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Abstract 

Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with 
aluminum shielding in order to assess the effects of the partial penetration damage on the post impact 
micromechanical properties of titanium and on the residual strength after impact. This work is performed 
in support of the definition of the penetration criteria of the propellant tanks’ surfaces for the service 
module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than 
on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the 
damage dynamics and morphology. The crater statistics revealed minute differences between stressed and 
unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength 
properties were generally unchanged for the unstressed coupons when compared with undamaged 
titanium. However, high localized strains were shown near the craters during the tensile tests. 

Nomenclature 

C Speed of sound in materials, km/s 
dp Projectile diameter, cm, mm 
E Young’s modulus, ksi, MPa 
H Brinell hardness 
HV Vickers Hardness 
P Crater depth, cm 
tb Bumper thickness, cm 
Vfragment Fragment velocity, km/s 
Vp Projectile velocity, km/s 
xx Strain along x direction, percent 
yy Strain along y direction, percent 
xx Normal Stress Component along x direction, ksi, MPa 
yy Normal Stress Component along y direction, ksi, MPa 
 Poisson Ratio 
ρp Projectile density, g/cm3 
ρt Target density, g/cm3 

1.0 Introduction 

The propellant tanks on the service module of the Orion Crew Exploration Vehicle (CEV) are 
vulnerable to the micrometeoroids and orbital debris (MMOD) impacts. Although they are shielded by 
other surfaces, a projectile of significant energy could penetrate through the shielding. Generated 
fragmentation could impact the surfaces of the propellant tanks and result in adverse effects on the service 
module. The spectrum of damage ranges from a perforation through the tank wall to simple cratering of 
the surfaces of the tanks. The allowable depth of penetration in the surface of the propellant tank is 
integral to the definition of the failure criteria used in the MMOD system level analysis of the vehicle. 
The current allowable penetration criteria for the pressure vessels on board of the Service Module (SM) of 
the CEV are based on historical background; however, these criteria should be based on experiments and 
analyses that show that the allowable depth of penetration is reasonable and not overly conservative or 
nonconservative. 

An experimental program aimed at addressing the depth of penetration that is allowed on the tanks 
surfaces with multicenter and multidisciplinary participation was planned in support of NASA’s future 
missions. Phase 1 of the program addresses the penetration depth of metallic titanium tank surfaces 
whereas phase 2 addresses the penetration depth into the composite surface of composite overwrapped 
pressure vessels (COPV). A building block approach is adopted in this program. For phase 1, which is  
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concerned with the titanium surface, six stressed and unstressed titanium coupons shielded with 
aluminum bumpers were hypervelocity impacted by projectiles that penetrate the aluminum shield and 
cause the resulting plume to impact the titanium surface to produce a partial penetration distribution of 
craters. A series of post impact analyses are performed to assess the damage resulting from the craters. 
Detailed comparisons are performed to assess the difference between biaxially loaded and unstressed 
coupons impacted with similar projectiles and nearly similar velocities. Testing of pressurized titanium 
metal tanks is planned through task 2 of phase 1. This paper is focused on the hypervelocity impact (HVI) 
testing of the titanium coupons and the craters analyses that followed. Figure 1 shows a basic block 
diagram for phase 1 effort with the presented work highlighted in blue. 

2.0 Testing 

In this effort, the conducted HVI experiments consisted of performing six shots on aluminum- 
shielded unstressed titanium coupons at White Sands Test Facility (WSTF), and six shots on aluminum- 
shielded-biaxially-stressed titanium coupons at the University of Dayton Research Institute (UDRI)-
Impact Physics Laboratories. The configurations of the test coupons were similar except for the biaxial 
stress state. 

2.1 Target-Shielding Geometry 

Figure 2(a) shows a schematic of the coupon geometry. The basic configuration of the test article 
consisted of a 0.0965 cm (0.04 in.) aluminum 6061-T6 bumper and a 0.127 cm (0.05 in.) Titanium 
(Ti-6Al-4V) substrate with a standoff distance of 27.9 cm (11 in.). Similar configuration for the 
unstressed coupons was adopted. Although this geometry and configuration does not fully reflect the 
shielding design of the service module tanks, this configuration was chosen for the fact that it makes the 
crater analysis much more correlated with the projectile speed, density and velocity because the Whipple 
shield is well understood from a fundamental stand point. No material backing of the titanium was 
considered because we decided to pursue the worst case where the tank wall is contacting the gas and 
where the greatest mismatch in mechanical impedance occurs. 

2.2 Biaxial Stress Fixture 

A biaxial stress fixture was designed and fabricated at UDRI for this series of testing. It was based on 
the design of the uniaxial stress fixture used for the crack propagation studies of the International Space 
Station (ISS) module skin. The biaxial fixture is shown in Figure 2(b). This fixture is capable of providing  
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TABLE 1.—HVI TESTS ON UNSTRESSED AND STRESSED Ti COUPONS WITH ALUMINUM SHIELDS 

 
 
80 ksi±7 percent of biaxial stress which was a requirement reflecting the stress state of typical metallic 
propellant tanks. The calibration of the biaxial stress state was performed with eight biaxial strain gages 
(4 gauges in each direction). Five turnbuckles along the vertical and horizontal direction provided the 
mechanical pull to achieve the calibrated strain that corresponds to the desired stress level. The titanium 
coupons were first installed in the fixture. Before performing the hypervelocity impact, the titanium was 
strained to the appropriate strain level of 3248 µ strains in each direction based on the aforementioned 
biaxial stress of 80 ksi. The strain level was computed from the two-dimensional Hooke’s law given by, 
 

 
   1 1

;
E Exx xx yy yy yy xx         

 
(1) 

 
Where xx is the normal stress component along the x direction, xx is the strain along the x direction, 

E is Young’s Modulus, and  is the Poisson ratio. The strain along the vertical direction is computed from 
the yy equation also given in Equation (1). 

The titanium coupons for the unstressed tests were integrated with the aluminum shielding according 
to the spacing given in paragraph 2.1. For the stressed coupons, the configuration differed a little in that 
the titanium could not be integrated with the aluminum shielding. Instead, the aluminum shield was 
installed on a different structure as shown in Figure 1(b) and titanium target was installed into the biaxial 
stress fixture. The titanium thickness was milled down to 0.127 cm (0.05 in.) in an area in the middle of 
the coupon of 22.9 by 22.9 cm (9 by 9 in.).  

2.3 Test Matrices for the Unstressed and Stressed Coupons Tests 

The test plan matrix for the unstressed and stressed titanium coupons is shown in Table 1, 
respectively. The first and second columns refer to the reference numbers of the tests performed at WSTF 
(unstressed) and UDRI (biaxially stressed), respectively. The Whipple shield Ballistic Limit Equation 
(BLE) was used to estimate the depth of penetration shown in the last column of the table. 
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In general, the parameters were made very similar for comparison purposes in order to look for the 
effects of the biaxial stress on the micro-mechanical features of the craters and the residual strength of the 
titanium. The aluminum projectiles simulate the orbital debris environment whereas the micrometeoroids 
are simulated with the lower density nylon projectiles. The higher micrometeoroids velocity is not 
simulated because of the limitations of the launch facilities used for the hypervelocity impacts. 

3.0 Results 

The results for the unstressed and stressed titanium coupons HVIs will be presented in this section of 
the paper and these encompassed several post impact analyses performed on the craters. 

3.1 Crater Depth Analyses 

Several craters in each of the impacted coupons were analyzed for depth and diameter. The craters 
were chosen based on their visual appearance as being of greater depth and diameter. The depth of 
penetration for each of the crater was measured with the three-dimensional microscope at the Johnson 
Space Center. A typical depth image and profile is shown in Figure 3. The craters were identified by 
placing and lining up a transparency over the titanium coupon and identifying with a marker the craters of 
interest. Then the transparency which served as a reference catalog was removed to look at the chosen 
craters. Table 2 shows the results of analyzing 5 craters on an unstressed titanium coupon where the 
projectile diameter was 1.6 mm at 6.69 km/s. 

 
 

 
 
 

TABLE 2.—DEPTH OF PENETRATION FOR THE 5 CRATERS MEASURED 
ON THE TITANIUM COUPON FROM A 1.6 mm ALUMINUM 

PROJECTILE IMPACT ON ALUMINUM 
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Figure 4(a) and (b) shows the damage distribution on a stressed and unstressed titanium surface from a 
2.6 mm projectile that impacted the aluminum shield. It is observed that the ring structure is apparent for the 
aluminum projectile but not so apparent for the 3.6 mm nylon projectile shown in Figure 5(a) and (b). 

Moreover, there seems to be no dependence of the crater depth on the radial distance from the impact 
center for both the stressed and unstressed coupons and for the aluminum and nylon projectiles. The 
titanium coupons impacted with plumes from aluminum projectile-aluminum shield showed concentric 
ring structures that are reflective of the projectile diameter and the plume generated from the projectile 
impact with the aluminum surface. Although the ring structure exists, the lack of dependence of the crater 
depth on the radial distance from the center suggests that the craters were generated by aluminum 
particles released from the aluminum bumper and landed on the outskirts of the aforementioned rings of 
particle damage. 

As shown in Figures 4 and 5, secondary impacts resulted in similar damage maps on the stressed and 
unstressed coupons for the aluminum and nylon projectiles, respectively. The nylon density is almost 
three times less than the aluminum density with a lower melting and vaporization temperatures. With 
similar impact loading pressure on the aluminum, the nylon projectile vaporizes and the resulting plume is 
primarily made up of particles released from the aluminum shield. These particles are on the average 
greater in size than those released from impacts of aluminum projectiles on the aluminum shield. 

In the crater analyses performed at the NASA Johnson Space Center, the crater depth and diameter 
were measured at selected damage sites. The average damage depth for each of the titanium coupons was 
calculated from the various craters. Figure 6 shows the crater depth plotted as a function of the projectile 
kinetic energy for the stressed and unstressed coupons with the 95 percent confidence interval calculated 
for the stressed coupons’ measured craters shown in Figure 6(b). The decreasing trend at higher projectile 
kinetic energy may be explained by the smaller particles in the plume generated by the higher loading 
impact pressure from the bigger aluminum projectiles. 
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3.2 Micromechanical-Metallographic Analyses 

The micromechanical analyses performed at WSTF focused on assessing the micromechanical 
properties of the titanium near selected craters of specific penetration depths. Three craters were chosen 
from three titanium coupons. Two craters came from the titanium coupons of tests HITF08373 and 
HITF08375, respectively whereas the third from the titanium coupon of HITF08377. These three craters 
were chosen on the titanium coupons and a small sample was cut around each of the craters. The craters’ 
depths were about 12, 25, and 38 percent of the titanium thickness. 

3.2.1 Scanning Electron Microscopy 

At first, scanning electron microscopy (SEM) was performed on the three samples to obtain a crater 
profile and determine an accurate depth of the crater. Figures 7 and 8 show SEM images of the craters 
from the 1.6 and 2.6 mm aluminum projectile whereas Figure 9 shows an image of the crater that resulted 
from the nylon impact on the aluminum bumper. 

3.2.2 Replica Metrology and White Light Profilometry 

In an effort to assess the effectiveness of making a replica for the damage which in turn will be used 
for white light profilometry, replica metrology was performed on the craters utilizing a polymeric rubbery 
system. The replicas were allowed to cure and detached from the target plate on both the crater side as 
well as the back side in the region situated just below the crater. White light profilometry was performed 
on the single craters as well as on the plate surface just behind the crater prior to sectioning. As shown in 
Figure 10, there is a close correspondence (a difference of 10 percent) between the replica and the crater 
obtained from the 1.6 mm aluminum projectile impact on the aluminum shield, and the results were 
consistent between the profiles acquired from the crater and the replicas. 

3.2.3 Metallography 

Once white light profilometry was completed, the craters were sectioned in the transverse orientation 
and the sectioned half crater was cold mounted and polished utilizing standard metallographic techniques. 
Once the mounted samples had been polished to approximately the middle of the crater, a Kroll’s reagent 
was used to etch it. As shown in Figures 11 and 12, the micrographs revealed equiaxed α with 
intergranular β as would be expected for an annealed Ti-6Al-4V. Several spall cracks were observed 
(Fig. 12) on both sides of the sectioned crater for only the nylon impactor. The back side of the target 
plate just below the crater was also imaged and no spall cracks were observed. A direct comparison of the 
damage range for the nylon projectiles for both the stressed and unstressed Ti coupons shows that the 
maximum damage measured for the finite number of samples tends to be about 40 percent. Such deep 
depth of penetration presents concerns since it is shown later that the scanning electron micrographs of 
such deep impact exhibited spall microcracks near the crater. 
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3.2.4 Vickers Hardness—Unstressed Titanium Coupons 

Hardness was measured on the sectioned and mounted crater utilizing a Vickers micro-hardness tester 
with a 100 g load. Hardness readings were taken on the base metal as well as from the base of the crater 
all the way to the back face of the target plate as shown in Figure 13. Figure 14 shows a summary of the 
measured Vickers micro-hardness as a function of the distance below the crater for the three craters that 
were sectioned. 

The micro-hardness profile below the crater does not appear to show a very significant hardness 
change in the base metal as a result of the impact. For instance for the nylon projectile related crater, 
Vickers micro-hardness ranged from 285 to 326 HV whereas the base material hardness was found to be 
in the range of 300 to 350 HV with the highest reading located just below the front target plate face. 

3.2.5 Energy Dispersive X-Ray Spectroscopy 

Energy-dispersive x-ray spectroscopic (EDS) analysis was performed on control titanium samples as 
well as on the inside of the crater. The EDS technique is capable of detecting elements of atomic number 
4 (Beryllium) and greater. As shown in Figure 15(b), the inside of the crater possessed an intense 
aluminum peak which most likely is the result of deposition of the projectile (2017-T4 aluminum) or 
bumper plate material (6061-T6 aluminum) on the crater inner wall. 

3.3 Bumper Fragments Size Estimates 

An attempt was made to calculate the particle distribution for each of the impacts on the unstressed 
and shielded titanium coupons. Based on the ratio of the bumper thickness to the impacting projectile 
diameter tb/dp which ranged between 0.2 to 0.6, and on the projectile velocity being about 7 km/s, the 
projectile may have been partially or fully melted upon impact but the bumper unlike the projectile is 
fragmented and the fragments partially penetrated the titanium surface (Ref. 1). The craters produced 
from the aluminum projectile impacts and that were chosen for depth measurements lied on the outskirt of 
the ring structures that formed on the titanium. These craters were created by aluminum fragments that 
were broken off from the bumper. The nylon projectile most likely vaporizes upon impact and 
consequently, the craters are also formed from the aluminum fragments that are broken from the shield. 
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The crater depth information was used to approximate the diameter or the length scale of the 
impacting fragments. This was done using the penetration depth equation and back calculating the 
impacting diameter. The penetration depth that results from an impacting particle of diameter dp and a 
velocity Vp is given for p/t < 1.5 by (Ref. 2),  
 

 

2 319 18

4

5.24 p p p

t

d V
P

CH







   
   
     

(2) 

 
P is the depth in a semi-infinite target, H is the Brinell hardness, p and t are the projectile and 

target densities respectively, and C is the speed of sound in the material interacting with the projectile. 
The maximum fragment diameter from the aluminum bumper cannot exceed the bumper thickness. The 
velocity of the bumper fragments is related to the impact velocity by (Ref. 2), 
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Combination of Equations (2) and (3), realizing that dp in Equation (2) is actually dfragment, and solving 

for dfragment leads to, 
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The distribution of the fragment diameter/length scale based on the depth of the few craters from the 

unstressed (Fig. 6(a), (c), and (e)) and stressed (Fig. 6(b), (d), and (f)) coupons that were measured is 
shown in Figure 16(a) to (f). In Figure 16(e) and (f), the distribution of all particles from all the impacts 
performed on the unstressed and stressed coupons is shown, respectively. The range of the particles 
length scale is comparable for the stressed and unstressed titanium and for the different projectile 
diameters. The fragmentation distribution depends on the bumper properties and the projectile energy. 
The titanium cratering was used to gage the plume distribution. Figure 16(e) and (f) suggest that the 
fragmentation distribution from the shield ranged in size from 0.02 to about 0.1 cm. The majority of the 
fragmentation size is between 0.02 and 0.04 cm in diameter for the aluminum projectiles ranging from 
1.6 to 3.6 mm and nylon projectiles from 2 mm to about 3.6 mm. 

3.4 Residual Strength Measurements 

The residual strength measurements were performed at the NASA Glenn Research Center. The tensile 
strength of the unstressed cratered titanium sheets was performed by using ASTM E8 (Ref. 3) sub-sized 
specimens cut from the impact site. The 1 in. gage section of the test specimens was centered on regions 
exhibiting multiple, large craters or significant debris splatter. Prior to testing, the depth, width, and 
length of the largest craters in each gage section were measured. The largest craters were ~1.1 by 1.0 by 
0.5 mm in width, length, and depth, respectively. For the specimens exhibiting the worst apparent damage 
(i.e., largest craters), the strain field in the gage section was recorded during loading by using a camera-
based displacement system. This allowed estimation of the local stress/strain concentration around the 
crater.  

The engineering tensile properties of reference (undamaged) and cratered titanium sheets are given in 
Table 3. 
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TABLE 3.—EXPERIMENTAL RESULTS OF THE RESIDUAL STRENGTH MEASUREMENTS 
[The row labelled “Reference” corresponds to measurements of un-impacted titanium.] 
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Very little difference in Young’s modulus, yield strength, and ultimate strength are exhibited, however, 
significant differences occur for the fracture strength, elongation and area reduction. The lower fracture 
strength and ductility are a result of the MMOD causing localized yielding and premature failure as 
compared to a smooth section. The large ductility and fracture toughness of Ti-6-4 allowed load shedding 
and good ultimate strength. Although the tensile results indicate little change in some engineering tensile 
values, the local strain are substantially higher in some cases as shown in Figure 17.  

The localized strains at net section yield are about 30 percent higher, and at failure they are more than 
3 times higher. Thus it was concerning that the quasi-static tensile tests do not represent well the localized 
damage, and it might be expected that components subjected load-control failure scenarios, such as 
pressure vessels, could fail at lower section stresses over time, as load cannot be easily redistributed. To 
investigate this point further, a specimen with a 0.11 by 0.32 by 0.33 mm crater was held under a constant 
load of 110 ksi stress for 21 hr. The results showed a constant strain under this condition as depicted in 
Figure 18. The concern is alleviated by the fact that the pressure is low compared to the usual high 
pressure common to pressure vessels and by Figure 18 which shows no strain increase under constant 
load over a period of 21 hr. 
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Concluding Remarks 

In this paper, we showed the results of a series of hypervelocity impact tests in which a projectile is 
launched at an aluminum bumper in front of a titanium plate in order to understand the structure of the 
craters on the titanium caused by the projectile-bumper interaction and the resulting plume composed of 
projectile remains and target fragments. Several post impact tests performed on the titanium craters 
showed that the damage structures on the biaxially stressed and unstressed titanium plates were similar. 
Hardness measurements showed no differences between the Ti hardness under the crater and aside from 
the crater. This suggests that the local deformation upon impact does not affect the hardness properties 
even for the deepest crater of 38 percent depth analyzed in this work. Post impact residual strength 
measurements showed no discernable differences in the engineering strength properties between the 
pristine and cratered titanium. However, imaging of the strain field revealed significant increase in the 
localized strains upon tensile yield of the specimen. These measurements also revealed reduction in the 
fracture strength and reduction in ductility of the cratered titanium specimens. Tensile stress of 110 ksi 
applied to a cratered specimen showed no changes in the strain for 21 hr duration which suggests that the 
constant load conditions at the operating stress of about 100 ksi is not a concern. 

We recommend performing burst pressure tests on cratered coupons. These tests are based on 
pressurizing the back surface of a cratered titanium coupon and increasing the pressure until failure. Such 
a test would be more representative of the load control failure than quasi-static tensile tests. We also 
recommend performing strain field measurements on craters of depth between 10 to 30 percent under 
loading conditions and comparing the strain fields, the elongation, area reduction and fracture strength for 
the two craters. This will help determine the appropriate allowable penetration depth on the surfaces of 
the metallic titanium pressure vessel. 
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