

and exits indicating success; otherwise, exits
indicating failure and calling upon the user
to start a new run, ensuring that the set B re-
tained from step 3(g)ii is more appropriate
in solution-space coverage.

4. System Integration. Perform system integration and
testing of the modules developed as specified above,
along with all other necessary modules (e.g., user in-
terfaces) for the final fielded system.

a given Type-G problem can be estimated for arbitrary prob-
lem scenarios to enable the most efficient overall possible op-
eration of the system for arbitrary problem scenarios.

For reasons similar to those articulated earlier (Sec-
tion 7.4 (page 38)), the implementation effort described
above—which invokes data-regression technologies—is
nontrivial and will necessarily require the involvement of ex-
perts in the selected regression technology, especially in
relation to step 3e of Process 4.

11.7. Operational Use of Estimation Function

Whether the estimation function is derived through a neu-
ral net approach or another data-regression approach, the re-
sulting tested and verified estimation-function implementa-
tion would become a tool for operational use within a fielded
system. The routine use of such a tool would involve the fol-
lowing process:

Process 5 (Operational Use of Estimation-Function
Tool) :

Given:

• GOO problem

(6 E Δ , B C 6,A E Λ(6) , festimation)

created by running the subsystem that represents
the implementation of the G OO algorithm and solves
the given GOO problem (see implementation Pro-
cess 4, steps 3(g)i through 3(g)v), which produces the
implementation of an estimation function festimation ) .

• a problem scenario y E 6.

Perform the following steps:

1. Compute the characterization c = A (6, y ) .

2. Run the module that creates an implementation of a G-
algorithm (see Process 2 (page 58)), resulting in an im-
plementation of

g = (6, y, v, T, α, fr , ftest, fm , fc , π) E G.

3. Capture the estimation function output

e = festimation (c)

(the estimate of the optimal choice of the values of the
Type-G problem’s internal parameters for the problem
scenario y).

	The final result of the implementation steps given above	 4. Configure the Type-G problem g, replacing α with e:

	would be a system consisting of (a) a subsystem by which 	 gopt = (6, y, v, T, e, fr , ftest, fm , fc , π) E
	a Type-G problem can be used to produce optimal solutions	 Gscenario (6, y ) .
	for any given problem scenario and (b) a subsystem by which 	 gopt is the optimal Type-G problem for solving problem

	

the optimal choice of the values of the internal parameters of 	 scenario y.
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5. Initiate a run of Algorithm 4 (the module developed in
step 2 of Process 2) against the implementation of gopt

and capture output upon termination of run. The output
is an optimal solution for the given problem scenario y
(see remarks in Section 2.4.7 on page 13 concerning the
concept of “optimum”).

11.8. Which Data-Regression Algorithm?

Interesting (but not necessarily academic) future work would,
for some selected problem domain, consist of deriving an
optimal-parameters-estimation function using different data-
regression technologies and comparing their execution per-
formance. The comparison would be more meaningful and
reliable if it were based on the same computing resources
and the same training/test data (i.e., the same precomputed
data cases (see definition of the function D (Definition 149),
which specifies the set of all possible precomputed data sets
for a given GOO problem)).

11.9. Final Remarks

This appendix has described a generalization of the methods
and algorithms that were specified in the main body of this
paper, which targeted a specific problem domain (the space-
data communications scheduling problem). These general-
ized methods and algorithms are applicable to any problem
in the very large class of real-world problems that are rep-
resented by problem domains of Type G (see Definition 128
(page 46) and Subsection 11.1.3). The specifications of the
generalized methods and algorithms are sufficiently rigorous
and complete to support their implementation (as described
in Section 11.6 (page 57)) as a fielded system that efficiently
produces an optimal solution for any problem scenario in any
target problem domain of Type G.

The GO problem ^ E G* (see Definition 142 (page 52)),
i.e., the problem of optimizing the Type-G problems and
Type-G meta problems themselves, was incorporated into the
GOO problem (i.e., the problem of devising an estimation func-
tion by which to obtain, for an arbitrary problem scenario,
an estimate of the optimal choice of the values of the in-
ternal parameters of the Type-G problem g—it being noted
that Algorithm 4 (page 49) applied to the Type-G problem g

solves (i.e., produces an optimal solution for) the given prob-
lem scenario). For reasons explained in Paragraph 11.5.1.3
(page 54), the GO -problem optimization algorithm will be
applied by executing Algorithm 4 against the Type-G meta
problem ^1 , resulting in an optimized version of the Type-G
problem ^0 = g. The methods and algorithms for solving a
GOO problem (6 E Δ, B C 6, A E Λ(6), festimation) (see Def-
inition 150 (page 56)) invoked data-regression technologies
(artificial neural networks, support vector machines, evolu-

tionary search, etc.) as a means to fit a model (a hypersur-
face) to a set of known data points precomputed using the G O

method and algorithm, and thereby to derive the estimation
function festimation. With adequate computing resources and
expert talent, these overall optimization approaches, as spec-
ified, can be implemented as a fielded system that performs
with maximum feasible efficiency solving any problem sce-
nario in any target problem domain of Type G.
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Index of Symbols and Selected Terms

A < B, 17 O, 23, see schedule, 46
A* , 18 ORND, 31
A0 , 18 Oscenario, 46
Ar , 56 T, 56
C, 20, see prototype communications event E, 18
C0

PRM , 22 E**, 18
D, 56 E* , 17
D0 , 55 \, 17
Fcrossover, 48 •,16
Ffitness, 47 o, 17, see function composition
Fmutation, 48 q < a, 17
Frandomselection, 47 q+ ,17
FMETA, 5 1 q—, 17
Fnew-g, 51 κGN, 25
Gscenario, 49 κSN, 25
I, 19, see potential interference interval h•i ,17
L, 19 N, 16
L* , 19 N+ , 16
L0 , 19 R,18
M, 19, see mission event Z, 16
M* , 19, see mission event type 2,17
Mskips, 21 ψ,34
Mtype, 21 J, 28
MT , 21 MAXALLOWEDRTNRATE, 19
O, 18, see outage interval RND, 18
P, 18, see POCC operation period, see POCC S,18
Pmax, 22 chngsvcant, 29
Qn , 17 chngsvcdur, 29
R0 , 20, see user requirement

chngsvcsta, 29
S0 , 18
S0SA,S	 18

cutexcesspei, 30

U, 21 endpts, 25

U0 , 18 endptsseq , 25

V, 19, see communications view period endP , 24

Wsteps, 49 fitness, 28

XY , 17, see function fitness] , 34

Y, 20, see service interir , 24

YV , 21 len, 17

YI , 21, see service instantiation maxsepsatP* , 24

YImax, 22 max, 18
A, 46 minsepsatP* , 24
Δdim, 46 min, 18
r, 34, 46 modsvc, 28
rdim, 46 replacepei, 29
A, 36, 55 resourceusage, 25
Q, 16 rndint, 17
QF, 16 rndmember, 18
4) ,20 rndpeis, 31
4)0 , 20, see priority rndpei, 28
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rndsvcs, 31 constraints
rndsvc, 28 GN Forward and Return, 25, see KGN

rtndatarateCOMBINED , 27 SN Forward and Return, 25, see KSN

satisfied' , 28 Space Network resource usage, 25, see KSN

satisfiedPEI , 28 crossover, 11, 48
satisfiedR , 28
schedolpairs, 24 data regression, 37, 56
skipsatR' , 23 domain, 17

skipFILL-R' , 23
slipsvc, 29 empty set, 16, see 0
startP , 24 evolutionary algorithms, 11

stnswPEI , 27 evolutionary search, 13, 45, 47, 50, 53, 55, 56

swapearlypeionr, 30
swapmidpeionr, 31 fitness, 28, 33, 35

S O problem, 35, see fitnessO
swappeionr, 30
swappeionu, 30 Type-G problem, 47

swappei, 30
swa

Yfunction, 16, 17, see X

tref, 21 composition, 17, see ◦ , 51

usageSTATION-SA-ENDPTS 26
GN-ENDPTS 26

G, 48, see Type-G problem
violations

GN
,

GO problem, 52
violations, S6

P'violations
MINSEP , 

24
optimization, 52

GOO problem, 57
violations	 ' 24
violations RTNRATE ,27

algorithm, 57

violations SASA-ENDPTS, 27
regression, 57

G-algorithm, 49, 51
violations

S
HI27

violations	 , 23
genetic algorithm, 11, 47, 50

SKIPFILL'violations	 ,2323 hypersurface, 55
violationsSN-ENDPTS , 26
violationsSN , 26 index, 17
violations STATION-SA-ENDPTS ,26 sequence, 17
violationsSTNSW ,27 tuple, 17

-GN ENDPTSviolations - -D 	 26 interference instance, 25, see interf'
violationsI&CADPTS , 26

internal parameters, 7, 12, 13, 32–34, 36–38, 40, 42, 45, 50,
violation RTNRATE, 27 52, 55, 57, 60, 61
|• |, 16, see cardinality estimation, 36, see SOO Problem, 54, see GOO Problem
℘, 17, see power set estimation function, 7, 37, 38, 40, 50, 53–55, 61
+,17, see interval endpoint interval, 17
-, 17, see interval endpoint endpoint
aregr, 56 + ,17
festimation, 55–57, 61 -,17
fg-execute, 49 ordering relation, 17
0, 16, see empty set

law of diminishing returns, 42
algorithm, 6

mapping, 17
cardinality, 16, see | • | meta problem, 50
Cartesian product, 16 meta-problem scenario, 51, see meta
characterization function, see A method, 6
codomain, 17 mission event, 19, see M
communications event window, 20, 21 mission event type, 19, see M'
communications view period, 19, see V model, 56
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user, 16
user requirement, 16, 20, see R0

satisfaction, 28, see satisfied'

mutation, 11, 48

optimal, 6, 7, 11, 13, 32, 34, 37
optimum, 11, 33,36
ordered pair, 17
outage interval, 15, 18, see O

POCC, 16
POCC operation period, 18, see P, 22
potential interference interval, 16, 19, see I
power set, 17, see V
priority, 16, 20, see 4)0

probabilistic search, 11–14, 34, 50
problem domain of Type G, 46, see A
problem scenario, 46, see P

characterization function, see A
dimension, 46, see Pdim

meta, 50
Type G, 46

process, 6
prototype event, 20, see C
prototype-event instantiation, 23, see CORM

pseudo-function, 17

random number, 14
recursion, 52
regression, 37, 55, 57, 59, 60

Sll problem, 33
schedule, 16, 23, see O
scheduling objective, 23
scheduling scenario, 34, see P
sequence, 17

elements of, 17
length, 17, see len
of some members of a set, 18, see 8'
of the members of a set, 18, see 8
subsequence,17

service, 20, see Y
service instantiation, 21, see YI

set difference, 17
skip factor, 20, 21, 23
string, 18

test data, 37
training data, 37, 57
tuple, 17
Type G, 46, 48, 60

meta problem, 46, 50–55, 59
problem, 48, see G, 60
problem domain, 46, see A
problem scenario, 46, see P
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