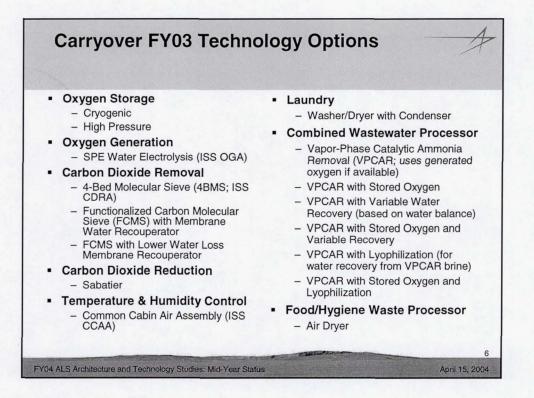

https://ntrs.nasa.gov/search.jsp?R=20110001650 2019-08-30T14:02:14+00:00Z

Source of Acquisition NASA Johnson Space Center

<text><section-header><text><text><text><text>



1

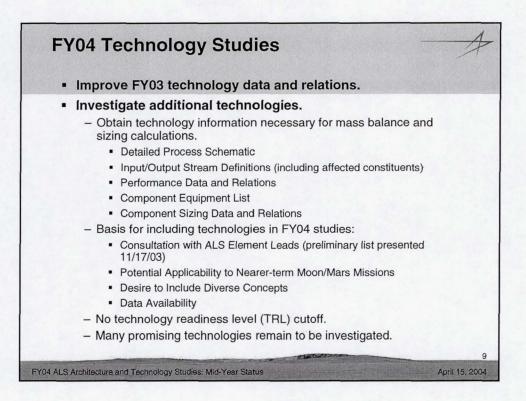
New Space Exploration Vision				
FY03	FY04	FY05		
Focus on system interfaces. Perform detailed mass and water balances. Include low-water-use hygiene options. Include redundancy and contingency. Calculate radiation shielding ESM credit. Limited technologies; simplified sizing. Brute-force optimization.	 Include more technology and architecture options. Improve equipment sizing calculations (component based). Include lunar mission scenario. Define system design requirements. Investigate mass- balance-based failure tolerance analysis. Investigate reliability- based redundancy and sparing analysis. 	 Include more technology and architecture options. Continue to improve component-based sizing calculations. Implement mass- balance-based failure tolerance analysis. Implement integrated reliability, redundancy, and sparing analysis. Investigate system optimization algorithms. 		

Option	1	2	3	4	5	6
Hygiene Supplies						
Disposable Prewetted Wipes - HF	~		1			
Disposable Prewetted Wipes - WB	~					
Disposable Non-prewetted Wipes - HF		1		1		
Disposable Non-prewetted Wipes - WB	-	~				
Washable Washcloths			~	1	~	~
Washable Towels	~	1	~	1	~	1
Bar Soap					~	1
No-Rinse Body Bath			~	~		
No-Rinse Shampoo	1	~	~	1	1	1
Hygiene Facilities			54.8 S & 10.9			
Handwash Station - OH					~	1
Shower						1

Other Carryover Options and Capabilities

Other Options

- 3 Packaged Food Systems
- 3 Clothing Usage Rates
- 4 Habitat Structures
- 9 Radiation Shielding Materials
- 4 Internal Atmosphere Compositions
- Store/Dump Water Processor BrineDay/Night Operation
- Number of Active (Operational)
- Units
- Number of Inactive (Standby) Units
 Automated Trade Studies
- Macro runs combinations of options and allows ranking of cases based on equivalent system mass (ESM).
- 14,000+ combinations takes < 1 hr.


FY04 ALS Architecture and Technology Studies: Mid-Year Status

- Radiation Shielding ESM Credit Calculation
 - Equivalent mass of dedicated radiation shielding material saved as a result of shielding provided by life support materials.
 - Assumed equivalency based on hydrogen mass content.
 - Example: 600 day mission; crew of 6; low-moisture STM food system; polyethylene radiation shielding
 Food Storage Mass/Vol. ESM: 5870 kg
 Radiation Shielding Credit: 3500 kg
 Net Food Storage ESM: 2370 kg

April 15, 2004

- Flowsheet Mass Balance Verification and Visualization
 - Expanded from FY03.
 - Example on next slide.

Flowsheet Example (values linked to spreadsheet) ISRU RUEVA Nitrogen EVA OR 5.000 Airlock EVA Crew EMU CO2 EVA C2 Vent 8.629 EVA Cooling Wat 0.000 Cabin N2 0.312 Temperature & Humidity Control in Latent 5.618 Water I CASE: 600-day Mars Surface Payload Storage 0.000 Animal C 0.000 DISPLAYED VALUES Cooling 0.000 Cabin PACKAGED FOOD Packaged Food age Rate Processor Latent HYGIENE: Handwash & Shr Waste Food & P 2.042 Waste Wipes & F Crew Food & Drin Waste WATER STORAGE Metal Bellows Tanks N2 STORAGE High Pressure ble Wipes & S Hygiene Storage Hygiene Station Hygiene Latent D2 STORAGE ashable Towels & Washo 1,050 42,000 aundry Feed Water 36,053 O2 GENERATION SPE Water Electrol Potable Water Storage 40.10 dry Wat 34.07 Water CO2 REMOVAL * * Water Processor Vent 0.000 Dirty Washable Clothin 2.078 CO2 REDUCTION Sabatier System Lands Waste Towels & THC: SS CCAA Clothing Storage LAUNDRY: 4.955 Crew CO2 5.959 WATER PROCESSING Crew Later 10.500 WASTE PROCESSING Fecal Storage Fecal Wa 8.50 W Face Jush Wa & Flush V Water Processor Storage Water Processor Waste 0.805 nped B Recovered Water 101.493 FY04 ALS Architecture and Technology Studies: Mid-Year Status April 15, 2004

Atmosphere-Related Technology	
Studies and Potential Trades	

Option	Technology	Added FY04
4BMS + Sabatier	4-Bed Molecular Sieve (4BMS; ISS CDRA)	
	Sabatier Carbon Dioxide Reduction System (with compressor and accumulator)	
Integrated CO ₂ Removal & Reduction	Integrated Carbon Dioxide Removal and Reduction System (fan replaces compressor; no accumulator; thermal integration; humidity removal capabilities)	~

Option	Technology	Added FY04
ISS TCCS	ISS Trace Contaminant Control System (uses expendable activated carbon bed)	1
Regenerative TCCS	Regenerative Trace Contaminant Control System (uses regenerative sorbent bed)	*
	THE BURN	
IS Architecture and Tr	chnology Studies: Mid-Year Status	-

		1.4
Option	vehicular Mobility Unit (EMU) Oxygen Sup Technology	Added FY04
High-Pressure O ₂	High-Pressure Oxygen Storage Tanks	
Cryogenic O ₂	Cryogenic Oxygen Storage Tanks	
Cryogenic O2 with Cryocooler	Cryogenic Oxygen Storage Tanks	
	Pulse-Tube Cryocooler	1
Low-Pressure H ₂ O Electrolysis + Compressor	SPE Water Electrolysis (ISS OGA)	
	Oxygen Compressor	1
High-Pressure H ₂ O Electrolysis	High-Differential-Pressure Water Electrolysis	1

٠,

Water-Related	Technology	Studies and
Potential Trade		

FY04 ALS Architecture and Technology Studies: Mid-Year Status

Option	Technology	Added FY04
VPCAR	Vapor-Phase Catalytic Ammonia Removal (VPCAR)	
ISS UPA + WPA	Vapor Compression Distillation (VCD) (for primary urine processing)	1
	Multifiltration	1
	Volatile Removal Assembly (VRA)	1
BWP + RO + AES + PPS	Anaerobic Bioreactor (for organic degradation)	1
	Aerobic Nitrification Bioreactor (for ammonia oxidation)	1
	Reverse Osmosis (RO; for inorganic removal)	1
	Air Evaporation (AES; for RO brine water recovery)	1
	UV Photooxidation (for post-processing)	~
Store March	Ion Exchange (for post-processing)	1
	a fatter and a second	

Option	Technology	Added FY04
BWP + DOC	Anaerobic Bioreactor (for organic degradation)	~
	Aerobic Nitrification Bioreactor (for ammonia oxidation)	1
	Direct Osmotic Concentration (DOC; for inorganic removal)	~
Others?	Other combinations of included technologies to achieve required water quality or more optimal configurations.	~

Food-Related Technology Studies and Potential Trades

Packaged and Produced Food^{1,2}

FY04 ALS Architecture and Technology Studies: Mid-Year Status

Option	Technology	Added FY04
STM	Shuttle Training Menu (STM)	
Low-Moisture STM	Shuttle Training Menu Substituted with Increased Low-Moisture Content Items	
STM + Frozen	Shuttle Training Menu Substituted with Frozen Food Items	
STM + Salad Machine	Shuttle Training Menu Substituted with Grown Salad Items	~
Low-Moisture STM + Salad Machine	Shuttle Training Menu Substituted with Increased Low-Moisture Content Items and Grown Salad Items	1

¹Options include necessary food production, processing, and preparation equipment. ²STM-based food system data provided by Julie Levri/ARC (Food Data Spreadsheets 1-29-03.xls).

7

14

Option	Technology	Added FY04
High Bulk Packaging + Salad Machine	High Degree of Bulk Food Packaging with Grown Salad Items (includes bread maker and powdered drink dispenser)	1
Moderate Bulk Packaging + Salad Machine	Bulk Packaging of Dehydrated Drinks and Flour with Grown Salad Items (includes bread maker and powdered drink dispenser)	*
ndividual Packaging + Salad Machine	Individually Packaged Food with Grown Salad Items	*

Waste-Related Technology Studies and Potential Trades

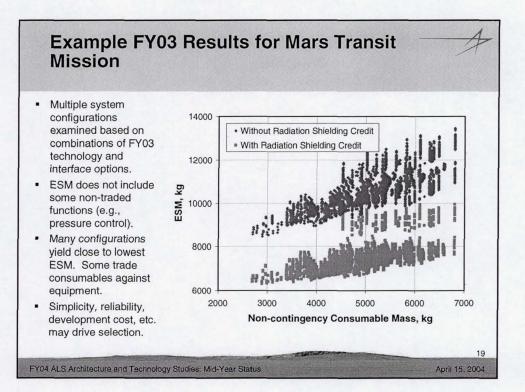
FY04 ALS Architecture and Technology Studies: Mid-Year Status

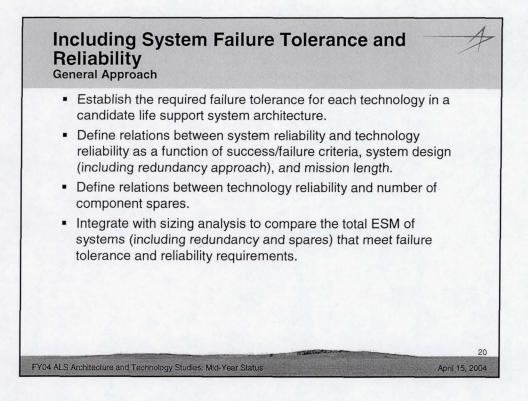
Option	Technology	Added FY04
Air Dryer	Air Dryer (for non-hazardous food/hygiene wastes; employs heat and water exchange with cabin air)	
Batch Incineration	Batch Incineration (initially considered for feces only; includes necessary pre and post processors)	1
Pyrolysis	Pyrolysis (initially considered for feces only; includes necessary pre and post processors)	~
Sublimation	Sublimation (or lyophilization; for feces, toilet paper, food wastes, and waste brines)	v1
¹ Sublimation (lyophiliz	food wastes, and waste brines) ation) included in FY03 for VPCAR brine only.	

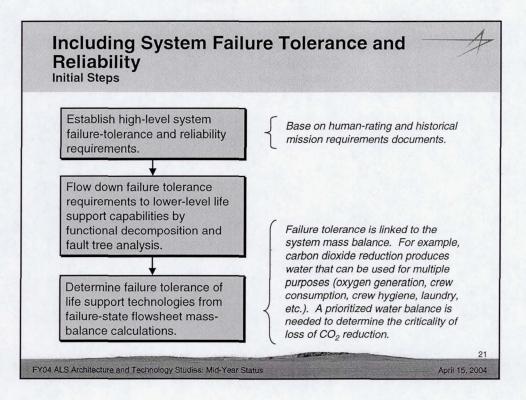
16

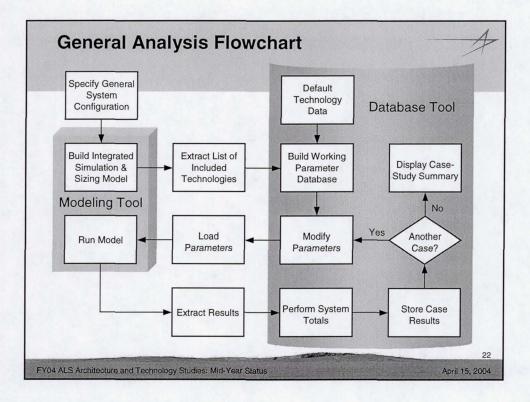
Waste-Related Technology Studies and Potential Trades (continued)

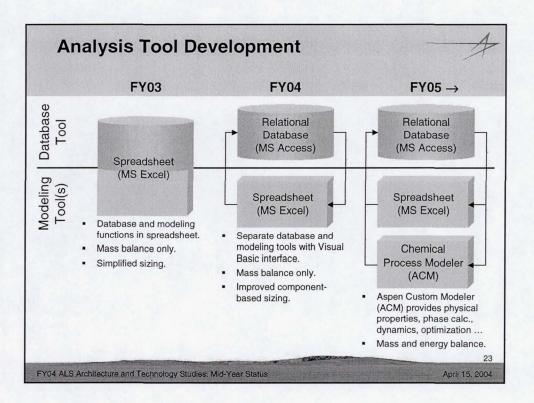
Biological Waste Processing¹


FY04 ALS Architecture and Technology Studies: Mid-Year Status


Option	Technology	Added FY04
Aerobic Composting	Aerobic Composting	~
Anaerobic Composting	Anaerobic Digestion/Composting	~


¹For feces, compatible food/hygiene wastes, biomass, paper, and waste brines. Options include necessary pre and post processors.


FY04 Trade Studies . FY04 ALS architecture and technology trade studies will be completed by June 30 in time to provide recommended design configurations for the FY04 ALS Metric. Technologies included in these studies will be prioritized based on the following criteria: 1. Availability and quality of required performance/sizing data and relations. 2. Assessed potential for greatest reduction in system ESM based on updated FY03 results. 3. Ability of the technology to provide a required or potentially required system capability (e.g., waste sterilization) not included in FY03 studies. 18 FY04 ALS Architecture and Technology Studies: Mid-Year Status April 15, 2004


17

. . .

-