
mu uuuu ui iiui iiui mu mu um uui uiu mu mui uu uii mi

(12) United States Patent
Stange et al.

(54) METHODS AND SYSTEMS FOR PROVIDING
RECONFIGURABLE AND RECOVERABLE
COMPUTING RESOURCES

(75) Inventors: Kent Stange, Phoenix, AZ (US);
Richard Hess, Glendale, AZ (US);
Gerald B Kelley, Glendale, AZ (US);
Randy Rogers, Phoenix, AZ (US)

(73) Assignee: Honeywell International Inc.,
Morristown, N7 (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 883 days.

(21) Appl. No.: 11/458,301

(22) Filed:	 Jul. 18, 2006

(65)	 Prior Publication Data

US 2008/0022151 Al	 Jan. 24, 2008

(51) Int. Cl.
G06F 11/00	 (2006.01)

(52) U.S. Cl 714/13; 714/12; 714/16
(58) Field of Classification Search 714/4,

714/11, 12, 13, 15, 16
See application file for complete search history.

(56)	 References Cited

U.S. PATENT DOCUMENTS

4,345,327 A	 8/1982 Thuy
4,453,215 A	 6/1984 Reid
4,751,670 A	 6/1988 Hess
4,996,687 A	 2/1991 Hess et al.
5,086,429 A	 2/1992 Gray et al.
5,313,625 A	 5/1994 Hess et al.
5,550,736 A	 8/1996 Hay et al.
5,732,074 A	 3/1998 Spaur et al.
5,757,641 A	 5/1998 Minto
5,903,717 A	 5/1999 Wardrop

(1o) Patent No.:	 US 7,793,147 B2
(45) Date of Patent: 	 Sep. 7, 2010

	

5,909,541 A	 6/1999 Sampson et al.

	

5,915,082 A	 6/1999 Marshall et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP	 0363863	 4/1990

(Continued)

OTHER PUBLICATIONS

Lee, "Design and Evaluation of a Fault-Tolerant Multiprocessor
Using Hardware Recovery Blocks", Aug. 1982, pp. 1-19, Publisher:
University of Michigan Computing Research Laboratory, Published
in: Ann Arbor, MI.

(Continued)

Primary Examiner Joshua A Lohn
(74) Attorney, Agent, or Firm Fogg & Powers LLC

(57)	 ABSTRACT

A method for optimizing the use of digital computing
resources to achieve reliability and availability of the com-
puting resources is disclosed. The method comprises provid-
ing one or more processors with a recovery mechanism, the
one or more processors executing one or more applications. A
determination is made whether the one or more processors
needs to be reconfigured. A rapid recovery is employed to
reconfigure the one or more processors when needed. A com-
puting system that provides reconfigurable and recoverable
computing resources is also disclosed. The system comprises
one or more processors with a recovery mechanism, with the
one or more processors configured to execute a first applica-
tion, and an additional processor configured to execute a
second application different than the first application. The
additional processor is reconfigurable with rapid recovery
such that the additional processor can execute the first appli-
cation when one of the one more processors fails.

20 Claims, 5 Drawing Sheets

410(N)

Applicction	 Applimtion	 414(N}
. . .	

Processor	 432(N)

Recivery	 Recovery ^^416(N)

Y

420

No	 Recoafiyuration	 ____________________
Required

1

Yes

Rapid Recovery
Initia?ed

https://ntrs.nasa.gov/search.jsp?R=20100040683 2019-08-30T13:33:46+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10557042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

US 7,793,147 B2
Page 2

U.S. PATENT DOCUMENTS 2001/0025338 Al 	 9/2001 Zumkehr
2002/0099753 Al 	 7/2002	 Hardin et al.

5,949,685 A 9/1999 Greenwood et al. 2002/0144177 Al 	 10/2002	 Kondo et al.
6,058,491 A 5/2000 Bossen et al. 2003/0126498 Al 	 7/2003	 Bigbee et al.
6,065,135 A 5/2000 Marshall et al. 2003/0177411	 Al*	 9/2003	 Dinker et al 714/13
6,115,829 A 9/2000 Slegel et al. 2003/0208704 Al 	 11/2003	 Bartels et al.
6,134,673 A * 10/2000 Chrabaszcz	 714/13 2004/0019771 Al 	 1/2004 Quach
6,141,770 A 10/2000 Fuchs et al. 2004/0098140 Al 	 5/2004	 Hess
6,163,480 A 12/2000 Hess et al. 2004/0221193 Al 	 11/2004	 Armstrong et al.
6,185,695 B1 * 2/2001 Murphy et al 714A 2005/0022048 Al 	 1/2005	 Crouch
6,189,112 B1 2/2001 Slegel et al. 2005/0138485 Al 	 6/2005	 Osecky et al.
6,279,119 B1 8/2001 Bissettetal. 2005/0138517 Al 	 6/2005	 Monitzer
6,367,031 B1 4/2002 Yount 2006/0041776 Al 	 2/2006 Agrawaletal.
6,393,582 B1 5/2002 Klecka et al. 2006/0085669 Al*	 4/2006	 Rostron et al	 714A
6,467,003 B1 10/2002 Doerenberg et al. 2006/0112308 Al*	 5/2006	 Crawford et al 714/12
6,560,617 B1 * 5/2003 Winger et al 707/2042008/0016386 Al*	 1/2008	 Dror et al .714A
6,574,748 B1 6/2003 Andress et al.
6,600,963 B1 7/2003 Loise et al. FOREIGN PATENT DOCUMENTS
6,625,749 B1 9/2003 Quach
6,751,749 B2 6/2004 Hofstee et al. EP	 0754990	 1/1997

6,772,368 B2 8/2004 Dhong et al. EP	 1014237 Al	 6/2000

6,789,214 B1 9/2004 De Bonis-Hamelin et al. OTHER PUBLICATIONS
6,813,527 B2 11/2004 Hess
6,990,320 B2 1/2006 LeCren Racine, "Design of a Fault-Tolerant Parallel Processor", 2002, pp.

7,003,688 B1 2/2006 Pittelkow et al. 13.D.2-1-13.D.2-10, Publisher: IEEE, Published in: US.

7,062,676 B2 * 6/2006 Shinohara et al 714/15 Dolezal, "Resource Sharing in a Complex Fault-Tolerant System",

7,065,672 B2 * 6/2006 Lon	 et al.g	 714/11 1988, pp. 129-136, Publisher: IEEE.

7,178,050 B2 * 2/2007 Fung et al 714/4
Ku, "Systematic Design of Fault-Tolerant Mutiprocessors With
Shared Buses", "IEEE Transactions on Computers", Apr. 1997,p

	p	
pp7,320,088 BI* 1/2008 Gawali et al 714/6 439-455, vol. 46, No. 4, Publisher: IEEE.

7,334,154 B2 * 2/2008 Lorch et al 714/4
7,401,254 B2 * 7/2008 Davies	 714/11 * cited by examiner

04,

Nl^

Y3 yy3

/1110,

CL

C)

lam!)

s

CD

LL

4-

a
C>2

-0
C)

'41

U.S. Patent
	

Sep. 7, 2010	 Sheet I of 5	 US 7,793,147 B2

4- kn >Cal	 ^n	 0

cn

CIOin
>

?

rj	
Cl_

QYJ

Qa3 v--

Z'
Ct
(D
	

C)
k"i

Q
ea

tYG

SV

C.3

U.S. Patent	 Sep. 7, 2010	 Sheet 2 of 5
	

US 7,793,147 B2

C\j

LL-

CD

tn

C^

dlj

CD
cli

CD

U.S. Patent	 Sep. 7, 2010	 Sheet 3 of 5	 US 7,793,147 B2

300a-""",,

310	 320	 330

Application A	 Application B	 Application C

	

Processor I	 Processor 2	 Processor 3

	

Recovery	 Recovery	 Recovery

312"
)	 322	 332

370

3 80
ecomfigur

310	 320	 330

	

---------------------- 	 ----------------------	 -------------------	 ----------------

Application A	 Application A	 Application A

Processor 	 Processor 2	 Processor 3

	

Recovery	 j	 Recovery	 Recovery

332312	 322-

beciion

o c
360 QLglin350	

'^-",300b

	

I	 Action	 I

FIG. 3

U.S. Patent	 Sep. 7, 2010	 Sheet 4 of 5	 US 7,793,147 B2

410
	

410(N)

:^

ation	 Application	 ----414.(N)

ssor	 Processor	 ---,,412(N)

eery	 E	 Recovery	 r----416(N)

- -

420

uration	 --------------------

430

440

FiG. 4

U.S. Patent	 Sep. 7, 2010	 Sheet 5 of 5	 US 7,793,147 B2

00
4

1---------------------
1
1
1
•

--------	 _-----1
^
1
r

1
r
I
'	 ^

+

^
I

^ O r
1 (A

t/1
t

1

' V 1
i O '

I

^ r

r

1
I

'

N	 +
N IVi i

' 1
1

^
'	 co

lw
^

1	 t

^ 1

I

'

1 ^ '
1 ^ I

L" +
1^ O r

1	 ^
1
1

1

1

'
^

1
1I1

1
1
11
1
1

1
,
1̂

'	 ^

^

1

1 t

1 C '

O C

r I
1

'I
1
'

4
^ 1^

r

'I
I

CC l
i^

1	 N ^

II (NpYq
1

I

^ 1

I
1
I

1

1I
^
1

•
L----------------------

I
1

0
M
Lei

1-------------------
r

1
1
1	 N
i

^	 d

r	 ^5 d C

1
i

i

t

M '

l

^ 1

ti

i
1
1
11
1

i

i

CO ;

CV)	 1

1

^ 1

1

1

1

i

1

01 M

1	 1

i	 C	 i

S	
I

1
1	 W	 1
1	 I

r1	 I
r	 1
r	 ^
I

6--------------------`----------------

I

1

t

t

i
i
I
1
1

1

i
t
1

1

i

to

V

U.

US 7,793,147 B2
1
	

2
METHODS AND SYSTEMS FOR PROVIDING

	
BRIEF DESCRIPTION OF THE DRAWINGS

RECONFIGURABLE AND RECOVERABLE
COMPUTING RESOURCES

	
Features of the present invention will become apparent to

those skilled in the art from the following description with
The U.S. Government may have certain rights in the 5 reference to the drawings. Understanding that the drawings

present invention as provided for by the terms of Contract No. 	 depict only typical embodiments of the invention and are not
NCC-1-393 with NASA. 	 therefore to be considered limiting in scope, the invention will

be described with additional specificity and detail through the
BACKGROUND TECHNOLOGY	 use of the accompanying drawings, in which:

10 FIG. 1 is a block diagram of one embodiment of a recon-
Computers have been used in digital control systems in a	 figurable and recoverable computing system;

variety of applications, such as in industrial, aerospace, medi- 	 FIG. 2 is a block diagram of another embodiment of a
cal, scientific research, and other fields. In such control sys-	 reconfigurable and recoverable computing system;
tems, it is important to maintain the integrity of the data 	 FIG. 3 is a block diagram of a further embodiment of a
produced by a computer. In conventional control systems, a 15 reconfigurable and recoverable computing system;
computing unit for a plant is typically designed such that the 	 FIG. 4 is a processing flow diagram for a method for
resulting closed loop system exhibits stability, low-frequency	 optimizing the use of digital computing resources to achieve
command tracking, low-frequency disturbance rejection, and 	 reliability and availability; and
high-frequency noise attenuation. The "plant' can be any 	 FIG. 5 is a block diagram illustrating a fault recovery
object, process, or other parameter capable of being con- 20 system according to one embodiment.
trolled, such as aircraft, spacecraft, medical equipment, elec-
trical power generation, industrial automation, a valve, a

	
DETAILED DESCRIPTION

boiler, an actuator, or other controllable device.
It is well recognized that computing system components

	
The present invention relates to methods and systems for

may fail during the course of operation from various types of 25 providing one or more computing resources that are recon-
failures or faults encountered during use of a control system. 	 figurable and recoverable wherever digital computing is
For example, a "hard fault' is a fault condition typically 	 applied, such as in a digital control system. The methods of
caused by a permanent failure of the analog or digital cir- 	 the invention also provide for optimizing the use of digital
cuitry. For digital circuitry, a "soft fault' is typically caused

	
computing resources to achieve reliability and availability of

by transient phenomena that may affect some digital circuit 30 the computing resources. Such a method comprises providing
computing elements resulting in computation disruption, but 	 one or more processors with a recovery mechanism, with the
does not permanently damage or alter the subsequent opera- 	 one or more processors executing one or more applications. A
tion of the circuitry. For example, soft faults may be caused by

	
determination is made whether the one or more processors

electromagnetic fields created by high-frequency signals 	 needs to be reconfigured. A rapid recovery is employed to
propagating through the computing system. Soft faults may 35 reconfigure the one or more processors when needed. State
also result from spurious intense electromagnetic signals, 	 data is continuously updated in the recovery mechanism, and
such as those caused by lightning that induce electrical tran- 	 the state data is used to transfuse the one or more processors
sients on system lines and data buses which propagate to

	
for reconfiguration. This method provides for real-time

internal digital circuitry setting latches into erroneous states. 	 reconfiguration transitions, and allows for a minimal set of
Unless the computing system is equipped with redundant 40 hardware to achieve reliability and availability.

components, one component failure normally means that the
	

In general, reconfiguration is an action taken due to non-
system will malfunction or cease all operation. A malfunction 	 recoverable events (e.g., hard faults or hard failure) or use
may cause an error in the system output. Fault tolerant com- 	 requirements (e.g., flight mission phase). A recovery action is
puting systems are designed to incorporate redundant com- 	 generally taken due to a soft fault. The invention provides for
ponents such that a failure of one component does not affect 45 application of a recovery action during a reconfiguration
the system output. This is sometimes called "masking."

	
action. This combination of actions lessens the reconfigura-

In conventional control systems, various forms of redun- 	 tion time and optimizes computing resource utilization. This
dancy have been used in an attempt to reduce the effects of

	 combination of actions facilitates a more rapid reconfigura-
faults in critical systems. Multiple processing units, for 	 tion of a computational element because current state data is
example, may be used within a computing system. In a system 50 maintained within a rapid recovery mechanism of a comput-
with three processing units, for example, if one processor is

	 ing unit. The reconfiguration state data is pre-initialized with
determined to be experiencing a fault, that processor may be 	 the state data maintained in a computing resource with rapid
isolated and/or shut down. The fault may be corrected by 	 recovery capability, which allows a reconfigured computing
correct data, such as the current values of various control state 	 resource to be brought on line much faster than if the state data
variables, being transmitted (or "transfused") from the 55 were not available. The reconfiguration is rapid enough so
remaining processors to the isolated unit. If the faults in the 	 that input/output staleness is not an issue.
isolated unit are corrected, the processing unit may be re- 	 Typically, the reconfiguration starts from or ends in a
introduced to the computing system. 	 redundant/critical system. The hardware can be reconfig-

Functional reliability is often achieved by implementing 	 urable or can have a superset of functions. The invention
redundancy in the system architecture whereby the level of 60 enables a reduction in hardware that is employed to achieve
redundancy is preserved without effects on the function being 	 reliability and availability for functions being provided by a
provided. Availability can be achieved by allocating extra

	 digital computing system so that only a minimal set of hard-
hardware resources to maintain functional operation in the	 ware is required. The invention also enables the design of
presence of faulted elements. There is a need, however, to 	 electronic system architectures that can better optimize the
minimize the hardware resources necessary to support reli- 65 utilization of computing resources.
ability requirements and availability requirements in control

	
The rapid recovery mechanism may also be used to mini-

systems.	 mize the set of computing resources required to support vary-

US 7,793,147 B2
3

ing computing resources throughout a specified use such as a
mission. In phases where maximum reliability is required,
computing resources may be reconfigured to perform redun-
dant functionality. The reconfiguration occurs in a minimal
time lag since the state data is maintained in the rapid recov-
ery mechanism. In other phases of a mission where additional
functionality is required to be available, the system may be
reconfigured to provide the additional computing resources
and may revert to the high integrity configuration at anytime
since the state data is maintained in the rapid recovery mecha-
nism. A typical system without a rapid recovery mechanism
would require additional hardware to provide functionality
that is only required during parts of a mission and would not
be immediately reconfigurable to a higher reliability archi-
tecture by reutilizing hardware resources.

Further details with respect to the rapid recovery mecha-
nism can be found in copending U.S. application Ser. No.
11/058,764, filed on Feb. 16, 2005, and entitled "FAULT
RECOVERY FOR REAL-TIME, MULTI-TASKING COM-
PUTER SYSTEM," the disclosure of which is incorporated
herein by reference.

In the following description, various embodiments of the
present invention may be described in terms of various com-
puter architecture elements and processing steps. It should be
appreciated that such elements may be realized by any num-
ber of hardware or structural components configured to per-
form specified operations. For purposes of illustration only,
exemplary embodiments of the present invention are some-
times described herein in connection with aircraft avionics.
The invention is not so limited, however, and the systems and
methods described herein may be used in any control envi-
ronment. Further, it should be noted that although various
components may be coupled or connected to other compo-
nents within exemplary system architectures, such connec-
tions and couplings can be realized by direct connection
between components, or by connection through other com-
ponents and devices located therebetween. The following
detailed description is, therefore, not to be taken in a limiting
sense.

Instructions for carrying out the various process tasks,
calculations, control functions, and the generation of signals
and other data used in the operation of the systems and meth-
ods of the invention can be implemented in software, firm-
ware, or other computer readable instructions. These instruc-
tions are typically stored on any appropriate computer
readable medium used for storage of computer readable
instructions or data structures. Such computer readable media
can be any available media that can be accessed by a general
purpose or special purpose computer or processor, or any
programmable logic device.

Suitable computer readable media may comprise, for
example, non-volatile memory devices including semicon-
ductor memory devices such as EPROM, EEPROM, or flash
memory devices; magnetic disks such as internal hard disks
or removable disks (e.g., floppy disks); magneto-optical
disks; CDs, DVDs, or other optical storage disks; nonvolatile
ROM, RAM, and other like media. Any of the foregoing may
be supplemented by, or incorporated in, specially-designed
application-specific integrated circuits (ASICs). When infor-
mation is transferred or provided over a network or another
communications connection (either hardwired, wireless, or a
combination of hardwired or wireless) to a computer, the
computer properly views the connection as a computer read-
able medium. Thus, any such connection is properly termed a
computer readable medium. Combinations of the above are
also included within the scope of computer readable media.

4
An exemplary electronic system architecture in which the

present invention can be used includes one or more proces-
sors, each of which can be configured for rapid recovery from
various faults. The term "rapid recovery" indicates thatrecov-

5 ery may occur in a very short amount of time, such as within
about 1 to 2 computing frames. As used herein, a "computing
frame" is the time needed for a particular processor to per-
form a repetitive task of a computation, e.g., the tasks that
need to be calculated continuously to maintain the operation

10 of a controlled plant. In embodiments where faults are
detected within a single computing frame, each processor
need only store control and logic state variable data for the
immediately preceding computing frame for use in recovery
purposes, which may take place essentially instantaneously

15 so that it is transparent to the user.
The invention provides for use of common computing

resources that can be both reconfigurable and rapidly recov-
erable. For example, a common computing module can be
provided that is both reconfigurable and rapidly recoverable

20 to provide aerospace vehicle functions. Typically, aerospace
vehicle functions can have failure effects ranging from cata-
strophic to no effect on mission success or safety. In control
functions requiring rapid real time recovery (e.g., aircraft
inner loop stability), the computing module capability pro-

25 vides recovery that is rapid enough such that there would be
no effect perceived at the function level. Thus, the recovery is
transparent to the function.

In general, a computing system according to embodiments

30 of the invention provides reconfigurable and recoverable
computing resources. Such a system comprises one or more
processors with a recovery mechanism, the processors con-
figured to execute a first application, and a first additional
processor configured to execute a second application differ-

35 ent than the first application. The additional processor is
reconfigurable with rapid recovery such that the additional
processor can execute the first application when one of the
one more processors fails. In another embodiment, the system
further comprises a second additional processor configured to

40 execute a third application different from the first and second
applications. The second additional processor is reconfig-
urable such that it can execute the second application if the
first additional processor fails.

In the following description of various exemplary embodi-
45 ments of the invention, a particular number of processors are

described for each of the computing systems. It should be
understood, however, that other embodiments can perform
the same functions as described with more or less processors.
Thus, the following embodiments are not to be taken as lim-

50 iting. In addition, some processors are associated with
optional recovery mechanisms, since these processors don't
always need to store state data to perform their functions
when reconfigured.

FIG. 1 depicts a system in which reconfiguration utilizing
55 rapid recovery teleology is provided for maintaining reliabil-

ity of a control system. As shown, a fault tolerant computing
system in a first configuration 100a has a set of three com-
puting resources 110, 120, and 130 that are configured to
execute an application by respective processors 1, 2, and 3.

6o Recovery mechanisms 112, 122, and 132 are also respec-
tively provided in computing resources 110, 120, and 130.
Each computing resource 110, 120, and 130 provides an
independent output that is operatively connected to a decision
logic module 150. The decision logic module 150 implements

65 an algorithm that maintains an appropriate action 160 in the
event that one of the processors sends an erroneous output to
decision logic module 150.

US 7,793,147 B2
5
	

6
The minimum number of processors required to implement 	 cessors 1 and 2. The computational resources 230 and 240 are

this scheme is three because only then is it possible to tell
	

configured to respectively execute applications A and C by
which processor is in error by comparison to the outputs of the	 respective processors 3 and 4. Thus, application A is redun-
other processors. Assuming that all three processors are oper- 	 dantly hosted in processors 1 and 3. Application B is not
ating correctly from the start and that only one fails at a time, 5 redundant and is hosted only in processor 2. Application C,
then it is possible for the decision logic to continue to provide 	 which has the least critical function is hosted only in proces-
an error-free action even after a single processor has failed. 	 sor 4.
The problem is that a second failure would make it impossible

	
As shown in FIG. 2, rapid recovery is used with a consistent

for the decision logic to continue to provide the appropriate	 set of state data to reconfigure (270) the first configuration
action because it is not possible with only two inputs to tell io 200a, which is hosting a non-essential application, into a
which processor has failed. One solution is to have four or	 second configuration 200b. For example, application B state
more processors executing the same application so it is pos- 	 data is continuously updated in recovery mechanism 222. If
sible to continue correct operation after the second failure. 	 an unrecoverable failure is detected in processor 2, processor

As depicted in FIG. 1, a fourth computing resource 140 is
	

4 is reconfigured with recovery data from processor 2 in order
provided with an optional recovery mechanism 142. The pro- 15 to host application B and thus maintain the availability of
cessor 4 of computing resource 140 is not initially executing 	 application B. Application C originally running on processor
the same applicationA as computing resources 110,120, and

	
4 is not required to meet the minimum system functionality

130. Instead, processor 4 is executing application B. The	 and hence is superseded by the more critical application B.
processor 4 does not need to execute application A because

	
The availability of fresh and consistent state data provided

three outputs are sufficient for decision logic module 150 to 20 by the rapid recovery technique ensures rapid initialization of
decide whichprocessor has failed for the first failure. The first	 critical applications. Reconfiguration allows the system to
configuration 100a is reconfigured (170), after one ofproces-	 meet functional availability requirements without immediate
sors 1-3 has failed, into a second configuration 100b. Proces-	 removal and replacement of a faulted computational element.
sor 4 is used to execute application A and provide the third

	
Without rapid recovery, starting application B on processor 4

output to decision logic module 150 that was formerly being 25 would require a lengthy initialization period to become ini-
provided by the now failed processor. For example, ifproces- 	 tialized and synchronized with the system. An immediate
sor 3 fails it is stopped from affecting the control output being 	 maintenance action would be required to diagnose and
sent from decision logic module 150 and is replaced by pro-	 replace the faulty computational element and then restart the
cessor 4, which is reconfigured with recovery data from pro- 	 system without reconfiguration.
cessor I/application A to maintain the redundancy level. Uti- 30	 In a further embodiment, a computing system employs
lizing such reconfiguration and rapid recovery minimizes the 	 reconfiguration and rapid recovery to minimize hardware
hardware resources required to support both reliability and

	
resources required to support both reliability and availability.

availability.	 The speed of the reconfiguration transition can be essentially
The system architecture of FIG. 1 provides the ability to	 real-time when rapid recovery is used. The transitions

reconfigure a processor and begin executing a different appli- 35 between system configurations are used to achieve reliability
cation when needed. To ensure that the system provides the	 and availability of the computational elements.
required level of reliability as before, the reconfiguration

	
In a first configuration of this computing system, a number

must occur in a sufficiently short time that the probability of
	

of independent applications are executed on independent
the second processor failure occurring between the time that 	 computational resources. For example, a computing system
the first failure occurs and the reconfiguration is completed is 40 can include a first processor with a recovery mechanism that
very small. The recovery mechanisms in the computing

	
is configured to execute a first application, and one or more

resources store state information relevant to the executing 	 additional processors configured to execute one or more
application. In the event of one or more computing errors, it is 	 applications that are different from the first application. The
possible for a proces sor to continue executing using the stored

	
first configuration is employed to achieve an availability of

state information that was previously saved during an earlier 45 functions during a particular phase of a use, such as a flight
computation cycle. This same state data is also used to rapidly 	 mission for example. A first application is executed on one of
reconfigure the fourth processor to execute a critical applica- 	 the computational resources, which utilizes rapid recovery to
tion in the event of a non-recoverable error in any of the three 	 create a reliable backup of state data variables. Other appli-
redundant processors. Without this state data, the amount of

	
cations are executed on the additional computational

time required to bring another processor on-line would be 50 resources.
greatly extended.	 During the next phase of a use such as a mission, the first

FIG. 2 illustrates a fault tolerant computing system accord- 	 application needs to support a highly reliable operation. This
ing to another embodiment that employs a reconfiguration

	
is achieved in the computing system architecture by imple-

method utilizing rapid recovery to minimize the hardware	 menting a redundancy of computing resources in a second
computing resources needed to achieve and maintain required 55 configuration to achieve reliability. For example, the one or
functional availability. A first configuration 200a of the com- 	 more additional processors are reconfigurable such that they
puting system has a first computing platform 202 and a sec- 	 can execute the first application when needed for redundancy.
ond computing platform 204, such as left and right cabinets in

	
The one or more additional processors are reconfigured with

a flight control computer system. The computing platform	 recovery data from the first application/processor. Addition-
202 includes a set of computational resources 210 and 220. 6o ally, the one or more additional processors can be further
The computing platform 204 includes a set of computational

	
reconfigured to execute the one or more applications again

resources 230 and 240. Recovery mechanisms 212, 222, and
	

that are different from the first application when redundancy
232, are respectively provided in computational resources

	
is no longer required.

210, 220, and 230. The computational resource 240 is pro- 	 This embodiment is further illustrated in FIG. 3. A com-
vided with an optional recovery mechanism 242. 	 65 puting system in a first configuration 300a includes a set of

The computational resources 210 and 220 are configured to 	 three computational resources 310, 320, and 330 that are
respectively execute applications A and B by respective pro-	 configured to respectively execute different applications A,

US 7,793,147 B2
7

B, and C by respective processors 1, 2, and 3. A recovery
mechanism 312 is provided in computational resource 310
for rapid recovery. The computational resources 320 and 330
can include optional recovery mechanisms 322 and 332,
respectively.	 5

If application A needs to support a highly reliable opera-
tion, computational resources 320 and 330 are reconfigured
(370) to become redundant channels for application A as
shown in a second configuration 300b of FIG. 3. Each of
computational resources 310, 320, and 330 in configuration io
300b can provide an independent output that is fed to a deci-
sion logic module 350. The decision logic module 350 imple-
ments an algorithm that maintains an appropriate action 360
in the event that one of the processors in computational
resources 310, 320, or 330 sends an erroneous output to 15

decision logic module 350.
Once the highly reliable operation is no longer needed, the

computing system can be returned (380) to the first configu-
ration 300a. In a cyclic scenario, the computing system can be
reconfigured between first and second configurations 300a 20

and 300b as often as needed for a particular use.
Without rapid recovery, the initial states of the reconfig-

ured computational resources 320 and 330 (with processors 2
and 3) would not be in-sync with application A executing on
processor 1. It would typically require some time period of 25

operation before the states of there-configured computational
resources (processors 2 and 3) would reach the same state as
the original application A on processor 1. But with rapid
recovery, the operational state variables of application A on
processor 1 from a previous computing frame can be loaded 30

into the reconfigured processors 2 and 3 just prior to their
execution of application A. This allows the initial states of the
reconfigured computational resources to be essentially in-
sync with the original state of processor 1.

FIG. 4 illustrates a method for optimizing the use of digital 35

computing resources to achieve reliability and availability. At
least one computational resource 410 is provided with a pro-
cessor 412 that is configured to execute an application 414. A
recovery mechanism 416 is provided in computational
resource 410 for rapid recovery. One or more additional com- 40

putational resources 410(N) can be optionally provided with
one or more processors 412(N) if desired depending upon the
use intended for the computational resources. Such additional
computational resources can be configured to execute one or
more applications 414(N), which can be the same as or dif- 45

ferent from application 414. The additional computational
resources can include an optional recovery mechanism 416
(N) if desired.

During operation, a determination is made at 420 whether
reconfiguration is required for computational resource 410 50

(and when present, computational resources 410(N)). If not,
then computational resource(s) 410 (410(N)) continues nor-
mal operations in executing applications) 414 (414(N)). If
reconfiguration is required, then a rapid recovery is initiated
at 430 using state data stored in recovery mechanism(s) 416 55

(416(N)). The reconfigurationofprocessor(s) 412 (412(N))is
complete at 440 after rapid recovery occurs.

In one embodiment, a recoverable real time multi-tasking
computer system is provided. The system comprises a real
time computing platform, wherein the real time computing 60

platform is adapted to execute one or more applications,
wherein each application is time and space partitioned. The
system further comprises a fault detection system adapted to
detect one or more faults affecting the real time computing
environment, and a fault recovery system. Upon the detection 65

of a fault by the fault detection system, the fault recovery
system is adapted to restore a backup set of state variables.

8
In one embodiment, lock-step fault detection allows a sys-

tem to detect upset events almost immediately. Traditional
lock step processing implies that two or more processors are
executing the same instructions at the same time. Self-check-
ing lock-step computing provides the cross feeding of signals
from one processing lane to the otherprocessing lane and then
compares them for deviations on every single clock edge.

FIG. 5 illustrates one embodiment 500 of a self-checking
lock-step computing lane 510 of one embodiment of the
present invention. Self-checking lock-step computing lane
510 comprises at least two sets of duplicate processors (512
and 514), memories (520 and 522), and fault detection moni-
tors (516 and 518). On every single system clock edge, moni-
tors 516 and 518 both compare the data bus signal and control
bus signal output of processors 512 and 514 against each
other. When the output signals fail to correlate, monitors 516
and 518 identify a fault. This guarantees that if one processor
deviates (e.g., because it retrieves a wrong address or is pro-
vided a wrong data bit) one or both of monitors 516 and 518
will detect the fault on the next clock edge. The fault is thus
detected in the same computational frame in which it was
generated. In one embodiment, when either monitor 516 or
monitor 518 detects a fault, the monitor notifies processors
512 and 514. In embodiments of the present invention, upon
notification of a fault, processors 512 and 514 shut off further
processing of the application which was executing in the
faulted computational frame and the fault recovery system is
invoked.

In operation, in one embodiment, processors 512 and 514
hold state variables for applications in respective memories
520 and 522. The memory locations in memories 520 and 522
used by each application to store state variables as the appli-
cations are executed in their respective computational frame
are referred to as "scratchpad memories." Fault recovery sys-
tem 530 creates a duplicate copy of the state variables stored
in memories 520 and 522, creating a repository of recent state
variable data sets. Fault recovery system 530 stores off the
state variables in real time, as processors 512 and 514 are
executing and storing the state variables in memories 520 and
522.

In one embodiment, as state variable values are produced
by processors 512 and 514 and stored in memories 520 and
522, there is a redundant copy made in duplicate memory 538.
In one embodiment, duplicate memory 538 is contained in a
highly isolated location to ensure the robustness of the data
stored in duplicate memory 538. In one embodiment, dupli-
cate memory 538 is protected from corruption by one or more
of a metal enclosure, signal buffers (such as buffers 544 and
546) and power isolation.

One skilled in the art will recognize that it is undesirable to
load duplicate memory 538 with state variable data in situa-
tions where the system only partially completed a computing
frame when the fault occurred. This is because duplicate
memory 538 could end up storing corrupted data for that
computing frame. Instead, to ensure that a complete valid
frame of state variable data is in the duplicate memory and
available for restoration, embodiments of the present inven-
tion provide intermediate memories. In one embodiment, a
duplicate of memories 520 and 522 for even computational
frames is loaded into even frame memory 534. A duplicate of
memories 520 and 522 for odd computational frames is
loaded into odd frame memory 536. The even frame memory
534 and odd frame memory 536 toggle back and forth copy-
ing data into the duplicate memory 538 to ensure that a
complete valid backup memory is maintained. Even frame
memory 534 and odd frame memory 536 will only copy their
contents to duplicate memory 538 if the intermediate memo-

US 7,793,147 B2
9

ries themselves contain a complete valid state variable
backup for a computing frame that successfully completes, its
execution.

In one embodiment, fault recovery system 530 also
includes a variable identity array 542, which provides for the 5

efficient use of memory storage. In one embodiment, instead
of creating backup copies of every state variable for every
application, variable identity array 542 identifies a subset of
predefined state variables which allows recovery control
logic 532 to backup only those state variables desired for io
certain applications into duplicate memory 538. In one
embodiment, only state variables for predefined applications
are included in the predefined subset of state variables that are
duplicated into duplicate memory 538. In one embodiment,
variable identity array 542 contains predefined state variable 15

locations on an address-by-address basis. In one embodi-
ment, variable identity array 542 allows only the desired state
variable data to load into the intermediate memories.

When recovery control logic 532 is notified of a detected
fault, recovery control logic 532 retrieves the duplicate state 20

variables for an upset application from duplicate memory 538
and restores those state variables into the upset application's
scratchpad memory area of memories 520 and 522. In one
embodiment, once the duplicate state variables are restored
into memories 520 and 522, recovery control logic 532 noti- 25

fies monitors 516 and 518, and processors 212, 214 resume
execution of the upset application using the restored state
variables.

In another embodiment of the present invention, monitors
516 and 518 are adapted to notify the faulted application of 30

the occurrence of a fault, instead of notifying recovery control
logic 532. In operation, in one embodiment, upon detection of
a fault affecting an application, the monitor notifies proces-
sors 512 and 514, which shut off processing of the upset
application. On the upset application's next processing 35

frame, at least one of processors 512 and 514 notify the
faulted application of the occurrence of the fault. In one
embodiment, upon notification of the fault, the upset appli-
cation is adapted to request the recovery of state variables by
notifying recovery control logic 532. In one embodiment, 40

once the duplicate state variables are restored into memories
520 and 522, recovery control logic 532 notifies monitors 516
and 518, and processors 512 and 514 resume execution of the
upset application using the restored state variables.

The present invention may be embodied in other specific 45

forms without departing from its essential characteristics.
The described embodiments and methods are to be consid-
ered in all respects only as illustrative and not restrictive. The
scope of the invention is therefore indicated by the appended
claims rather than by the foregoing description. All changes 50

that come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed is:
1. A method for optimizing the use of digital computing

resources to achieve reliability and availability of the digital 55

computing resources, the method comprising:
providing one or more processors with a recovery mecha-

nism, the one or more processors executing one or more
applications, the recovery mechanism comprising:
a duplicate memory;	 60

an even frame memory, wherein the recovery mecha-
nism is configured to duplicate state variables com-
puted by a real time computing platform dining even
computational frames into the even frame memory;
and	 65

an odd frame memory, wherein the recovery mechanism
is configured to duplicate state variables computed by

10
the real time computing platform during odd compu-
tational frames into the odd frame memory;

wherein the even frame memory and the odd frame
memory toggle back and forth duplicating state vari-
ables into the duplicate memory for computational
frames in which no fault is detected;

determining whether the one or more processors needs to
be reconfigured; and

employing a rapid recovery to reconfigure the one or more
processors when needed;

wherein upon determining the need to reconfigure, the
recovery mechanism restores a duplicate set of state
variables into one or more scratchpad memories for the
one or more processors.

2. The method of claim 1, wherein state data is continu-
ously updated in the recovery mechanism.

3. The method of claim 2, wherein the state data is used to
transfuse the one or more processors for reconfiguration.

4. The method of claim 1, wherein the method provides
real-time reconfiguration transitions.

5. The method of claim 1, wherein the method provides for
one less than a predetermined set of processing hardware to
achieve reliability and availability for functions being pro-
vided.

6. An electronic system architecture that is configured to
implement the method of claim 1.

7. A computing system that provides reconfigurable and
recoverable computing resources, the system comprising:

a real time computing platform;
one or more scratchpad memories in the computing plat-

form;
one or more processors with a recovery mechanism in the

computing platform, the one or more processors config-
ured to execute a first application, the recovery mecha-
nism comprising:
a duplicate memory;
an even frame memory, wherein the recovery mecha-

nism is configured to duplicate state variables com-
puted by the real time computing platform during
even computational frames into the even frame
memory; and

an odd frame memory, wherein the recovery mechanism
is configured to duplicate state variables computed by
the real time computing platform during odd compu-
tational frames into the odd frame memory;

wherein the even frame memory and the odd frame
memory toggle back and forth duplicating state vari-
ables into the duplicate memory for computational
frames in which no fault is detected;

a first additional processor configured to execute a second
application different than the first application;

wherein the additional processor is reconfigurable with
rapid recovery such that the additional processor can
execute the first application when one of the one more
processors fails; and

wherein upon determining a need to reconfigure, the recov-
ery mechanism restores a duplicate set of state variables
into the one or more scratchpad memories.

8. The system of claim 7, wherein the one or more proces-
sors are in operative communication with a decision logic
module prior to any failure.

9. The system of claim 8, wherein the decision logic mod-
ule implements an algorithm that maintains an appropriate
action in the event that one of the one or more processors
sends an erroneous output to the decision logic module.

10. The system of claim 8, wherein the additional processor
is inoperative communication with the decision logic module

US 7,793,147 B2
11

when the additional processor is reconfigured, and a failed
processor is removed from communication with the decision
logic module.

11.The system of claim 7, wherein the additional processor
is reconfigured with recovery data from a processor that has
not failed to maintain a level of redundancy.

12. The system of claim 7, wherein the recovery mecha-
nism in the one or more processors stores state data relevant to
executing the first application.

13. The system of claim 12, wherein the state data is used
to reconfigure the additional processor.

14. The system of claim 7, further comprising a second
additional processor configured to execute a third application
different from the first and second applications.

15. The system of claim 14, wherein the second additional
processor is reconfigurable such that it can execute the second
application if the first additional processor fails.

16. The system of claim 14, wherein the second additional
processor is reconfigured with a consistent set of state data
from a recovery mechanism of the first additional processor.

17. A computing system that provides reconfigurable and
recoverable computing resources, the system comprising:

• real time computing platform;
• scratchpad memory in the computing platform;
• first processor with a recovery mechanism in the com-

putingplatform, the first processor configuredto execute
• first application, the recovery mechanism comprising:
• duplicate memory;
an even frame memory, wherein the recovery mecha-

nism is configured to duplicate state variables com-
puted by the real time computing platform during
even computational frames into the even frame
memory; and

12
an odd frame memory, wherein the recovery mechanism

is configured to duplicate state variables computed by
the real time computing platform during odd compu-
tational frames into the odd frame memory;

5 wherein the even frame memory and the odd frame
memory toggle back and forth duplicating state vari-
ables into the duplicate memory for computational
frames in which no fault is detected;

one or more additional processors configured to execute
10	 one or more applications that are different from the first

application;
wherein the one or more additional processors are recon-

figurable such that they can execute the first application
when needed for redundancy while the first processor is

15 executing the first application, and wherein the one or
more additional processors can be further reconfigured
to execute the one or more applications again that are
different from the first application when redundancy is
no longer required; and

20 wherein upon determining a need to reconfigure, the recov-
ery mechanism restores a duplicate set of state variables
into the scratchpad memory.

18. The system of claim 17, wherein state data is continu-
ously updated in the recovery mechanism of the first proces-

25 sor.
19. The system of claim 18, wherein the one or more

additional processors are reconfigured with a consistent set of
state data from the recovery mechanism of the first processor.

20. The system of claim 17, wherein the first processor and
30 the one or more additional processors are in operative com-

munication with a decision logic module after reconfigura-
tion of the one or more additional processors.

	7793147-p0001.pdf
	7793147-p0002.pdf
	7793147-p0003.pdf
	7793147-p0004.pdf
	7793147-p0005.pdf
	7793147-p0006.pdf
	7793147-p0007.pdf
	7793147-p0008.pdf
	7793147-p0009.pdf
	7793147-p0010.pdf
	7793147-p0011.pdf
	7793147-p0012.pdf
	7793147-p0013.pdf

