TPS Ablator Technologies for Interplanetary Spacecraft

Donald M. Curry
NASA Johnson Space Center
Houston, Texas

Transformational Systems & Technologies (TSCT)

Workshop

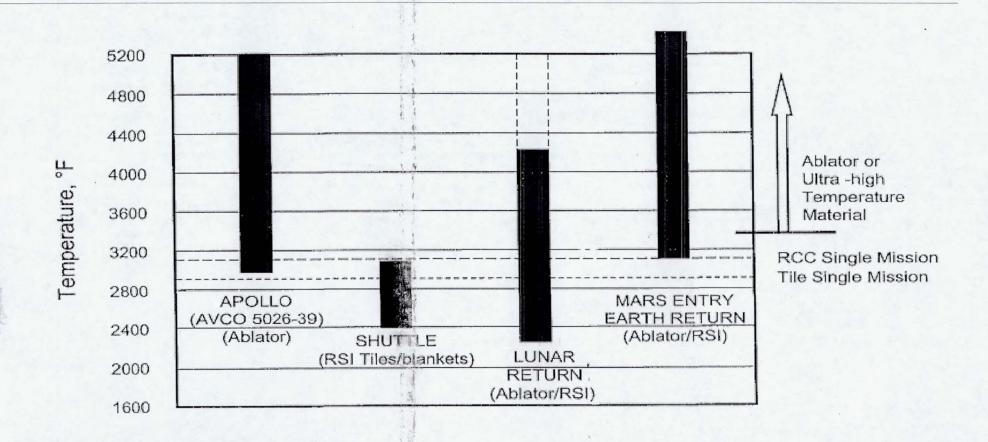
University of Houston

March 1, 2004

TPS ABLATIVE MATERIALS TODAY – TOO FEW, TOO COSTLY, WRONG PERFORMANCE LEVELS

Problem – NASA does not have adequate TPS ablatives and sufficient selection for planned missions

- -Limited active ablatives R&D since 1960's
- -Apollo Era" materials, largely unavailable today
- -Older ablators heavy, costly, not-state-of-the-art (SOA)
- -Labor-intensive, drawn-out manufacturing, e.g. Honeycomb filling, trimming, packing
- -Wrong performance for future interplanetary missions


Needs – Broad selection of well-characterized ablators with wide range of performance, robustness, and weight with low cost, SOA manufacturing

Progress – Limited JSC sponsored SBIR for new ablator technology

COMPARISON OF SHOTTLE AND INTERPLANETARY TPS REQUIREMENTS

	Shuttle	Lunar Return	Mars Entry/Return				
• PEAK CONVECTIVE HEATING BTU/FT ² -SEC	60	200	50 – 300				
• PEAK RADIANT HEATING BTU/FT ² -SEC	<2	200	40-200				
• PEAK VELOCITY, KM/SEC	7	11	7-13				
• PEAK DYNAMIC PRESSURE, PSF	300	1000	250-1000				
• TURBULENT HEATING	YES	YES	YES				
• ENTRY HEATING TIME, SEC	1200	<400	<400				
• EXPOSURE TO ADVERSE ENVIRONMENTS							
- RAIN/WEATHER	YES	NO	NO				
- AEROACOUSTICS (dB) - DEBRIS IMPACT	160+	146	146				
- LAUNCH	YES	NO	NO				
- ON-ORBIT/IN-FLIGHT	LESS	MORE	MORE				

TPS Temperature Requirements for Various Programs

STATUS OF MAINLINE TPS CHARRING ABLATOR MATERIALS

MATERIAL	SUPPLIER	DENSITY LB/CUFT	HEAT FLUX- BTU/SQFT-SEC	REMARKS
AVCO-5026-39	TEXTRON SPECIALTY MATERIALS	32	300	FLIGHT CERTIFIED/APOLLO NOT IN PRODUCTION
SLA561V	LOCKHEED-MARTIN	16	175	FLIGHT CERTIFIED/MARS IN PRODUCTION
ACUSIL I	AEROTHERM	30	250	NON-FLIGHT CERTIFIED IN PRODUCTION
ACUSIL II	AEROTHERM	16	60	NON-FLIGHT CERTIFIED IN PRODUCTION
HYPERLITE-A	APPLIED RESEARCH ASSOCIATES	13	100	NON-FLIGHT CERTIFIED DEVELOPMENTAL
SRAM-17	APPLIED RESEARCH ASSOCIATES	178	175	NON-FLIGHT CERTIFIED DEVELOPMENTAL
SRAM-20	APPLIED RESEARCH ASSOCIATES	20.	225	NON-FLIGHT CERTIFIED DEVELOPMENT
PCA – 28	APPLIED RESEARCH ASSOCIATES	28	300	NON-FLIGHT CERTIFIED DEVELOPMENTAL
SIRCA	NASA-AMES	1/5	175	NON-FLIGHT CERTIFIED DEVELOPMENT
PICA	NASA-AMES	15	260-1100	NON-FLIGHT CERTIFIED DEVELOPMENT

SBIR ADVANCED ABLATOR FAMILY

ABLATOR	DENSITY	RESIN SYSTEM	FILLERS	HEATING RANGE
	LB/FT ³			BTU/FT ² -SEC
SRAM-14	14	Silicope	Silica/Others	80 - 140
SRAM-17	17	Silicohe	Silica/Others	100 - 160
SRAM-20	20	Silicone	Silica/Others	125 - 200
SRAM-24	24	Silicone	Silica/Others	170 - 284
PhenCarb-20	20	Phenolic	Carbon/Others	200 - 284
PhenCarb-24	24	Phenolic	Carbon/Others	300 - 700
PhenCarb-28	28	Phenolic	Carbon/Others	400 – 900
PhenCarb-32	32	Phenolic	Carbon/Others	500 – 1100
Hyperlite-C	11	Silicone	Silica/Others	10 – 30
Hyperlite-B	12	Silicone	Silica/Others	30 – 50
Hyperlite-A	13	Silicone	Silica/Others	50 - 100

Summary of JSC SBIR Accomplishments – Advanced Charring Ablators

- Developed Promising New, Low-Cost Heat Shield Manufacturing Process ("SCBA")
- Developed Family Systems of Advanced Silicone and Phenolic Ablators (10 to 40 Lb/Ft³)
- Completed Two Major Arc-Jet Tests in FY2000 and FY-2001
- New Silicone Ablators are Lightest Reliable Materials Available Today for Mars Missions
 - S-13 "Hyperlite A" 13 Lb/Ft³ Net (12.0 Lb/Ft³ Ablator with 1.0 Lb/Ft³ Reinforcement)
 - S-12 "Hyperlite B" 12 Lb/Ft³ Net (11.0 Lb/Ft³ Ablator with 1.0 Lb/Ft³ Reinforcement)
- "Hyperlite A" Offers >20% Weight Savings Compared to Mars Pathfinder TPS (SLA-561V)
- New Phenolic Ablators Offer Weight Savings of >33% Compared to Apollo TPS (SLA-561V)
- Small Subscale Ellipsled Heat Shields Fabricated for "SCBA" Demonstration

SBIR ABLATOR/FABRICATION TECHNOLOGY BENEFITS

- New Lightweight, Low Cost, Robust and Efficient heat shields
- TPS Performance That Satisfies Multi-mission Needs
- Enables Heat Shield Fabrication At Low Cost
 - Efficient, semi-automated production
 - CNC milling produces "KIT" of ablator parts
 - Provides a better, more uniform TPS
 - Works well for thick (3-4 in.) Or thin (0.8 in.) TPS
 - Provides for TPS thickness tapering for weight savings
 - Allow NDI of cured ablator prior to assembly
- Facilitates Greater NASA/Industry Technology Partnership
 - Arc-jet characterization testing
 - Thermal ablation response models
 - Flight-response predictions

CONCLUDING COMMENTS

- NASA ISPT Technologies Funding JSC SBIR Results
- Establish New "TPS Technology Team" Within NASA
- Select Team Members To Integrate Needed Technologies
 - Thermal and mechanical analysis
 - Materials engineering
 - Advanced manufacturing
- Pursue In-House NASA TPS Design and Fabrication Capability
 - Opens door to new industry partnerships
 - Allows space robotic-mission teaming with JPL
 - Puts NASA in driver's seat for best TPS materials and design