Fiber Optics Instrumentation Development

Patrick Hon Man Chan, PhD. Allen R. Parker, Jr W. Lance Richards, PhD.

International Test and Evaluation Association (ITEA) Meeting July 21st, 2010

Introduction: Why Use Fiber?

- Immunity to electromagnetic interference, radio-frequency interference, and radiation.
- Compact, lightweight, ruggedized device for smart structure
 - Embedded into structure
 - Harsh environment (under water)
- The ability to be multiplexed. (100s of sensors on a single fiber).
- Ease of installation and use (single fiber vs. multitude of lead wires).
- Potential low cost as a result of high-volume telecommunications manufacturing.
- WEIGHT SAVING vs Strain gauge

Background: A Piece of Glass!

 Fiber Bragg Grating (FBG) sensor is that a change in strain state will alter the center wavelength (λ) of the light reflected from an FBG.

- A fiber's index of refraction (n) depends on the density of the dopants it contains.
- FBGs are created by redistributing dopants to create areas that contain greater or lesser amounts, using a technique called laser writing or dopant modulation.
- The index of refraction is modulated throughout the length of the grating.
- This grating reflects a narrow spectrum of light that is directly proportional to the period of the index modulation (Λ) and the effective index of refraction (n).
- The Bragg wavelength $(\lambda_{\rm B})$, is expressed by $\lambda_{\rm B}$ = 2 n Λ . Because change in temperature (ΔT) and strain $(\Delta \epsilon)$ directly affect Λ and n, any change in temperature or strain directly affects the $\lambda_{\rm B}$.

$$\frac{\Delta \lambda_B}{\lambda_B} = K\varepsilon$$

NASA Grating Modulation Multiplexing Method

- Multiplex 100s of sensors onto one fiber.
- All gratings are written at the same wavelength.
- A narrowband wavelength tunable laser source must be used to interrogate sensors.
- Sensor size can be from 0.1mm to 100mm gage lengths.

$$I_R = \sum_{i} R_i Cos(k2nL_i) \qquad k = \frac{2\pi}{\lambda}$$

R_i - spectrum of ith grating

n - effective index

L - path difference

k - wavenumber

Processing Procedure

Fiber Strain Sensors in Action

Fiber Optics Wing Shape Sensing System (FOWSS) for Ikhana

• Fiber count: 4

• Max Fiber length: 40 ft

Max sensing length: 20 ft

Max gages/fiber: 480

Total gages/system: 1920

Sample rate: 50 Hz @ 2 fibers

30 Hz @ 4 fibers

Power: 28Vdc @ 4 Amps

Weight: 23 lbs

• Size: 7.5 x 13 x 13 in

Fiber Optics Instrumentation Development System for NASA Composite Crew Module

•	Fiber count	4
•	Max. fiber length	40 ft
•	Max sensing length	20 ft
•	Max. sensors / fiber	480
•	Total sensors per system	1920
•	Min. grating spacing	0.5 in
•	Sample rate	2 fibers @ 50 sps 4 fibers @ 24 sps
•	Interface	Gigabit Ethernet
•	Power	120 VAC
•	Weight	12 lbs
•	Size	9 x 5 x 11 in

Fiber Optics Instrumentation Development System for Global Observer

• Fiber count: 8

Max Fiber length: 80 ft

• Max sensing length: 40 ft

Max gages/fiber: 1000

• Total gages/system: 8000

Sample rate: 0-50 Hz

Power: 28Vdc

• Weight: 28 lbs

• Size: 7.5 x 13 x 18 in

Recent Development Shape Sensing using fiber strain sensors

- From collaboration with NASA LaRC, shape sensing using fiber strain sensors has been realized
 - Initial research focuses upon 3-core fiber
 - This speciality fiber can be replaced with 3 conventional fibers superposition from one another at 120°
- From knowing the strain value of each fiber, the 3-dimensional position of the fiber can be accuracy rendered in real-time
 - Strain → 3D Position

Prototype – Hexagon strain rod

Prototype – Shape sensing fiber

Conclusion

 NASA DFRC has successfully develop fiber optics strain sensors technology from laboratory to real-world application

2010 and beyond 8-channel system

>100Hz

~30lbs

2-channel system

~50Hz

~10lbs

- Current status
 - Dryden FBG system are installed on Ikhana and Global Observer UAV for real time strain sensing
 - Real-time fiber shape sensing is currently being developed
- Potential application of technology beyond aeronautics
 - Automotive Sector
 - Energy Sector
 - Biomedical Sector

