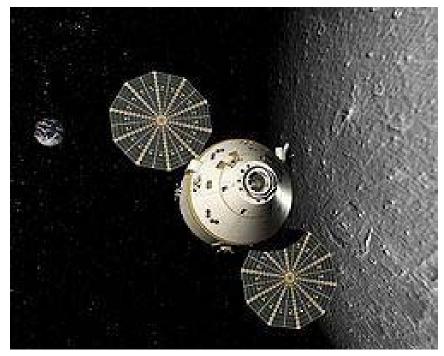


Avionics System Architecture for NASA Orion Vehicle

Clint Baggerman
NASA- Johnson Space Center


TTA Group Open Forum November 4th, 2010

What is Orion?

- The Orion Crew Exploration Vehicle will provide a capability to deliver humans to space reliably and return them safely
- Orion is currently under development by NASA, Lockheed Martin, and other industry partner
- The first Orion spaceflight will be an uncrewed flight test

Orion Concept of Operations

 Potential Orion mission objectives include delivering a crew to the International Space Station, transporting a crew to a near-Earth objects, and providing emergency return capability from the International Space Station

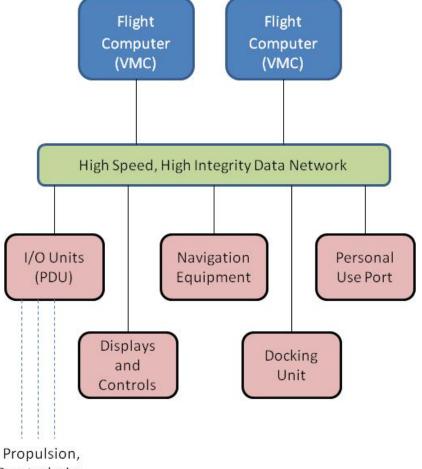
- Crew of 4
- Crew launch from Kennedy
 Space Center
- Ocean landing off California coast
- Ability to abort during launch

Orion Subsystems

- Orion contains the following vehicle subsystems:
 - Propulsion
 - Vehicle power
 - Life support
 - Communications
 - Docking adapter
 - Structures
 - Pyrotechnics

- Displays and Controls
- Parachutes
- Guidance & Navigation
- Mechanisms
- Crew Systems
- Thermal Control
- Thermal Protection
- The Orion Avionics subsystem must provide an infrastructure to command, control, and monitor all of these subsystems

Orion Avionics Architecture

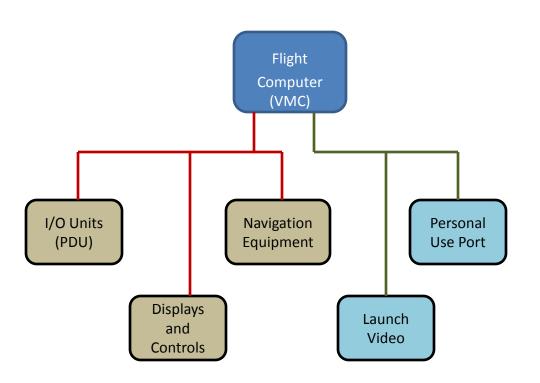


- Orion uses an IMA-based high integrity architecture with the following elements:
 - Vehicle Management Computers (VMCs)
 - Provides a central computing platform to host software applications for a variety of vehicle subsystems
 - Time-Triggered Ethernet (TTEthernet) Onboard Data Network
 - Provides priority-based network communications via time triggered, rate constrained, and best effort traffic classes
 - Power and Data Units (PDUs)
 - Provides sensor data gathering, actuator control, and power distribution for critical vehicle subsystems

Orion Avionics Architecture

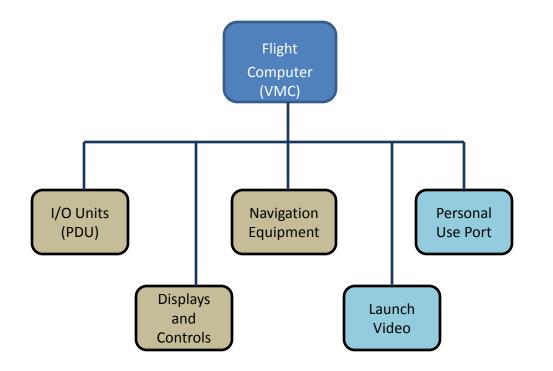
Pyrotechnics, Environmental Control, etc.

Orion Avionics- Network


- Orion uses Time Triggered Ethernet (TTEthernet) to provide high-integrity, deterministic data network communications across the vehicle
 - The data network is deterministic to guarantee latency and response time for critical sensors and effectors
 - Traffic classes (time triggered, rate constrained, and best effort) allow prioritization of network data
 - Cross-comparison of data provides fault containment at the network switches and safety critical interfaces

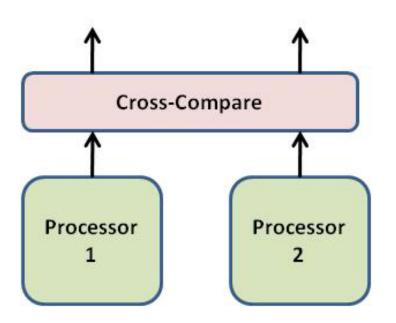
Orion Network Unification

 The original Orion architecture contained two Ethernet-based data networks:


- A flight-critical control bus that handled time-sensitive and/or safety critical commands
- A general-purpose data bus that handled non-critical traffic such as video and personal crew equipment

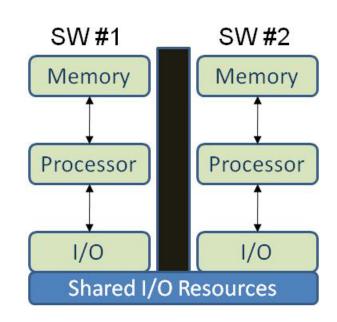
Orion Network Unification

 However, to reduce vehicle size, weight, and power while maintaining acceptable reliability,
 Orion collapsed both networks into one,
 TTEthernet-based infrastructure


- Critical or time-sensitive data utilized time-triggered or rate-constrained TTEthernet traffic classes
- Video and personal crew data utilized the best effort TTFthernet traffic class

Orion Avionics- Integrity

 Orion VMCs utilize a self-checking pair of processors to ensure the integrity of commands issued to vehicle subsystems


- Each VMC contains two processors
- Each processor independently runs the same applications
- The processor outputs are bit-by-bit compared to one another
- If any miscompares are detected between the outputs, that command is truncated

Orion Avionics- Partitioning

- Orion VMCs utilize time and space partitioning of software and memory to ensure faults do not propagate between systems
 - VMCs execute code for a variety of software applications supporting various vehicle systems
 - Code for each software application is located in a unique, specific memory space
 - Each software application runs during a specific, periodic slice of time
 - As a result, faults from one system will not threaten the execution of other systems' code

Orion Avionics- Redundancy

- Orion avionics uses simple redundancy (minimum one fault tolerance) to ensure that commands are successfully received
 - A command follows the following sequence:
 - A command is generated on each VMC
 - It is then sent simultaneously over two plane of the Data Network
 - The valid command is received from both VMCs at each of two PDUs
 - The PDUs send control signals initiated by the commands to redundant effectors